		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 200,2 (2025)	22-Aug-2022

Additional information 1. Data are from the ${}^{152}\text{Gd}(n,\gamma){}^{153}\text{Gd}(n,\gamma)$ reaction. Since 3- and 4-fold capture occurs, $\gamma's$ are observed in four nuclides, as well as a few from isotopic and chemical impurities in the sample.

In a study of the β^- decay of ¹⁵⁴Eu and based on a combination of criteria, 2004Ku13 conclude that the following ¹⁵⁴Gd levels, previously reported in (n,γ) , do not exist: 1276.99; 1294.19; 1295.09; 1698.51; 1702.04; 1838.61; and 1861.55. Thus, these levels are generally decayed by very weak γ rays (below estimated detection limits), or with unknown primary γ 's, or later placed elsewhere in the level scheme, or undetected by other authors, etc. These levels, as well as their deexciting γ 's, are not included here. For a listing of this information see 1996SpZZ or the previous Nuclear Data Sheets evaluation (1998Re22). Elimination of these data has led to revised band assignments for some of the levels.

¹⁵⁴Gd Levels

E(level) [†]	J ^π ‡	Comments
0#	0+	
123.074 [#] 4	2^{+}	
371.008 [#] 5	4+	
680.666 [@] 4	0^{+}	
717.666 [#] 5	6+	
815.490 [@] 4	2^{+}	
996.257 <mark>&</mark> 5	2+	
1047.593 [@] 5	4+	
1127.792 ^{&} 5	3+	
1182.091 ^d 5	0^{+}	
1241.290 ^{<i>a</i>} 5	1-	
1251.641 ^{<i>a</i>} 5	3-	
1263.787 ^{&} 7	4+	
1365.884 9	6+	
1397.572 ^b 11	2-	
1404.083 ^{<i>a</i>} 7	5-	
1414.433 ⁰ 6	1-	
1418.159 ^{<i>a</i>} 4	2+	
1432.598 ^{a} 8	5+ 2+	
1531.301° 5	Z' 4-	
1560.002° /	4	
$15/3.9/3^{-1}9$	0.	
1617.087° 14 1645.8238 6	3 4 ⁺	
1650.33^{h} 3	+ 0 ⁺	
1660.905^{e} 9	3^+	
1716.044^{f} 7	(1.2^+)	J^{π} : In ¹⁵⁴ Gd Adopted Levels, $J^{\pi}=2^+$.
1719.557 ^C 6	2-	
1770.195 <mark>8</mark> 7	5+	
1775.429 ^h 14	2^{+}	
1796.947 [°] 7	3-	π Γ_0 , η_1 , η_2 , η_1 , η_2 , η_1 , η_2 , η_1 , η_2
1836.365 14	(0,1,2)	J [*] : EU to the U ⁺ level at 680 indicates J [*] =U ⁺ . However, γ to g.s. suggests that J [*] is not U ⁺ .

¹⁵³Gd(\mathbf{n},γ) E=th **1996SpZZ** (continued)

¹⁵⁴Gd Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
1900.097 <i>14</i> 1911.536 ^g 7	(0,1,2) 6 ⁺	J^{π} : In ¹⁵⁴ Gd Adopted Levels, $J^{\pi} = (2^+)$.
1912.19 12	(0,1,2)	
1943.95 <i>3</i>	(0,1,2)	J^{π} : Assigned (1,2 ⁺) in ¹⁵⁴ Gd Adopted Levels.
1948.546 <i>10</i>	5-	Assigned as belonging to either the $K^{\pi}=1^{-}$ or the $K^{\pi}=2^{-}$ octupole bands. J ^{π} : As discussed in the ¹⁵⁴ Gd Adopted Levels J ^{π} can be 2 ⁺ , 3 [±] , 4 [±] or 5 ⁻ .
1963.804 19	$(1,2^{+})$	J ^{π} : In ¹⁵⁴ Gd Adopted Levels, J ^{π} =(2) ⁺ .
1973.11 <i>17</i> 2023.87 7	$(1,2^+)$ $(1,2^+)$	J^{π} : In ¹⁵⁴ Gd Adopted Levels, $J^{\pi}=2^+$.
2041.04 9	(0,1,2)	J^{π} : Assigned $(1,2)^+$ in ¹⁵⁴ Gd Adopted Levels.
2080.230 ^{<i>f</i>} 20	$(3,4^{+})$	J^{π} : In ¹⁵⁴ Gd Adopted Levels, $J^{\pi}=4^+$.
2080.780 <i>10</i> 2101.53 <i>16</i>	$(2^+,3)$ (1,2)	J^{π} : In ¹⁵⁴ Gd Adopted Levels, $J^{\pi}=3^{-}$.
2113.70 3	(2^{+})	J^{π} : Assigned 2 ⁺ in ¹⁵⁴ Gd Adopted Levels.
2119.525 23	1+	J^{π} : Assigned 1 ⁺ ,2 ⁺ in ¹⁵⁴ Gd Adopted Levels.
2148.80 6	$(1,2)^+$	
2176.00 3	(1,2)	J^{π} : Assigned (1 ⁺) in ¹⁵⁴ Gd Adopted Levels.
2185.852 <i>13</i> 2186.97 <i>3</i>	4 ⁻ 1 ⁺	
2222.49 3	(2^+)	
2229.73 3	2	J ^{π} : Assigned (2 ^{τ}) in ¹⁵⁴ Gl Adopted Levels.
2248.98 3	(3^{+})	J ⁿ : Assigned (3) in ¹³⁴ Gd Adopted Levels.
2200.24 4	(2,3,4)	I^{π} : Assigned 3 in 154 Gd Adopted Levels
2211.14	(2,3)	J. Assigned 5 III – Ou Adopted Levels. I^{π} : Assigned (2) ⁺ in ¹⁵⁴ Gd Adopted Levels
2299.42.17	(1.2)	J. Assigned (J) in Ou Adopted Levels.
2302.38 21	(1,2)	
2305.75 3	3+	
2309.51 <i>12</i> 2336.64 <i>9</i>	(0,1,2) 3 ⁻	J^{π} : Assigned (2) ⁺ in ¹⁵⁴ Gd Adopted Levels.
2342.03 19	$(1,2^+)$	
2369.4 4	2+,3,4+	
2381.43 <i>4</i> 2385.96 <i>3</i>	1^{-} (4 ⁺)	J ^{π} : Assigned 0 ⁺ ,1,2 in ¹⁵⁴ Gd Adopted Levels.
2401.38 15	$(1,2^{+})$	
2403.1 3	(4+)	
2406.27 21	$(2^+,3)$	J^{n} : Assigned 2 ⁺ in ¹³⁺ Gd Adopted Levels.
2410.82 3	(4^{+}) (1^{2})	
2430.32 24 2433 75 <i>4</i>	(1,2) (0,1,2)	I^{π} : Assigned 0 ⁺ 1.2 in ¹⁵⁴ Gd Adopted Levels
2441.99.8	(0,1,2) (1.2)	J. Assigned 0 ,1,2 m. Od Adopted Levels.
2449.23 25	(1,2)	
2459.76 18	(1,2)	J^{π} : Assigned 2 ⁺ in ¹⁵⁴ Gd Adopted Levels.
2468.41 4	$(1,2^+)$	
2481.75 15	(1,2)	J^{π} : Assigned 2 ⁺ in ¹⁵⁴ Gd Adopted Levels.
2487.66 15	(1,2)	J^{π} : Assigned 1,2 ⁺ in ¹⁵⁴ Gd Adopted Levels.
2495.73 4	$(1,2^{+})$	- 154
2499.51 15	$(1,2^{+})$	J^{n} : Assigned 2 ⁺ in ¹⁵⁴ Gd Adopted Levels.
2502.61 13	(1,2)	J^{π} : Assigned 1,2 ⁺ in ¹³⁴ Gd Adopted Levels.
2512.22 12	(0,1,2)	J ^{π} : Assigned 2 in ^{1,3+} Gd Adopted Levels.
2514.97 24	(1,2)	J": Assigned 1,2 ^{T} in ¹⁵⁴ Gd Adopted Levels.
2534.03 8	(0,1,2)	J [*] : Assigned U ⁺ ,1,2 in ¹⁵⁺ Gd Adopted Levels.

Continued on next page (footnotes at end of table)

¹⁵³Gd(n,γ) E=th 1996SpZZ (continued)

¹⁵⁴Gd Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
2561.79 16	$(0,1,2,3^{-})$	J^{π} : Assigned 2,3 ⁻ in ¹⁵⁴ Gd Adopted Levels.
2569.30 8	(0,1,2)	J^{π} : Assigned 2 in ¹⁵⁴ Gd Adopted Levels.
2586.21 14	(0,1,2)	J^{π} : Assigned 0 ⁺ in ¹⁵⁴ Gd Adopted Levels.
2590.318 24	$(1,2^+)$	J^{π} : Assigned (1,2) ⁺ in ¹⁵⁴ Gd Adopted Levels.
2633.19 24	2-	J^{π} : Assigned 1,2 ⁺ in ¹⁵⁴ Gd Adopted Levels.
2637.42 <i>17</i> 2655 80 <i>17</i>	(0,1,2)	J^{π} : Assigned (2) ⁻ in ¹⁵⁴ Gd Adopted Levels.
2686.51 21	(0.1.2)	J^{π} : Assigned 2 in ¹⁵⁴ Gd Adopted Levels.
2699.3 4	(0,1,2)	J^{π} : Assigned 0 ⁺ .1.2 in ¹⁵⁴ Gd Adopted Levels.
2710.59 25	(0,1,2)	J^{π} : Assigned 1.2 ⁺ in ¹⁵⁴ Gd Adopted Levels.
2722.41 9	$(1,2^+)$	
2734.37 18	$(1,2^+)$	J^{π} : Assigned 1 ⁺ ,2 ⁺ in ¹⁵⁴ Gd Adopted Levels.
2741.01 24	$(0,1,2,3^{-})$	J^{π} : Assigned $2^+, 3^-$ in ¹⁵⁴ Gd Adopted Levels.
2743.9 4	(0,1,2)	J^{π} : Assigned 0 ⁺ in ¹⁵⁴ Gd Adopted Levels.
2788.46 6	$(1,2^+)$	
2850.07 17	$(1,2^+)$	J^{π} : Assigned 2 ⁺ in ¹⁵⁴ Gd Adopted Levels.
2872.63 20	$(1,2^+)$	J^{π} : Assigned 2 ⁺ in ¹⁵⁴ Gd Adopted Levels.
2933.3 4	$(1,2^{+})$	J^{π} : Assigned 1 ⁺ in ¹⁵⁴ Gd Adopted Levels.
2949.25 <i>4</i> 2990.09 <i>19</i>	$(1,2^+)$ $(1,2^+)$	J^{π} : Assigned 2 ⁺ in ¹⁵⁴ Gd Adopted Levels.
3022.99 <i>17</i> 3031.5 <i>3</i>	$(1,2^+)$ $(1,2^+)$ $(1,2^+)$	J^{π} : Assigned 2 ⁺ in ¹⁵⁴ Gd Adopted Levels.
3122.56 24	$(1,2^+)$	J^{π} : Assigned (1 ⁺) in ¹⁵⁴ Gd Adopted Levels.
3184.04 <i>17</i> 2264 21 <i>14</i>	$(1,2^+)$ $(1,2^+)$	
3204.31 14	(1,2) $(1,2^+)$	
3414 73 17	$(1,2^+)$	
3550.25 22	$(2^+, 3, 4^+)$	
8894.71 17	1-	E(level): neutron-capture "state". Listed value is S(n).
		J^{π} : From s-wave n capture by a 3/2 ⁻ state, $J^{\pi}=1^-$, 2 ⁻ . primary capture γ 's feeding final states with $J^{\pi}=0^+$ rules out 2 ⁻ . thermal-neutron capture is dominated by the 0.0297-eV resonance, for which J^{π}

is thus 1⁻.

- [†] Calculated from a least-squares fit to the listed E γ values. Four out of 452 E γ values differ from the calculated ones by more than 3σ .
- [‡] From the authors and based on γ multipolarities, previous assignments, and proposed band structure. If assignments differ from those in ¹⁵⁴Gd Adopted Levels, this is noted (a difference involving parentheses only is not noted).
- [#] Band(A): Ground-state band.
- [@] Band(B): First excited $K^{\pi}=0^+$ band. Probable β vibration.
- [&] Band(C): γ -vibrational band.
- ^{*a*} Band(D): $K^{\pi}=0^{-}$ octupole-vibrational band.
- ^{*b*} Band(E): $K^{\pi} = 1^{-}$ octupole vibrational band.
- ^{*c*} Band(F): $K^{\pi}=2^{-}$ octupole-vibrational band.
- ^d Band(G): Second excited $K^{\pi}=0^+$ band. Intruder band. Band is associated with a smaller deformation (2003Ku19) and is proposed by these authors to be α "pairing isomer".
- ^{*e*} Band(H): Second excited $K^{\pi}=2^+$ band.
- ^{*f*} Band(I): Excited $K^{\pi}=0^+$ band Assigned as the $0^+ \gamma\gamma$ -vibrational band by 1996SpZZ, but this is not supported by 2004Ku13.
- ^{*g*} Band(J): $K^{\pi}=4^+$ band. Proposed hexadecapole-vibrational band. Assigned as the 4⁺ $\gamma\gamma$ -vibrational band by 1996SpZZ. However, the single-nucleon-transfer data of 2001Bu17 (and 1994Bu16) indicate that this band is not, at least predominantly, a two-phonon excitation.
- ^{*h*} Band(K): Excited $K^{\pi}=0^+$ band.

 $\gamma(^{154}\text{Gd})$

There are many unplaced γ' s, but most not are listed here because the authors have not assigned any of them to particular nuclides. α subsequent study of the ¹⁵⁴Eu β^- decay has shown that the placement of several γ' s in the (n,γ) reaction are likely incorrect. These cases are indicated, with appropriate comments. Several minor discrepancies exist in the γ data between different tables in this reference. In these cases, the evaluator has chosen to use the values from their γ -ray "line list" (their table 1).

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α ^{<i>c</i>}	Comments
42.7605 16	2.0 6	2229.73	2+	2186.97	1+			
44.4819 <i>14</i>	1.8 5	2293.47	(2,3)	2248.98	(3^{+})			
46.4499 8	3.0 3	2222.49	(2^{+})	2176.00	(1,2)			
52.322 2	2.3 8	2433.75	(0,1,2)	2381.43	1-			
61.9796 12	3.1 3	2495.73	$(1,2^{+})$	2433.75	(0,1,2)			
62.2937 18	1.3 3	2176.00	(1,2)	2113.70	(2^{+})	M1,E2	12 4	
63.732 ^d 2	0.9^{d} 3	1900.097	(0,1,2)	1836.365	(0,1,2)			
63.732 ^d 2	0.9 ^d 3	2293.47	(2,3)	2229.73	2^{+}			
71.029 5	3.0 3	2293.47	(2,3)	2222.49	(2^{+})			
76.015 4	4.6 [@] 10	2305.75	3+	2229.73	2+	(M1)	4.43	
92.039 4	0.5 2	2534.03	(0,1,2)	2441.99	(1,2)			
99.005	0.4	2633.19	2^{-}	2534.03	(0,1,2)			
105.071 ^d 8	1.6^{d} 3	2185.852	4-	2080.780	$(2^+, 3)$			
105.071 ^d 8	1.6 ^d 3	2410.82	(4^{+})	2305.75	3+			
<i>x</i> 112.096 <i>2</i>	4.6 [@] 2					(E2)		Placed from a 1294 level by 1996SpZZ, but 2004Ku13, in 154 Eu β^- decay, do not confirm the existence of this level.
^x 116.868 4	0.7 2							Placed from the 1531 level by 1996SpZZ. 2004Ku13, from 154 Eu β^- decay, do not report this γ and, for such a placement, set a much smaller upper limit for its intensity. The evaluator thus regards this γ and/or its placement as questionable.
^x 120.2433 <i>18</i>	0.8 [@] 1							Placed from the 1414 level by 1996SpZZ. 2004Ku13, from 154 Eu β^- decay, do not report this γ .
^x 122.651 5	1.3 [@] 1							Placed from the 1418 level by 1996SpZZ. 2004Ku13, from 154 Eu β^- decay, do not report this γ and, for such a placement, set a smaller upper limit for its intensity. The evaluator thus regards this γ and/or its placement as questionable.
123.068 4	275×10 ¹ 11	123.074	2+	0	0^{+}	E2	1.187	
^x 123.964 4	1.2 2							Placed from the 1418 level by 1996SpZZ. 2004Ku13, from 154 Eu β^- decay, do not report this γ .
124.371 3	2.0 1	1770.195	5+	1645.823	4+			,
127.305 3	0.7 <mark>&</mark> 1	2569.30	(0.1.2)	2441.99	(1.2)	(E2.E1)		
121.303 3	0.7 1	2509.50	(0,1,2)	2771.97	(1,2)	(12,11)		

From ENSDF

$\gamma(^{154}\text{Gd})$	(continued)
---------------------------	-------------

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]	α ^{c}	Comments
127.439 <i>4</i> 131.544 <i>5</i> 132.235 <i>4</i>	$0.6^{\&} 1$ 0.8 1 0.6 1	1963.804 1127.792 2080.780	$(1,2^+)$ 3 ⁺ $(2^+,3)$	1836.365 996.257 1948 546	(0,1,2) 2^+ 5^-	(E2,E1)		
132.235 4 134.8236 <i>12</i> 135.271 6 136.979 <i>10</i>	4.1 I 0.3 I 0.3 I	815.490 2248.98 2385.96	$(2^{+},3)$ (3^{+}) (4^{+})	680.666 2113.70 2248.98	0^+ (2 ⁺) (3 ⁺)	E2	0.859	
141.341 3	1.7 1	1911.536	(+) 6 ⁺	1770.195	(5) 5 ⁺	E2,M1	0.740 16	
151.614 <i>10</i> *159.555 <i>4</i>	0.6 <i>I</i> 0.6 <i>I</i>	1948.546	2	1/96.94/	3			Placed from the 1719 level by 1996SpZZ. 2004Ku13, from ¹⁵⁴ Eu β^- decay, do not report this γ and, for such a placement, set a smaller upper limit for its intensity. The evaluator thus regards this γ and/or its placement as questionable.
^x 162.58 12	0.4 1							Doubly placed (from the 1414 and 1560 levels) by 1996SpZZ. however, 2004Ku13 report both levels in 154 Eu β^- decay but set α much smaller upper limit on the I γ value than is given here. The evaluator regards this γ and/or its placement(s) as questionable.
166.520 <i>3</i>	1.5 1	1418.159	2^{+}	1251.641	3-			
168.810 4	0.7 [@] 1	1432.598	5+	1263.787	4+	(M1,E2)	0.43 4	
176.868 <i>3</i>	1.4 2	1418.159	2+	1241.290	1-			
188.254 4	1.1 <i>I</i>	1719.557	2-	1531.301	2^{+}			
^x 227.644 14	0.6 2							Placed from the 1645 level by 1996SpZZ. 2004Ku13, from ¹⁵⁴ Eu β^- decay, do not report this γ and, for such a placement, set a much smaller upper limit for its intensity. The evaluator thus regards this γ and/or its placement as questionable.
232.101 <i>3</i> 236.064 <i>3</i>	17.5 <i>14</i> 2.7 <i>3</i>	1047.593 1418.159	4 ⁺ 2 ⁺	815.490 1182.091	2^+ 0^+	E2	0.1359	
241.750 7	2.2 [@] 3	1645.823	4+	1404.083	5-			
245.97 2	2.0 2	2468.41	$(1,2^+)$	2222.49	(2^{+})	(M1)	0.1628	
247.920 8	1269 25	371.008	4+	123.074	2+	E2	0.1098	
257.751 18	1.1 3	2433.75	(0,1,2)	2176.00	(1,2)			
*258.912 13	2.2 2							Placed from a 1790, (4 ⁺), level by 1996SpZZ, possibly in light of such a level previously reported in the ¹⁵⁴ Eu β^- decay (albeit with different decay γ 's). However, 2004Ku13 place the (4 ⁺) level at 1788 keV and list quite different deexciting γ 's for IT. The evaluator does not adopt this "1790" level and thus show this γ as unplaced.
267.499 ^d 16	3.5 ^d 2	1263.787	4+	996.257	2+	(E2)	0.0862	
267.499 ^d 16	3.5 ^d 2	1531.301	2^{+}	1263.787	4+	(E2)	0.0862	
279.640 15	1.2 2	1531.301	2^{+}	1251.641	3-			
^x 283.007 6	1.9 4							Placed from the 1559 level by 1996SpZZ. 2004Ku13, from 154 Eu β^-

					153	Gd(n, y) E	E=th 199	6SpZZ (co	ntinued)
						$\frac{\gamma}{\gamma}$	(¹⁵⁴ Gd) (co	ntinued)	
E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. [#]	α^{c}	$I_{(\gamma+ce)}^{b}$	Comments
									decay, do not report this γ and, for such a placement, set a much smaller upper limit for its intensity. The evaluator thus regards this γ and/or its placement as questionable.
290.365 6	$2.0^{\textcircled{0}}$ 1	1418.159	2^{+}	1127.792	$3^{+}_{4^{+}}$				
318.306 11	3.3 3 7 8 2	1365.884	$\frac{6}{4^+}$	717 666	4 [·] 6 ⁺	F2	0.0451		
331.47 2	1.5 2	1948.546	5-	1617.087	3-	62	0.0451		
332.692 8	10.8 4	1573.973	0^{+}	1241.290	1-				
346.643 5	49.3 15	717.666	6+	371.008	4+	E2	0.0389		
^x 351.650 <i>14</i>	2.4 [@] 3					(E2)			Placed from the 1645 level by 1996SpZZ. 2004Ku13, from $^{154}\text{Eu}\beta^-$ decay, do not report this γ and, for such a placement, set a much smaller upper limit for its intensity. The evaluator thus regards this γ and/or its placement as questionable
364.32 6	0.7 2	2080.230	(3.4^{+})	1716.044	(1.2^{+})				questionable.
366.581 6	21.9 7	1182.091	0+	815.490	2+	E2	0.0330		
370.568 19	9.0 6	1418.159	2+	1047.593	4+	E2	0.0320		
382.025 7	2.9 2	1645.823	4+	1263.787	4+	M1,E2	0.040 11		
391.85 <i>4</i> *392.863 2	4.3 16	1573.973	0+	1182.091	0+	EO		0.1	I_{γ} : <0.5. Placed from the 1796 level by 1996SpZZ. 2004Ku13, from ¹⁵⁴ Eu β ⁻ decay, do not report this γ and, for such a placement, set a much smaller upper limit for its intensity. The evaluator thus regards this γ and/or its placement as questionable.
^x 394.218 <i>18</i>	1.3 3								Placed from the 1645 level by 1996SpZZ. 2004Ku13, from $^{154}\text{Eu}\beta^-$ decay, do not report this γ and, for such a placement, set a much smaller upper limit for its intensity. The evaluator thus regards this γ and/or its placement as questionable.
397.14 2	3.1 3	1660.905	3+	1263.787	4+				
401.30 4	3.7 3	1397.572	2-	996.257	2^+	E1,E3			
403.506 5	6.2 2	1531.301	2+	1127.792	3+				
404.321 ^J 9	3.0 3	1770.195	5+	1365.884	6+				I_{γ} : Originally placed from this level and a 1698 level by 1996SpZZ, but 2004Ku13 do not confirm this latter level. Also, peak contains a contribution from a ¹⁵³ Gd impurity.
415.53 8	1.1 3	2185.852	4-	1770.195	5+				
419.28 <i>3</i> <i>x</i> 419.55 <i>5</i>	2.0 <i>10</i> 0.7 <i>4</i>	2080.230	(3,4+)	1660.905	3+	(M1) M2	0.0397 0.1383		Placed from the 1660 level, but this placement is not confirmed in 154 Eu β^- decay. Mult.: From α (K)exp=0.11 6 (1996SpZZ).

6

From ENSDF

 $^{154}_{64}{
m Gd}_{90}$ -6

$\gamma(^{154}\text{Gd})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α^{c}	$I_{(\gamma+ce)}^{b}$	Comments
421.893 13	2.4 3	1418.159	2+	996.257 2+	E0+E2,M1			
425.778 13	1.9 2	1241.290	1-	815.490 2+				
434.42 4	1.5 5	2080.230	$(3,4^{+})$	1645.823 4+				
444.480 6	184 4	815.490	2+	371.008 4+	E2	0.0191		
463.80 4	1.2 3	2080.780	$(2^+,3)$	1617.087 3-				
464.391 <i>13</i>	2.7 2	1716.044	$(1,2^{+})$	1251.641 3-				
470.793 7	4.9 2	2590.318	$(1,2^+)$	2119.525 1+	M1	0.0295		
474.753 13	3.7 <i>3</i>	1716.044	$(1,2^{+})$	1241.290 1-				
476.04 <i>^f 4</i>	1.3 3	2266.24	$(2^+, 3, 4^+)$					As placed, this γ feeds a 1790 level. However, from the
								¹⁵⁴ Eu β^- decay, that level is actually at 1788 keV. The evaluator concludes that the placement of this γ is questionable. It is not included in the Adopted Gammas.
478.89 5	0.7 2	1911.536	6+	1432.598 5+				
483.68 2	4.4 7	1531.301	2^{+}	1047.593 4+				
501.419 8		1182.091	0^{+}	$680.666 0^+$	E0		1.2	$I_{\gamma}: <1.0.$
506.44 <i>4</i>	2.0 5	1770.195	5+	1263.787 4+				
518.012 16	15.6 5	1645.823	4+	1127.792 3+				
520.76 <i>3</i>	2.3 3	2080.780	$(2^+,3)$	1560.002 4-				
^x 526.35 10	1.6 6							See the comment on the 258.912 γ above.
533.13 ^e 3	0.8 ^e 3	1660.905	3+	1127.792 3+	(E0+E2,M1)			I _{γ} : For the doublet, I γ =5.1 2. Evaluator deduced split in intensity from I γ (533)/I γ (845)=0.012 4 from ¹⁵⁴ Gd Adopted γ radiations.
533.13 ^e 3	4.5 ^e	1796.947	3-	1263.787 4+	(E1)	0.00408		I_{γ} : Evaluator's decomposition of doublet with $I\gamma$ =5.1 2, based $I_{\gamma}(533)/I_{\gamma}(800)=0.194$ from ¹⁵⁴ Gd Adopted γ' s
535.050 11	14.4.6	1531.301	2+	996.257 2+	E0+E2.M1			
540 15 6	757	2185 852	$\frac{2}{4^{-}}$	1645 823 4+	20122,001			
x542.24 6	2.4 4	2103.032	·	1010.020				Placed from the 1836.365 level by 1996SpZZ. However, with this placement, the final state is a 1294.1 level, whose existence 2004Ku13 do not confirm
516 002 11	$2 \in @2$	1062 707	4+	717 666 6+	(E2)	0.01110		whose existence 200 mars do not commin.
540.085 14 X555 695 17	3.0^{-} 3	1203.787	4	/1/.000 0	(E2)	0.01110		Placed from the 1706 level by $1006 \text{Cm} 77$, $2004 \text{Km} 12$, from
555.065 17	2.7 5							¹⁵⁴ Eu β^- decay, do not report this γ and, for such a placement, set a much smaller upper limit for its intensity. The evaluator thus regards this γ and/or its placement as questionable.
557.582 7	330 7	680.666	0^{+}	123.074 2+	E2	0.01053		
560.83 10	3.8 13	1241.290	1-	680.666 0+				
577.704 12	16.2 3	1573.973	0^{+}	996.257 2+	E2	0.00963		
582.097 12	14.5 6	1397.572	2-	815.490 2+	E1	0.00337		
588.254 7	8.8 4	1716.044	$(1,2^{+})$	1127.792 3+	E2	0.00920		
591.769 10	22.9 14	1719.557	2-	1127.792 3+	E1,E3,M2			

From ENSDF

 $^{154}_{64}\mathrm{Gd}_{90}$ -7

$\gamma(^{154}\text{Gd})$ (continued)	
E_{γ}^{\dagger} $I_{\gamma}^{\ddagger b}$ $E_i(\text{level})$ J_i^{π} E_f J_f^{π} Mult. [#] α^{C} $I_{(\gamma+ce)}^{b}$ Comments	
595.070 13 23.6 5 1836.365 (0,1,2) 1241.290 1 ⁻ E1 0.00321	
598.22 2 $3.5^{\textcircled{0}}$ 1 1645.823 4 ⁺ 1047.593 4 ⁺ (E0.E2.M1)	
$598.96.4$ $9.9^{@}.6$ $1414.433.1^{-}$ $815.490.2^{+}$	
602.688.9 50.9 10 1418.159 2 ⁺ 815.490 2 ⁺ E0+E2.M1	
613.289 <i>10</i> 11.4 8 1660.905 3 ⁺ 1047.593 4 ⁺ E2,M1 0.012 4	
625.263 9 9.6 4 996.257 2 ⁺ 371.008 4 ⁺ E2 0.00792	
642.40 2 9.6 5 1770.195 5 ⁺ 1127.792 3 ⁺ E2 0.00742 11 Mult.: Reported M1,E2 incompatible with	$J^{\pi'}s.$
647.7^{d} 2 1.8^{d} 7 1775.429 2 ⁺ 1127.792 3 ⁺	
$647.7^{d}.2$ 1.8 ^d 7 1911.536 6 ⁺ 1263.787.4 ⁺	
648.3.3 1.8 7 1365.884 6 ⁺ 717.666 6 ⁺	
649.565 11 27.3 8 1645.823 4 ⁺ 996.257 2 ⁺ E2 0.00722	
669.154 <i>16</i> 19.0 <i>10</i> 1796.947 3 ⁻ 1127.792 3 ⁺ E1 0.00251	
^x 669.62 6 5.1 12 Placed from the 1963.804 level by 19965p However, with this placement, the final s 1294.1 level, whose existence 2004Ku13 confirm.	ZZ. state is a do not
676.593 7 123.1 25 1047.593 4 ⁺ 371.008 4 ⁺ E0+E2+M1 128 26	
$680.654 7 680.666 0^+ 0 0^+ E0 7.2 I_{\gamma}: <2.0.$	
683.13 4 5.6 4 2080.780 (2 ⁺ ,3) 1397.572 2 ⁻ M1 0.01156	
692.410 7 545 11 815.490 2 ⁺ 123.074 2 ⁺ E0+E2+M1 567 12	
$696.82 \ 3 \qquad 3.2 \ 3 \qquad 1948.546 \ 5^{-} \qquad 1251.641 \ 3^{-}$	
$705.05\ 3$ 7.7 4 2119.525 1 ⁺ 1414.433 1 ⁻	
$714.94.5$ 6.9 13 1432.598 5 ⁺ $717.666.6^+$ E2,M1 0.0080 23	
715,819 9 50.0 75 1551.501 2' 815490 2' E0+E2,M1	
719.80.5 5.4 7 1710.044 (1,2) 990.257 2* 721.07 4 12.5 11 2110.525 1+ 1307.572 2=	
721.974 12.5 11 2119.525 1 1597.572 2 722 50 8 2 5 0 1770 105 5 ⁺ 1047 503 4^+	
723 300 /3 89 8 /8 1710 557 2 - 996 257 2+	
$727 821 16 \qquad 0.3 @ 5 \qquad 1775 120 \qquad 2^+ \qquad 1047 503 \qquad 4^+$	
730716 166 2148 80 (12) ⁺ 1418 159 2 ⁺ M1 F2 0 0076 22	
737.49 14 2.2 4 1418.159 2 ⁺ 680.666 0 ⁺	
756.765 6 106 4 1127.792 3 ⁺ 371.008 4 ⁺ E2+M1 0.0070 20	
758.462 14 19.0 10 1573.973 0+ 815.490 2+	
761.86 3 $32.2^{\textcircled{0}}$ 16 1943.95 (0.1.2) 1182.091 0 ⁺ (E1) 0.00192	
800.731 15 23.2 9 1796.947 3^{-} 996.257 2^{+} E1 1.74×10^{-3}	
815.509 9 164 7 815.490 2 ⁺ 0 0 ⁺ E2 0.00427	
$817.05\ 7$ $4.2^{\textcircled{0}}\ 10\ 2080.780\ (2^+,3)\ 1263.787\ 4^+$	
834.885 $5.2^{\&}$ 15 1650.33 0 ⁺ 815.490 2 ⁺	
$835.54.3$ $26.0^{@}$ 16 2949.25 (1.2^{+}) 2113.70 (2^{+}) (M1) 0.00705	

From ENSDF

$\gamma(^{154}\text{Gd})$ (continued)

E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	α^{c}	$I_{(\gamma+ce)}^{b}$	Comments
845.46 2	68.1 27	1660.905	3+	815.490 2+	E2	0.00394		
850.64 3	67 5	1531.301	2+	680.666 0+	E2	0.00389		
872.46 5	33 4	2113.70	(2^{+})	1241.290 1-				
873.18 2	419 8	996.257	2+	123.074 2+	E0+E2+M1		420	
880.640 10	89.6 27	1251.641	3-	371.008 4+	E1,E3,M2			
892.782 11	85.3 26	1263.787	4+	371.008 4+	E0+E2+M1		85.6	
904.1 2	4.7 9	1719.557	2-	815.490 2+	(E1,E3)			
924.55 <i>3</i>	47.0 19	1047.593	4+	123.074 2+	E2	0.00325		
952.39 4	21.6 15	2080.230	$(3,4^{+})$	1127.792 3+	M1,E2	0.0041 11		
960.05 9	5.2 20	1775.429	2+	815.490 2+				
969.67 9		1650.33	0^{+}	680.666 0+	E0		0.2	I_{γ} : <7.
981.59 6	14.5 23	1796.947	3-	815.490 2+				,
985.43 <i>13</i>	8.7 22	2248.98	(3+)	1263.787 4+				
986.21 <i>16</i>	6.3 19	2113.70	(2^{+})	1127.792 3+				
991.88 6	17 [@] 4	2119.525	1^{+}	1127.792 3+				Mult.: Reported as (E1), but J^{π} requires E2.
996.264 8	383 11	996.257	2+	$0 0^+$	E2	0.00277		
1004.729 12	367 18	1127.792	3+	123.074 2+	E2+M1	0.0036 9		
1006.9 4	21 5	2248.98	(3^{+})	1241.290 1-				
1020.26 17	10.3 20	2385.96	(4+)	1365.884 6+				
1033.11 ^e 3	≤11 ^e	1404.083	5-	371.008 4+				I_{γ} : 1996SpZZ report I_{γ} =30.9 15 for the composite peak.
1033.11 ^e 3	25 ^e 6	2080.780	$(2^+,3)$	1047.593 4+				I_{γ} : 1996SpZZ report I_{γ} =30.9 15 for the composite peak.
1044.90 12	10.3 14	2041.04	(0,1,2)	996.257 2+	M1	0.00412		
1047.181 <i>13</i>	113 8	1418.159	2+	371.008 4+	E2	0.00250		
1059.033 12	121 6	1182.091	0^{+}	123.074 2+	E2	0.00244		
1061.6 2	$32^{@} 6$	1432.598	5+	371.008 4+	(E2.M1)	0.0032 8		
1068.78 7	12 4	2788.46	$(1,2^{+})$	1719.557 2-				
1084.29 ^d 12	16.2 ^d 24	2080.230	(3,4+)	996.257 2+				
1084.29 ^d 12	16.2 <mark>d</mark> 24	2080.780	$(2^+,3)$	996.257 2+				
1094.91 8	12.8 22	1775.429	2+	680.666 0+	E2	0.00228		
1096.62 17	7.6 17	1912.19	(0,1,2)	815.490 2+				
1102.00 15	5.8 <mark>&</mark> 9	2229.73	2+	1127.792 3+				
1118.237 16	261 8	1241.290	1-	123.074 2+	E1			
1120.6 5	15 5	2248.98	(3^{+})	1127.792 3+				
1123.11 14	19 <i>3</i>	2119.525	1+	996.257 2+	E2,M1	0.0028 7		I_{γ} : From branching in ¹⁵⁴ Gd Adopted Levels, Gammas, $I_{\gamma}=9.3$ 12 is expected, so γ is probably a doublet.
1128.555 <i>13</i>	282 6	1251.641	3-	123.074 2+	E1,E3,M2			
1133.5 4	13.5 28	2385.96	(4^{+})	1251.641 3-				
1140.74 4	46 5	1263.787	4 ⁺	123.074 2+	E2	0.00210		
1155.75 7		1836.365	(0,1,2)	680.666 0+	E0			I_{γ} : <5.
1160.5 <i>3</i>	17 4	1531.301	2+	371.008 4+				·

9

					¹⁵³ Gd(\mathbf{n},γ) E=th		1996SpZZ (c	ontinued)	
	γ ⁽¹⁵⁴ Gd) (continued								
${\rm E_{\gamma}}^{\dagger}$	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{c}	$I_{(\gamma+ce)}^{b}$	Comments
1182.07 2 1188.90 <i>12</i> 1201.0 <i>5</i> 1208.83 <i>9</i>	29 5 6.8 16 18.8 17	1182.091 1560.002 2248.98 2336.64	0 ⁺ 4 ⁻ (3 ⁺) 3 ⁻	0 371.008 1047.593 1127.792	$ \begin{array}{c} 0^+ \\ 3 & 4^+ \\ 3 & 4^+ \\ 2 & 3^+ \end{array} $	EO		0.3	
1218.58 <i>11</i> 1233.5 <i>4</i> 1241.304 <i>14</i> 1246.10 <i>2</i> <i>x</i> 1252.0 <i>4</i>	25.2 ^{^w} 18 12.2 24 321 16 88 6 13.7 22	2266.24 2229.73 1241.290 1617.087	$(2^+,3,4^+)$ 2^+ 1^- 3^-	1047.593 996.257 0 371.008		(M1) E1 E1	0.00287		Placed from the 1251 level by 1996SpZZ. 2004Ku13, from ¹⁵⁴ Eu β^- decay, do not report this γ and, for such a placement, set a much smaller upper limit for its intensity. The evaluator thus regards this γ and/or its placement as
1262.0 <i>3</i> 1274.40 <i>3</i> 1291.332 <i>17</i> 1295.08 <i>13</i> 1297.32 <i>10</i> 1313.25 <i>17</i> 1324.7 <i>3</i> 1332.4 <i>3</i> 1345.0 <i>5</i> 1355.6 <i>4</i>	16.1 <i>18</i> 308 9 281 <i>11</i> 29 6 9 4 18 4 10.8 <i>10</i> 8.8 <i>12</i> 12 3 5.5 <i>14</i>	2309.51 1397.572 1414.433 1418.159 2293.47 2309.51 2722.41 2148.80 1716.044 2403.1	$\begin{array}{c} (0,1,2) \\ 2^{-} \\ 1^{-} \\ 2^{+} \\ (2,3) \\ (0,1,2) \\ (1,2^{+}) \\ (1,2)^{+} \\ (1,2^{+}) \\ (4^{+}) \end{array}$	1047.593 123.074 123.074 996.257 996.257 1397.572 815.490 371.008 1047.593	$\begin{array}{c} 3 & 4^{+} \\ 4 & 2^{+} \\ 4 & 2^{+} \\ 4 & 2^{+} \\ 4 & 2^{+} \\ 7 & 2^{+} \\ 2 & 2^{-} \\ 2 & 2^{+} \\ 3 & 4^{+} \\ 3 & 4^{+} \end{array}$	E1,E3,M2 E1 E0+E2,M1 M1 M1	0.00249 0.00242		questionable.
$\begin{array}{c} 1359.9 \ 2 \\ 1363.1^d \ 3 \\ 1363.1^d \ 3 \\ 1371.6 \ 5 \\ 1374.1 \ 3 \\ 1389.6 \ 4 \\ 1391.04 \ 11 \\ 1397.3 \ 8 \\ 1399.7^d \ 3 \\ 1399.7^d \ 3 \\ 1404.6^d \ 3 \\ 1404.6^d \ 3 \\ 1408.2 \ 2 \end{array}$	$9.8^{@} 11$ $15.3^{d} 12$ $15.3^{d} 12$ $5.3 14$ $8.8 12$ $12.2 21$ $19.4 16$ $2.8 10$ $10.5^{d} 9$ $10.5^{d} 9$ $24.2^{d} 27$ $24.2^{d} 27$ 20.8	2176.00 2080.230 2410.82 2186.97 2788.46 2385.96 2788.46 1397.572 1770.195 2080.780 1775.429 2401.38 1531.301	$(1,2) (3,4^+) (4^+) (1,2^+) (4^+) (1,2^+) 2^- 5^+ (2^+,3) 2^+ (1,2^+) 2^+ (1,2^+) 2^+ \\(1,2^+) 2^+ \\(1,2^+) 2^+ \\(1,2^+) (1,2^+)$	815.490 717.666 1047.593 815.490 1414.433 996.257 1397.572 0 371.008 680.666 371.008 996.257 123.074	$\begin{array}{c} 2^{+} \\ 5 \\ 6^{+} \\ 6^{+} \\ 6^{+} \\ 6^{+} \\ 6^{+} \\ 7^{+} \\ 2^{+} \\ 2^{+} \\ 2^{+} \\ 6^{+} \\ 7^{+} \\ 2^{+} \\ 6^{+} \\ 7^{+} \\ 2^{+} \\ 2^{+} \end{array}$	(M1) (E2) (M1) E0+E2,M1	0.00225 1.44×10 ⁻³ 0.00210		
1414.50 <i>5</i> 1417.89 <i>11</i>	78 9 31 <i>3</i>	1414.433 1418.159	1^{-} 2 ⁺	0 0	$0^+ 0^+$	E1 E2	1.41×10^{-3}		

 $^{154}_{64}\mathrm{Gd}_{90}$ -10

Т

From ENSDF

¹⁵³Gd(\mathbf{n},γ) E=th **1996SpZZ** (continued) $\gamma(^{154}\text{Gd})$ (continued) Ι_γ‡**b** $I_{(\gamma+ce)}^{b}$ E_{γ}^{\dagger} Mult.# E_i (level) J_i^{π} \mathbf{E}_{f} J_{c}^{π} $\alpha^{\mathbf{C}}$ Comments 371.008 4+ 10.3 10 1796.947 3-1426.6 3 1432.9^{*d*} 4 17^d 5 2113.70 (2^{+}) 680.666 0+ 1432.9^d 4 17^d 5 2248.98 (3^{+}) 815.490 2+ 5.1^d 15 1451.7^d 5 0^{+} 1573.973 123.074 2+ 1451.7^d 5 5.1^d 15 2266.24 $(2^+, 3, 4^+)$ 815.490 2+ 1458.3 4 11.6 23 2990.09 $(1,2^+)$ 1531.301 2+ 1486.4 4 18.8 24 815.490 2+ 2302.38 (1,2) 3^{+} 815.490 2+ 1490.6 4 11.4 26 2305.75 I_{γ} : Doubly placed by 1996SpZZ, but the level (1861.55) associated with the other placement has been shown (by 2004Ku13 in $^{154}\text{Eu}\beta^-$ decay) not to exist. 1494.07 5 87 6 1617.087 3-123.074 2+ E1 680.666 0+ 1496.66 93 2176.00 (1,2) 1^{+} 680.666 0+ Mult.: Reported E1,E2 incompatible with $J^{\pi'}$ s. 1506.1 3 17.2 21 2186.97 1509.2 3 25.9 10 2637.42 (0,1,2)1127.792 3+ E1 1521.4 4 3-15.5 26 2336.64 815.490 2+ 0^{+} Mult.: Reported E1,E2 incompatible with $J^{\pi'}$ s. 1527.1 3 30.8 12 1650.33 123.074 2+ E2 1529.6 3 21.1 19 1900.097 (0,1,2)371.008 4+ E2 1.27×10^{-3} 1531.6 5 7.8 18 1531.301 2^{+} 0 0^{+} 3+ 1538.0 *3* 11.9 12 1660.905 123.074 2+ 1541.5 3 28.3 14 2222.49 (2^{+}) 680.666 0+ E2 Mult.: Reported E1,E2 incompatible with $J^{\pi'}$ s. 2^{+} 1548.8 5 7.8 20 2229.73 680.666 0+ 2+,3,4+ 1554.1 4 8.7 12 2369.4 815.490 2+ 1569.8 4 7.4 12 2385.96 (4^{+}) 815.490 2+ 1574.04 5 1573.973 0^{+} 0 0^{+} E00.1 I_{γ} : <10. 1577.7 *3* 371.008 4+ 12.0 10 1948.546 5-1592.8 2 0.00143 23 60.9 1963.804 $(1,2^+)$ 371.008 4+ M1,E2 $9^{\mathbf{d}}$ 4 1593.4^d 5 1716.044 $(1,2^+)$ 123.074 2+ 1593.4^d 5 9^d 4 2590.318 $(1,2^+)$ 996.257 2+ 1596.4 3 1719.557 2^{-} 123.074 2+ 20.5 16 1602.06 19 27.7 17 1973.11 $(1,2^+)$ 371.008 4+ 1607.0 5 176 2734.37 $(1,2^+)$ 1127.792 3+ 1631.2 3 13.9 13 2872.63 $(1,2^{+})$ 1241.290 1-1650.31 4 1650.33 0^{+} 0^{+} E0 0.1 0 $I_{\gamma}: <5.$ 2^{+} 1652.36 3 617 1775.429 123.074 2+ E0+E2.M1 1675.1 3 12.6 10 2722.41 $(1,2^+)$ 1047.593 4+ 1693.7 4 9.3 21 2410.82 717.666 6+ (4^{+}) 1703.1 4 7.4 12 2699.3 996.257 2+ (0,1,2)10.2^{*d*} 15 1709.7^d 4 2080.230 (3.4^{+}) 371.008 4+

11

$^{154}_{64}$ Gd₉₀-11

¹⁵³Gd(\mathbf{n},γ) E=th **1996SpZZ** (continued)

γ (¹⁵⁴Gd) (continued)

${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
1709.7^{d} 4	10.2^{d} 15	2080 780	$(2^+ 3)$	371.008	4+	
1713.4.3	31.8 13	1836.365	(0.1.2)	123.074	2+	
1715.7 6	7.6 26	1716.044	$(1,2^+)$	0	$\bar{0}^{+}$	
1738.0.3	22.6 7	2734.37	$(1,2^+)$	996.257	2+	
1742.7 3	11.2 9	2113.70	(2^+)	371.008	4+	
1769.4 5	8.9 17	2449.23	(1,2)	680.666	0^{+}	
1771.7 5	8.8 17	3022.99	$(1,2^+)$	1251.641	3-	
1773.7 6	5.8 21	2590.318	$(1,2^+)$	815.490	2^{+}	
1775.7 <i>3</i>	28.2 20	1775.429	2+	0	0^{+}	
1781.4 <i>3</i>	13.2 12	3022.99	$(1,2^+)$	1241.290	1-	
1786.5 <i>3</i>	16.6 13	3184.04	$(1,2^+)$	1397.572	2-	
1788.9 <i>3</i>	52.8 11	1912.19	(0,1,2)	123.074	2^{+}	
1792.6 <i>3</i>	8.0 10	2788.46	$(1,2^{+})$	996.257	2^{+}	
^x 1796.3 3	14.5 9					Placed from the 1796 level by 1996SpZZ. 2004Ku13 do not show a 1796 γ from this level.
1802.5 <i>3</i>	13.0 13	2850.07	$(1,2^+)$	1047.593	4+	
1808.0 3	18.2 11	2990.09	$(1,2^{+})$	1182.091	0^{+}	
1820.3 6	10.7 21	1943.95	(0,1,2)	123.074	2+	
1822.2 4	9.6 26	2637.42	(0,1,2)	815.490	2+	
1824.7 6	11.5	2872.63	$(1,2^{+})$	1047.593	4 ⁺	
1836.8 3	13 4	1836.365	(0,1,2)	0	0^{+}	
1840.8 3	32.0 10	1963.804	$(1,2^+)$	123.074	2+	
1849.8 /	83	19/3.11	$(1,2^{+})$	123.074	2 · 4+	
1831.0 4	237	2222.49	(2^{+})	571.008 815.400	4 · 2+	
10/1.5 5	11.7 0	2060.31	(0,1,2)	371.008	∠ ∕1+	
1894 5 3	14 5 16	2240.90	$(2^+ 3 4^+)$	371.008	4 4+	
1900 73 11	9139	2023.87	$(2^{+}, 3, 7^{+})$ $(1^{+}, 2^{+})$	123 074	2+	
1907.0.3	18.2.15	2722.41	$(1,2^+)$	815.490	$\frac{2}{2^{+}}$	
1909.4 3	21.5 15	2590.318	$(1,2^+)$	680.666	0^{+}	
1917.4 3	13.3 9	2041.04	(0,1,2)	123.074	2+	
1922.8 <i>3</i>	14.0 21	2293.47	(2,3)	371.008	4+	
1934.4 <i>3</i>	19.9 10	2305.75	3+	371.008	4+	
1964.7 <i>4</i>	20 3	1963.804	$(1,2^{+})$	0	0^{+}	
1973.1 ^d 4	5.4 <mark>d</mark> 9	1973.11	$(1,2^+)$	0	0^+	
1973.1 ^d 4	5.4 ^d 9	2788.46	$(1,2^+)$	815.490	2^{+}	
1990.4 2	45.2 9	2113.70	(2^+)	123.074	2+	
1996.4 <i>3</i>	31 ^a 9	2119.525	1+	123.074	2^{+}	
1997.8 7	12 5	2369.4	2+,3,4+	371.008	4+	
2014.9 2	35.7 14	2385.96	(4 ⁺)	371.008	4+	
2023.8 4	9.4 28	2023.87	$(1,2^+)$	0	0^+	
2025.1 4	15 5	2148.80	$(1,2)^+$	123.074	2^{+}	

 $\gamma(^{154}\text{Gd})$ (continued)

E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E _i (level)	J_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	E_{γ}^{\dagger}	Ι _γ ‡ b	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
2032.0 4	9.1 9	2403.1	(4^{+})	371.008 4+	2336.4 5	30 7	2459.76	(1,2)	123.074	2+
2034.6 4	9.3 14	2406.27	(2+,3)	371.008 4+	2342.1 3	54.1 16	2342.03	$(1,2^+)$	0	0^+
2041.1 ^d 3	18.6 ^d 11	2041.04	(0,1,2)	0 0+	2344.9 4	30 4	2468.41	$(1,2^+)$	123.074	2^{+}
2041.1 ^d 3	18.6 ^d 11	2722.41	$(1,2^{+})$	680.666 0+	2358.4 4	21.0 27	2481.75	(1,2)	123.074	2^{+}
2064.0 3	49.1 25	2186.97	1+	123.074 2+	2364.0 6	15 <i>3</i>	2487.66	(1,2)	123.074	2^{+}
2082.4 3	46.9 28	3264.31	$(1,2^{+})$	1182.091 0+	2370.5 4	23 <i>3</i>	2741.01	$(0,1,2,3^{-})$	371.008	4+
2089.0 <i>3</i>	15.7 17	2459.76	(1,2)	371.008 4+	2376.4 <i>3</i>	32.8 20	2499.51	$(1,2^{+})$	123.074	2^{+}
2099.1 <i>3</i>	46.6 19	2222.49	(2^{+})	123.074 2+	2379.3 2	40.7 16	2502.61	(1,2)	123.074	2^{+}
2101.6 3	22.5 16	2101.53	(1,2)	$0 0^+$	2388.82 18	63.6 25	2512.22	(0,1,2)	123.074	2^{+}
2108.3 3	15.6 12	2788.46	$(1,2^{+})$	680.666 0+	2391.5 4	16.7 18	2514.97	(1,2)	123.074	2+
2111.3 3	17.3 14	2481.75	(1,2)	371.008 4+	2401.5 3	27.6 14	2401.38	$(1,2^{+})$	0	0^{+}
2114.0 5	7.4 14	2113.70	(2^+)	0 0+	2406.5 5	11.8 26	2406.27	$(2^+,3)$	0	0^{+}
2126.1 2	33 7	2248.98	(3 ⁺)	123.074 2+	2410.0 6	12 3	2534.03	(0,1,2)	123.074	2+
2128.1 3	19 3	2499.51	$(1,2^{+})$	371.008 4+	2422.7 3	16.7 12	3550.25	$(2^+,3,4^+)$	1127.792	3+
2141.8 3	36 4	2512.22	(0,1,2)	371.008 4*	2430.2 3	29 5	2430.32	$(1,2^{+})$	0	0+
2148.6 3	20.2 12	2148.80	$(1,2)^{+}$	0 0	2438.0 8	5.7 25	2561.79	$(0,1,2,3^{-})$	123.074	2^+
2154.6 4	15.0 28	2277.7	3-	123.074 2+	2442.3 ^{<i>a</i>} 3	24.8 ^{<i>a</i>} 12	2441.99	(1,2)	0	0^{+}
2176.2 ^d 2	51 ^d 7	2176.00	(1,2)	0 0+	2442.3 ^d 3	24.8 ^d 12	3122.56	$(1,2^+)$	680.666	0^+
2176.2 ^d 2	51 ^d 7	2299.42	(1,2)	123.074 2+	2445.1 6	17 5	2569.30	(0,1,2)	123.074	2^{+}
2179.4 3	48.6 15	2302.38	(1,2)	123.074 2+	2448.9 ^d 3	29 ^d 8	2449.23	(1,2)	0	0^+
2187.02 18	68 7	2186.97	1+	0 0+	2448.9 ^d 3	29 <mark>0</mark> 8	3264.31	$(1,2^+)$	815.490	2^{+}
2190.3 4	14.5 16	2561.79	$(0,1,2,3^{-})$	371.008 4+	2459.4 <i>4</i>	11.5 13	2459.76	(1,2)	0	0^{+}
2197.5 <i>3</i>	33 7	2569.30	(0,1,2)	371.008 4+	2462.4 4	12.4 14	2586.21	(0,1,2)	123.074	2^{+}
2213.5 3	15.8 <i>13</i>	2336.64	3-	123.074 2+	2467.8 <i>3</i>	28.4 23	2468.41	$(1,2^+)$	0	0^{+}
2218.7 <i>3</i>	21.9 15	2342.03	$(1,2^{+})$	123.074 2+	2482.0 4	16.3 16	2481.75	(1,2)	0	0^{+}
2222.2 4	24 4	2222.49	(2^+)	0 0+	2487.5 6	22 5	2487.66	(1,2)	0	0^{+}
2229.6 8	13 5	2229.73	2+	0 0+	2496.4 4	22.1 18	2495.73	$(1,2^+)$	0	0+
2232.9 4	11.9 18	3414.73	$(1,2^{+})$	1182.091 0*	2499.3 3	42.4 17	2499.51	$(1,2^+)$	0	0^+
2257.7 4	18 6	2381.43	1-	123.074 2+	2503.0 ^d 3	21.0 ^{<i>a</i>} 15	2502.61	(1,2)	0	0^{+}
2263.3 <i>3</i>	21.1 17	2385.96	(4 ⁺)	123.074 2+	2503.0 ^{<i>a</i>} 3	21.0 ^{<i>a</i>} 15	3184.04	$(1,2^{+})$	680.666	0^{+}
2278.4 2	36.3 22	2401.38	$(1,2^{+})$	123.074 2+	2509.7 4	13.1 12	2633.19	2^{-}	123.074	2^{+}
2283.7 <i>3</i>	33.4 20	2406.27	$(2^+,3)$	123.074 2+	2515.0 ^d 4	19.6 ^{<i>d</i>} 20	2514.97	(1,2)	0	0^{+}
2287.3 <i>3</i>	16.0 <i>13</i>	2410.82	(4^{+})	123.074 2+	2515.0 ^d 4	19.6 <mark>d</mark> 20	2637.42	(0,1,2)	123.074	2^{+}
2299.6 3	28.8 20	2299.42	(1,2)	0 0+	2532.2 3	24.0 14	2655.80	2+	123.074	2^{+}
2307.4 4	31 3	2430.32	$(1,2^+)$	123.074 2+	2553.7 <i>3</i>	23.0 12	3550.25	$(2^+, 3, 4^+)$	996.257	2^{+}
2311.3 3	39 4	2433.75	(0,1,2)	123.074 2+	2578.5 5	14.8 27	2949.25	$(1,2^+)$	371.008	4+
2314.3 7	12 4	2686.51	(0,1,2)	371.008 4+	2587.2 4	27.3 22	2710.59	(0,1,2)	123.074	2^{+}
2318.8 <i>3</i>	35 <i>3</i>	2441.99	(1,2)	123.074 2+	2598.8 ^e 3	3.6 ^e 12	2722.41	$(1,2^+)$	123.074	2^{+}

13

 $^{154}_{64}\mathrm{Gd}_{90}$ -13

$\gamma(^{154}\text{Gd})$	(continued)
/(Ou)	(commaca)

E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E _i (level)	J_i^{π}	E_f	\mathbf{J}_{f}^{π}	E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	${f J}_f^\pi$
2598.8 ^e 3	29 ^e 3	3414.73	(1.2^+)	815.490	2+	6045.0 <i>3</i>	4.1 2	8894.71	1-	2850.07	(1.2^+)
2610.9 3	19.9 10	2734.37	$(1,2^+)$	123.074	2^{+}	6151.1 6	3.5 8	8894.71	1-	2743.9	(0,1,2)
2618.3 4	17.8 14	2741.01	$(0,1,2,3^{-})$	123.074	2^{+}	6154.5 4	4.5 9	8894.71	1-	2741.01	$(0,1,2,3^{-})$
2621.0 4	16.6 15	2743.9	(0,1,2)	123.074	2+	6172.09 11	9.4 <i>4</i>	8894.71	1-	2722.41	$(1,2^+)$
2633.4 <i>3</i>	18 5	2633.19	2-	0	0^{+}	6183.8 4	5.79	8894.71	1-	2710.59	(0,1,2)
2646.6 2	35 <i>3</i>	3327.31	$(1,2^{+})$	680.666	0^{+}	6195.3 6	1.4 2	8894.71	1-	2699.3	(0,1,2)
2651.0 7	10 4	3022.99	$(1,2^{+})$	371.008	4+	6208.2 <i>3</i>	8.6 <i>3</i>	8894.71	1-	2686.51	(0,1,2)
2656.0 2	28.5 23	2655.80	2+	0	0^{+}	6257.3 <i>3</i>	4.3 <i>3</i>	8894.71	1-	2637.42	(0,1,2)
2710.7 5	8.4 13	2710.59	(0,1,2)	0	0^{+}	6308.29 14	3.9 10	8894.71	1-	2586.21	(0,1,2)
2722.7 4	8.5 12	2722.41	$(1,2^+)$	0	0^{+}	6325.30 12	6.3 4	8894.71	1-	2569.30	(0,1,2)
2727.1 4	19.7 12	2850.07	$(1,2^{+})$	123.074	2+	6332.69 17	5.0 6	8894.71	1-	2561.79	$(0,1,2,3^{-})$
2734.9 4	14.2 16	2734.37	$(1,2^{+})$	0	0^{+}	6360.7 <i>3</i>	1.5 1	8894.71	1-	2534.03	(0,1,2)
2750.2 4	28.7 29	2872.63	$(1,2^{+})$	123.074	2+	6379.3 4	2.2 5	8894.71	1-	2514.97	(1,2)
2788.4 2	34 4	2788.46	$(1,2^{+})$	0	0^{+}	6382.30 16	6.5 9	8894.71	1-	2512.22	(0,1,2)
2809.8 4	16.4 13	2933.3	$(1,2^{+})$	123.074	2+	6390.7 <i>13</i>	0.3 1	8894.71	1-	2502.61	(1,2)
2813.5 4	19.8 <i>14</i>	3184.04	$(1,2^{+})$	371.008	4+	6394.5 <i>3</i>	0.9 1	8894.71	1-	2499.51	$(1,2^{+})$
2825.5 4	17.8 16	2949.25	$(1,2^{+})$	123.074	2+	6406.88 15	2.1 1	8894.71	1-	2487.66	(1,2)
2850.7 4	21 5	2850.07	$(1,2^{+})$	0	0^{+}	6413.1 2	2.2 1	8894.71	1-	2481.75	(1,2)
2866.4 6	6.1 15	2990.09	$(1,2^{+})$	123.074	2+	6434.8 <i>3</i>	3.8 2	8894.71	1-	2459.76	(1,2)
2872.3 4	20.9 15	2872.63	$(1,2^{+})$	0	0^{+}	6445.3 8	1.1 2	8894.71	1-	2449.23	(1,2)
2900.7 4	15.4 22	3022.99	$(1,2^{+})$	123.074	2^{+}	6452.40 12	3.3 2	8894.71	1-	2441.99	(1,2)
2908.2 <i>3</i>	14 <i>3</i>	3031.5	$(1,2^{+})$	123.074	2+	6460.8 <i>12</i>	0.4 2	8894.71	1-	2433.75	(0,1,2)
2934.1 6	18.8 15	2933.3	$(1,2^{+})$	0	0^{+}	6489.3 6	1.1 3	8894.71	1-	2406.27	$(2^+,3)$
2949.5 <i>3</i>	37.5 15	2949.25	$(1,2^{+})$	0	0^{+}	6492.5 7	0.8 3	8894.71	1-	2401.38	$(1,2^{+})$
2990.6 4	21.2 15	2990.09	$(1,2^{+})$	0	0^{+}	6513.1 2	2.9 2	8894.71	1-	2381.43	1-
2998.7 4	28.1 28	3122.56	$(1,2^{+})$	123.074	2+	6552.3 4	0.6 1	8894.71	1-	2342.03	$(1,2^{+})$
3022.7 3	27.7 11	3022.99	$(1,2^{+})$	0	0^{+}	6585.1 2	3.9 2	8894.71	1-	2309.51	(0,1,2)
3031.9 5	21.3 11	3031.5	$(1,2^{+})$	0	0^{+}	6591.9 <i>4</i>	6.4 <i>13</i>	8894.71	1-	2302.38	(1,2)
3061.0 4	8.7 12	3184.04	$(1,2^{+})$	123.074	2+	6593.9 11	2.1 7	8894.71	1-	2299.42	(1,2)
3264.1 2	18.8 <i>11</i>	3264.31	$(1,2^{+})$	0	0^{+}	6601.9 <i>4</i>	0.6 1	8894.71	1-	2293.47	(2,3)
3291.6 <i>3</i>	13.4 12	3414.73	$(1,2^{+})$	123.074	2+	6672.13 8	22.2 7	8894.71	1-	2222.49	(2^{+})
5479.4 <i>4</i>	3.4 3	8894.71	1-	3414.73	$(1,2^+)$	6707.75 14	2.7 2	8894.71	1-	2186.97	1+
5567.1 7	2.4 5	8894.71	1-	3327.31	$(1,2^+)$	6718.5 <i>17</i>	0.3 1	8894.71	1-	2176.00	(1,2)
5630.1 5	1.3 2	8894.71	1-	3264.31	$(1,2^{+})$	6746.1 <i>3</i>	3.4 2	8894.71	1-	2148.80	$(1,2)^+$
5871.2 5	2.1 2	8894.71	1-	3022.99	$(1,2^{+})$	6774.83 16	1.7 1	8894.71	1-	2119.525	1+
5903.9 7	1.8 3	8894.71	1-	2990.09	$(1,2^+)$	6781.05 10	3.5 1	8894.71	1-	2113.70	(2^{+})
5960 2	1.0 5	8894.71	1-	2933.3	$(1,2^{+})$	6793.07 18	1.2 1	8894.71	1-	2101.53	(1,2)

14

$\gamma(^{154}\text{Gd})$ (continued)

	E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$		E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	E _f	\mathbf{J}_{f}^{π}
68	14.4 10	0.2 1	8894.71	1-	2080.780 (2+,	3)	7320.55 12	5.2 2	8894.71	1-	1573.973 0	,+
68	53.58 15	1.7 <i>1</i>	8894.71	1-	2041.04 (0,1,	,2)	7363.28 13	7.5 4	8894.71	1-	1531.301 2	+
68′	70.65 9	4.8 1	8894.71	1-	2023.87 (1,2	+)	7476.32 9	0.8 1	8894.71	1-	1418.159 2	+
692	20.7 8	0.3 1	8894.71	1-	1973.11 (1,2	+)	7480.0 2	0.3 1	8894.71	1-	1414.433 1	-
69	30.7 6	0.4 1	8894.71	1-	1963.804 (1,2	+)	7497.08 10	3.2 3	8894.71	1-	1397.572 2	_
69	50.63 11	3.1 2	8894.71	1-	1943.95 (0,1,	(2)	7642.4 8	0.2 1	8894.71	1-	1251.641 3	,-
69	82.23 17	1.5 3	8894.71	1-	1912.19 (0,1,	,2)	7653.18 17	1.7 <i>1</i>	8894.71	1-	1241.290 1	-
69	95.5 5	1.4 3	8894.71	1-	1900.097 (0,1,	(2)	7712.41 8	24.0 5	8894.71	1-	1182.091 0	,+
70	58.24 8	9.4 7	8894.71	1-	1836.365 (0,1,	,2)	7898.29 19	0.8 1	8894.71	1-	996.257 2	+
71	19.29 <i>13</i>	2.4 1	8894.71	1-	1775.429 2+		8078.97 9	23.3 5	8894.71	1-	815.490 2	+
71′	77.3 3	0.5 1	8894.71	1-	1716.044 (1,2	+)	8213.86 15	7.0 2	8894.71	1-	680.666 0	,+
724	44.41 18	1.6 <i>1</i>	8894.71	1-	1650.33 0+		8771.5 2	0.8 1	8894.71	1-	123.074 2	+
72	76.9 4	1.1 <i>1</i>	8894.71	1-	1617.087 3-		8894.50 10	24.1 5	8894.71	1-	0 0	+

[†] Values corrected for nuclear recoil (1996SpZZ).

[‡] Uncertainties are the statistical component only.

[#] All assignments are from this reference and based on $\alpha(K)$ exp data. Most of the assignments in parentheses are from doublet peaks, where the combination of the two assignments is compatible with the measured data; these assignments are not included in the ¹⁵⁴Gd Adopted γ radiations.

[@] Value is an upper limit, since it includes a contribution from ¹⁵³Gd.

 $^{\&}\gamma$ is doubly placed with I γ undivided; second placement is not indicated by authors.

^{*a*} From branching in ¹⁵⁴Tb ε decay (21.5 h), I γ =12.2 *16* is expected, so γ is probably a doublet.

^b For intensity per 100 neutron captures, multiply by 0.01.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with "Frozen Orbitals" approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Multiply placed with undivided intensity.

^e Multiply placed with intensity suitably divided.

^f Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

5

 $^{154}_{64}Gd_{90}$

153 Gd(n, γ) E=th 1996SpZZ

154 64 Gd₉₀

Level Scheme (continued)

¹⁵³Gd(\mathbf{n}, γ) E=th 1996SpZZ

Level Scheme (continued)

$\frac{153}{\text{Gd}(\mathbf{n},\boldsymbol{\gamma})} \text{ E=th } 1996\text{SpZZ}$

Level Scheme (continued)

¹⁵³Gd(\mathbf{n}, γ) E=th 1996SpZZ

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

25

 $^{154}_{64}Gd_{90}\text{--}25$

 $^{154}_{64}\mathrm{Gd}_{90}\text{--}26$

26

From ENSDF

 $^{154}_{64}{
m Gd}_{90}$

27

 $^{154}_{64}\mathrm{Gd}_{90}$ -27

153 Gd(n, γ) E=th 1996SpZZ

 $^{154}_{64}\text{Gd}_{90}$

¹⁵³Gd(n,γ) E=th 1996SpZZ (continued)

Band(K): Excited K^π=0⁺ band 2⁺ 1775.429

0+ 1650.33