¹⁵⁴Hf IT decay (9 μ s) **1993Mc03,1989Mc07**

Type Author Citation Literature Cutoff Date
Full Evaluation N. Nica NDS 200,2 (2025) 22-Aug-2022

Parent: 154 Hf: E=2713; J^{π} =(10⁺); $T_{1/2}$ =9 μ s 4; %IT decay=100

Produced in the 102 Pd(54 Fe,2n) reaction with 240-245 MeV 54 Fe ions on a 1-mg/cm² 102 Pd target. The reaction products were separated using the Daresbury Recoil Mass Separator. The source material was collected on an Al catcher foil. γ radiation was studied using a LEPS and four large Ge detectors. The time relationships between the signals from a position-sensitive detector and the γ -ray detectors were used for mass, $T_{1/2}$ and $\gamma\gamma$ coincidence determinations.

154Hf Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	Comments
0	0+	2 s 1	$T_{1/2}$: from Adopted Levels.
1513	(2^{+})		
2011	(3^{-})		
2146	(5^{-})		
2457	(7^{-})		
2671	(8 ⁺) ^{#&}		
2713	$(10^+)^{\textcircled{@}}$	9 μs 4	$T_{1/2}$: from $\gamma(t)$ (1989Mc07).

[†] The ordering of the γ 's, and thus the level energies, is based on the systematics of the lighter doubly even nuclides, especially ¹⁵⁰Er and ¹⁵²Yb.

[&]amp; This is the most likely configuration, with the eight valence protons beyond Z=64 all being in the π h_{11/2} spherical shell-model state (1989Mc07).

							$\underline{\gamma^{(154} \text{Hf})}$
E_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α^{\ddagger}	Comments
≈42	2713	(10+)	2671	(8+)	[E2]	≈166	E_{γ} : From the systematics of the energy separation of the 8 ⁺ and 10 ⁺ states in the lighter-mass doubly even N=82 nuclides, 1989Mc07 estimate that the energy of the unobserved 10 ⁺ \rightarrow 8 ⁺ transition lies between 14 and 70 keV.
135	2146	(5^{-})	2011	(3^{-})			
214	2671	(8^{+})	2457	(7^{-})			
311	2457	(7^{-})	2146	(5^{-})			
498	2011	(3^{-})	1513	(2^{+})			
1513	1513	(2^{+})	0	0_{+}			

[†] The existence and energies of the γ -rays were established on the basis of peaks having only a few (typically 4-6) counts in the spectra. These presumably represent only the dominant decay path of the isomer.

 $^{^{\}ddagger}$ Adopted values, based on the systematics of the level schemes of the N=82 lighter-mass nuclides 148 Dy, 150 Er, and 154 Yb.

[#] Configuration= $(\pi \ h_{11/2})^6 (\pi \ h_{11/2})^2_{8+}$, seniority=2.

[@] Configuration= $(\pi \ h_{11/2})^6 (\pi \ h_{11/2})^2_{10+}$, seniority=2.

 $^{^{\}ddagger}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with "Frozen Orbitals" approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁵⁴Hf IT decay (9 μ s) 1993Mc03,1989Mc07

Decay Scheme %IT=100

