¹⁵⁴Tb ε + β ⁺ decay (9.973 h) 1975So03,1972Vy04,1973La20

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 200,2 (2025)	22-Aug-2022

Parent: ¹⁵⁴Tb: E=0+x; $J^{\pi}=3^{-}$; $T_{1/2}=9.973$ h 44; $Q(\varepsilon)=3550$ 50; $\%\varepsilon+\%\beta^{+}$ decay=78.2 7

¹⁵⁴Tb-E: Additional information 1.

¹⁵⁴Tb-J^{π}: Additional information 2.

¹⁵⁴Tb-T_{1/2}: Weighted average of 9.9 h 1 (1972Vy04), 9.0 h 5 (1973La20), 9.0 h 10 (1975So03), 9.8 h 3 (1983Be03) and 9.994 39 (2009Gy01) from ε decay. Other: 9.9 h 4 (1976NeZT).

¹⁵⁴Tb-Q(ε + β ⁺): Additional information 3.

¹⁵⁴Tb-Q(ε + β ⁺): From 2021Wa16.

¹⁵⁴Tb-% ε +% β^+ decay: See ¹⁵⁴Tb Adopted data set. From IT decay intensity of 21.8% 7 (1973La20), the intensity of the β^- decay to ¹⁵⁴Dy is estimated to be<0.1%.

Additional information 4.

Three ¹⁵⁴Tb isomers (21.5, 9.973, and 22.7 h) have been observed. The most complete decomposition of the γ data among these isomers is from 1975So03, so these data are used to place the γ .

A study of the ¹⁵⁴Tb isomers is reported as a part of the thesis which constitutes 2001KuZS. With the exception of information relating to the 1701 level, these data are not included here, since further analysis appears to be required. The data regarding the 1701 level is taken from the study of 2003Ku19, together with information from a private communication from J.L. Wood, one of the authors of this study.

¹⁵⁴Gd Levels

Additional information 5.

E(level) [†]	J π ‡	E(level) [†]	Jπ‡	E(level) [†]	J ^{π‡}	E(level) [†]	$J^{\pi \ddagger}$
0.0	0^{+}	1263.72 ^{<i>a</i>} 5	4+	1770.09 <mark>8</mark> 6	5+	2405.92 10	2+
123.07 [@] 3	2^{+}	1397.53 ^d 6	2^{-}	1796.44 ^{<i>f</i>} 17	3-	2416.16 9	4+
371.00 [@] 4	4^{+}	1418.23 ^c 12	2^{+}	2024.8 3	1,2+	2495.96 24	$1,2^{+}$
680.64 ^{&} 4	0^+	1432.35 ^a 9	5+	2080.81 8	4 ^{+#}	2654.62 13	2+
717.70 [@] 5	6+	1531.28 ^e 4	2^{+}	2185.98 6	4-	2934.3 6	1+
815.49 ^{&} 4	2^{+}	1560.10 ^d 13	(4 ⁻)	2230.04 18	2+,3,4+	3363.6 4	(2^{+})
996.31 ^a 4	2^{+}	1617.2 ^d 3	3-	2266.10 18	2+,3,4+	3517.10 16	$(3^+, 4^+)$
1047.58 ^{&} 4	4^{+}	1645.81 ^g 4	4+	2277.11 9	3	3550.2 4	$2^+, 3, 4^+$
1127.76 ^a 4	3+	1660.91 ^e 4	3+	2305.66 8	3+		
1241.19 ^b 13	1-	1701.30 ^c 8	4+	2336.02 6	3-		
1251.82 ^b 10	3-	1719.7 ^ƒ 5	2-	2368.76 18	$2^+, 3, 4^+$		

[†] From least-squares fit to γ energies.

[‡] From ¹⁵⁴Gd Adopted Levels.

[#] There are Adopted Levels of 4^+ at 2080.2 and 3^- at 2080.8.

[@] Band(A): $K^{\pi}=0^+$ ground-state band.

[&] Band(B): $K^{\pi}=0^+$ band. Probable β^- vibrational band.

^{*a*} Band(C): $K^{\pi}=2^+ \gamma$ -vibrational band.

- ^{*b*} Band(D): $K^{\pi}=0^{-}$ octupole-vibrational band.
- ^{*c*} Band(E): Second excited $K^{\pi}=0^+$ band. Proposed as a "pairing isomer" by 2003Ku19. The 1182.1 level is identified as the bandhead. It is apparently not populated in this decay.
- ^{*d*} Band(F): $K^{\pi}=1^{-}$ octupole-vibrational band.

^{*e*} Band(G): Second excited $K^{\pi}=2^+$ band.

¹⁵⁴Tb ε + β^+ decay (9.973 h) 1975S003,1972Vy04,1973La20 (continued)

¹⁵⁴Gd Levels (continued)

^{*f*} Band(H): $K^{\pi}=2^{-}$ octupole-vibrational band.

^{*g*} Band(I): $K^{\pi} = 4^+$ band. Probable hexadecapole vibration.

ε, β^+ radiations

E(decay)	E(level)	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger \# @}$
$(1.13 \times 10^3 5)$	2416.16	6.8	6.0 11
$(1.21 \times 10^3 5)$	2336.02	6.7	8.0 13
$(1.24 \times 10^3 5)$	2305.66	6.9	5.6 10
$(1.27 \times 10^3 5)$	2277.11	7.1	3.8 7
$(1.36 \times 10^3 5)$	2185.98	6.3	29 5
$(2.42 \times 10^3 5)$	1127.76	7.9	2.6 13
$(2.55 \times 10^3 5)$	996.31	7.6	62
$(3.18 \times 10^3 5)$	371.00	7.7 2	94
$(3.43 \times 10^3 5)$	123.07	≥7.2	11 12

[†] Values are from γ -transition-intensity balances. Due to the incompleteness of the decay scheme, values less than 2% are considered unreliable and are not given. For the same reason, uncertainties are not given for values less than 5%.

[‡] As a check of the normalization, it is noted that $\Sigma I(\varepsilon + \beta^+)$ is 81% 14 for the values given, 100% 14 for all positive values computed, and 97% 14 for all values computed including three small negative ones.

[#] The total-absorption γ spectrum of 1980By03 indicates that for a ¹⁵⁴Tb source of unstated isomer content, the feeding is primarily to levels near 2.0 MeV. This measured feeding appears compatible with any combination of the three ¹⁵⁴Tb isomers. [@] Absolute intensity per 100 decays.

$\gamma(^{154}\text{Gd})$

I γ normalization: Calculated to give 100% $\varepsilon + \beta^+$ decay including I($\varepsilon + \beta^+$) values computed for all levels. This normalization gives a g.s. feeding of 98% 12. I γ values are not given for several γ 's by 1975So03. These γ 's are known from other studies to deexcite levels observed in this decay, but for various reasons are not seen in this decay (1975So03).

$E_{\gamma}^{\dagger \ddagger}$	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	α^{a}	$I_{(\gamma+ce)}^{b}$	Comments
123.07 <i>3</i>	155 <i>21</i>	123.07	2+	0.0	0^{+}	E2	1.187 17		%I γ =30 6 $\alpha(K)$ =0.656 9; $\alpha(L)$ =0.411 6; $\alpha(M)$ =0.0963 14 $\alpha(K) = 0.02152$ 20, $\alpha(D) = 0.00286$ 4, $\alpha(D) = 2.26 \times 10^{-5}$ 5
124.4		1770.09	5+	1645.81	4+	[M1,E2]	1.111 35	2.5 7	$\begin{aligned} \alpha(N) &= 0.02155\ 30;\ \alpha(O) &= 0.00286\ 4;\ \alpha(P) &= 5.56 \times 10^{-5}\ 5\\ \% &[\gamma &= 0.23\ 4\\ ce(K)/(\gamma + ce) &= 0.37\ 4;\ ce(L)/(\gamma + ce) &= 0.12\ 5;\ ce(M)/(\gamma + ce) &= 0.028\ 15\\ ce(N)/(\gamma + ce) &= 0.0064\ 33;\ ce(O)/(\gamma + ce) &= 9;\ ce(P)/(\gamma + ce) &= 2.4 \times 10^{-5}\\ 8\\ \alpha(K) &= 0.77\ 14;\ \alpha(L) &= 0.26\ 13;\ \alpha(M) &= 0.060\ 32 \end{aligned}$
232.10 4	2.4 2	1047.58	4+	815.49	2+	E2	0.1359 <i>19</i>		$\alpha(\mathbf{K})=0.77$ 14, $\alpha(\mathbf{L})=0.20$ 15, $\alpha(\mathbf{M})=0.000$ 52 $\alpha(\mathbf{N})=0.014$ 7; $\alpha(\mathbf{O})=0.0019$ 9; $\alpha(\mathbf{P})=5.0\times10^{-5}$ 18 %I γ =0.47 8 $\alpha(\mathbf{K})=0.0986$ 14; $\alpha(\mathbf{L})=0.0290$ 4; $\alpha(\mathbf{M})=0.00663$ 9
247.94 <i>3</i>	113 10	371.00	4+	123.07	2+	E2	0.1098 15		α (N)=0.001494 21; α (O)=0.0002077 29; α (P)=5.86×10 ⁻⁶ 8 %I γ =22 4 α (K)=0.0809 11; α (L)=0.02244 31; α (M)=0.00513 7 α (N)=0.001156 46; α (O)=0.0001616 23; α (D)=4.87×10 ⁻⁶ 7
283.0 [#] 2	0.11@	1701.30	4+	1418.23	2+	[E2]	0.0722 10		$\alpha(N)=0.001156\ 76;\ \alpha(O)=0.0001016\ 23;\ \alpha(P)=4.87\times10^{-7}$ % $I\gamma=0.0215\ 34$ $\alpha(K)=0.0547\ 8;\ \alpha(L)=0.01365\ 19;\ \alpha(M)=0.00310\ 4$ $\alpha(N)=0.000701\ 10;\ \alpha(O)=9.91\times10^{-5}\ 14;\ \alpha(P)=3.38\times10^{-6}\ 5$
330.00 16	1.0 1	1047.58	4+	717.70	6+	E2	0.0451 6		$\alpha(1)=0.00761777777777777777777777777777777777$
337.9 2	1.6 5	1770.09	5+	1432.35	5+	(E0+M1+E2)	0.056 14		$\alpha(1)=0.004610$, $\alpha(0)=5.75\times10^{-6}6$, $\alpha(1)=2.224\times10^{-5}17^{-6}$ $\%[\gamma=0.31\ 11$ $\alpha(K)=0.046\ 13$; $\alpha(L)=0.0078\ 6$; $\alpha(M)=0.00172\ 9$ $\alpha(N)=0.000392\ 24$; $\alpha(O)=5.9\times10^{-5}\ 6$; $\alpha(P)=3.2\times10^{-6}\ 11$ α : From the adopted values. The listed subshell coefficients do not include a contribution from the E0 component
346.70 <i>4</i>	8.0 10	717.70	6+	371.00	4+	E2	0.0389 5		%I γ =1.56 32 $\alpha(K)$ =0.0304 4; $\alpha(L)$ =0.00662 9; $\alpha(M)$ =0.001490 21 $\alpha(N)$ =0.000338 5: $\alpha(Q)$ =4.86×10 ⁻⁵ 7: $\alpha(P)$ =1.949×10 ⁻⁶ 27
382.12 4	5.3 4	1645.81	4+	1263.72	4+	E2+M1	0.040 11		$%I\gamma = 1.04 \ 18$ $\alpha(K) = 0.033 \ 10; \ \alpha(L) = 0.0054 \ 6; \ \alpha(M) = 0.00118 \ 12$ $\alpha(N) = 0.000271 \ 29; \ \alpha(O) = 4.1 \times 10^{-5} \ 6; \ \alpha(P) = 2.3 \times 10^{-6} \ 8$

ω

				¹⁵⁴ Tb ε + β ⁺ de	ecay (9.973 h	l) 1975So	03,1972Vy04,1	1973La20 (continued)
						$\gamma(^{154}\text{Gd})$ (co	ontinued)	
$E_{\gamma}^{\dagger\ddagger}$	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	δ ^{&}	α^{a}	Comments
415.85 6	10.8 7	2185.98	4-	1770.09 5+	E1		0.00720 10	%I γ =2.1 4 α (K)=0.00613 9; α (L)=0.000835 12; α (M)=0.0001801 25 α (N)=4.12 \times 10 ⁻⁵ 6; α (Q)=6.31 \times 10 ⁻⁶ 9; α (P)=4.00 \times 10 ⁻⁷ 6
444.54 7	5.4 3	815.49	2+	371.00 4+	E2		0.01914 27	$ \begin{aligned} &\alpha(\mathbf{N}) = 1.12 \times 10^{-6} \ 0, \ \alpha(\mathbf{C}) = 0.51 \times 10^{-5} \ 9, \ \alpha(\mathbf{L}) = 1.00 \times 10^{-6} \ 0 \end{aligned} \\ & \mathcal{K}[\mathbf{Y} = 1.06 \ 18 \ \alpha(\mathbf{K}) = 0.01540 \ 22; \ \alpha(\mathbf{L}) = 0.00292 \ 4; \ \alpha(\mathbf{M}) = 0.000650 \ 9 \ \alpha(\mathbf{N}) = 0.0001479 \ 21; \ \alpha(\mathbf{O}) = 2.168 \times 10^{-5} \ 30; \ \alpha(\mathbf{P}) = 1.020 \times 10^{-6} \ 14 \end{aligned} $
x461.61 <i>15</i> 484.74 <i>21</i>	1.3 <i>I</i> 0.8 <i>I</i>	2185.98	4-	1701.30 4+	[E1]		0.00505 7	%I γ =0.25 5 %I γ =0.156 32 α (K)=0.00431 6; α (L)=0.000583 8; α (M)=0.0001255 18 α (N)=2.87×10 ⁻⁵ 4; α (O)=4.41×10 ⁻⁶ 6; α (P)=2.83×10 ⁻⁷ 4 E _{γ} : Placement is that of 2003Ku19. This γ was placed from α 3517 level by 1975So03, but the implied final level at 3032 was not assigned to this activity.
x492.10 24 506.43 11	0.7 <i>I</i> 3.1 <i>6</i>	1770.09	5+	1263.72 4+	E2		0.01349 <i>19</i>	%Iγ=0.137 29 %Iγ=0.61 15 α(K)=0.01098 15; α(L)=0.001959 27; α(M)=0.000434 6 α(K)=0.00098 15; α(L)=0.001959 27; α(M)=0.000434 6
518.04 6	31.2 16	1645.81	4+	1127.76 3+	E2+M1	-73	0.0129 4	$\alpha(\Lambda) = 9.50 \times 10^{-7} 14, \ \alpha(O) = 1.404 \times 10^{-7} 21, \ \alpha(1) = 7.57 \times 10^{-7} 10^{-7} 30^{-7} (\Lambda) = 9.30 \times 10^{-5} 21; \ \alpha(O) = 1.385 \times 10^{-5} 35; \ \alpha(P) = 7.12 \times 10^{-7} 30^{-7} 30^{-7} (\Lambda) = 9.30 \times 10^{-7} ($
540.18 6	100	2185.98	4-	1645.81 4+	E1		0.00397 6	$\alpha(N) = 2.35 \times 10^{-5} 31$ $\alpha(K) = 0.00339 5; \alpha(L) = 0.000455 6; \alpha(M) = 9.80 \times 10^{-5} 14$ $\alpha(K) = 2.247 \times 10^{-5} 31; \alpha(Q) = 3.45 \times 10^{-6} 5; \alpha(P) = 2.238 \times 10^{-7} 31$
545.5 4	0.5 2	1263.72	4+	717.70 6+	[E2]		0.01113 16	$\alpha(N) = 2.247 \times 10^{-5}$ 31, $\alpha(O) = 3.43 \times 10^{-5}$ 3, $\alpha(1) = 2.238 \times 10^{-5}$ 31 %I $\gamma = 0.104$ $\alpha(K) = 0.00912$ 13; $\alpha(L) = 0.001575$ 22; $\alpha(M) = 0.000348$ 5 $\alpha(N) = 7.04 \times 10^{-5}$ 41, $\alpha(O) = 1.181 \times 10^{-5}$ 47, $\alpha(D) = 6.16 \times 10^{-7}$ 0
557.60 6	1.6 3	680.64	0^{+}	123.07 2+	E2		0.01053 15	$\alpha(N) = 7.94 \times 10^{-7} I1; \alpha(O) = 1.181 \times 10^{-7} I7; \alpha(P) = 6.10 \times 10^{-7} g$ % $I\gamma = 0.31 g$ $\alpha(K) = 0.00863 I2; \alpha(L) = 0.001479 2I; \alpha(M) = 0.000327 5$ $\alpha(K) = 7.46 \times 10^{-5} I0; \alpha(Q) = 1.110 \times 10^{-5} I6; \alpha(P) = 5.84 \times 10^{-7} g$
564.9	0.1	2266.10	2+,3,4+	1701.30 4+				$\%$ I γ =0.0196 31 E $_{\gamma}$: Value is from 2001KuZS. Placement and I γ value are from J.L. Wood (private communication, April, 2008).
573.5 [#] 2 591.9 5	0.081 [@] 0.6 3	1701.30 1719.7	4+ 2 ⁻	1127.76 3 ⁺ 1127.76 3 ⁺	E1(+M2)	+0.02 3	0.00327 11	%I γ =0.0158 25 %I γ =0.12 6 α (K)=0.00279 9; α (L)=0.000374 14; α (M)=8.05×10 ⁻⁵ 30 α (N)=1.85×10 ⁻⁵ 7; α (O)=2.84×10 ⁻⁶ 11; α (P)=1.85×10 ⁻⁷ 7 δ : From ¹⁵⁴ Eu β ⁻ decay
598.19 6	7.2 7	1645.81	4+	1047.58 4+	M1+E2	0.65 20	0.0139 10	%Iy=1.41 26

From ENSDF

 $^{154}_{64}Gd_{90}\text{-}4$

				¹⁵⁴ Tb	ε + β^+ decay (9.9	973 h)	1975So03,1972V	/y04,1973La20 (continued)
						$\gamma(^{15}$	⁴ Gd) (continued)	
$E_{\gamma}^{\dagger\ddagger}$	I_{γ}^{b}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. ^{&}	δ ^{&}	α ^a	Comments
602.67 24	0.4 2	1418.23	2+	815.49 2+	E0+M1+E2		0.012 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0118 \ 8; \ \alpha(\mathbf{L}) = 0.00169 \ 9; \ \alpha(\mathbf{M}) = 0.000367 \ 19 \\ &\alpha(\mathbf{N}) = 8.4 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 1.30 \times 10^{-5} \ 7; \ \alpha(\mathbf{P}) = 8.5 \times 10^{-7} \ 7 \\ &\% \mathbf{I}\gamma = 0.08 \ 4 \\ &\alpha(\mathbf{K}) = 0.0103 \ 31; \ \alpha(\mathbf{L}) = 0.00152 \ 33; \ \alpha(\mathbf{M}) = 0.00033 \ 7 \\ &\alpha(\mathbf{N}) = 7.6 \times 10^{-5} \ 16; \ \alpha(\mathbf{O}) = 1.17 \times 10^{-5} \ 27; \ \alpha(\mathbf{P}) = 7.3 \times 10^{-7} \ 25 \end{aligned}$
625.19 22	1.2 2	996.31	2+	371.00 4+	E2		0.00792 11	 α: From the adopted values. The listed subshell coefficients do not include a contribution from the E0 component. %Iγ=0.23 5 α(K)=0.00655 9: α(L)=0.001075 15: α(M)=0.0002367 33
642.18 9	3.5 7	1770.09	5+	1127.76 3+	E2		0.00743 11	$\alpha(N) = 5.41 \times 10^{-5} \ 8; \ \alpha(O) = 8.11 \times 10^{-6} \ 11; \ \alpha(P) = 4.47 \times 10^{-7} \ 6$ %Iy=0.68 18 $\alpha(K) = 0.00615 \ 9; \ \alpha(L) = 0.001000 \ 14; \ \alpha(M) = 0.000220 \ 3$
649.44 6	56 <i>3</i>	1645.81	4+	996.31 2+	E2		0.00723 10	$\alpha(N)=5.02\times10^{-5}$ 7; $\alpha(O)=7.55\times10^{-6}$ 11; $\alpha(P)=4.20\times10^{-7}$ 6 % $I\gamma=10.9$ 18 $\alpha(K)=0.00599$ 8; $\alpha(L)=0.000970$ 14; $\alpha(M)=0.0002133$ 30 $\alpha(N)=4.87\times10^{-5}$ 7; $\alpha(O)=7.32\times10^{-6}$ 10; $\alpha(P)=4.00\times10^{-7}$ 6
653.7 [#] 2 *660.35 35	0.65 [@] 0.6 2	1701.30	4+	1047.58 4+				%Iy=0.127 20 %Iy=0.12 4
669.1 <i>3</i>	0.6 2	1796.44	3-	1127.76 3+	E1		2.51×10 ⁻³ 4	% Iy=0.12 4 % Iy=0.12 4 $\alpha(K)=0.002146 \ 30; \ \alpha(L)=0.000285 \ 4; \ \alpha(M)=6.14\times10^{-5} \ 9$ $\alpha(N)=1.407\times10^{-5} \ 20; \ \alpha(O)=2.170\times10^{-6} \ 30; \ \alpha(P)=1.428\times10^{-7}$
676.55 7	16.6 <i>15</i>	1047.58	4+	371.00 4+	E0+M1+E2	+2.9 4	0.00712 <i>19</i>	% Iγ=3.2 6 % Iγ=3.2 6 $\alpha(K)=0.00594 \ 17; \ \alpha(L)=0.000925 \ 21; \ \alpha(M)=0.000203 \ 4$ $\alpha(N)=4.64\times10^{-5} \ 10; \ \alpha(O)=7.02\times10^{-6} \ 16; \ \alpha(P)=4.11\times10^{-7} \ 13$ α : Deduced from $\alpha(K)exp=0.044 \ 3$. See the Adopted Gammas data set. δ : From ¹⁵⁴ Eu β^- decay.

				¹⁵⁴ Tb	ε + β	⁺ decay (9.973	h) 1975S o	003,1972Vy04	,1973La2	0 (continued)
							$\gamma(^{154}\text{Gd})$ (c	continued)		
$\mathrm{E}_{\gamma}^{\dagger\ddagger}$	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.&	<i>δ</i> &	α^{a}	$I_{(\gamma+ce)}^{b}$	Comments
680.7 <i>1</i>		680.64	0^{+}	0.0	0^{+}	E0			0.02 1	% $I\gamma=0.0039~6$ I _{($\gamma+ce$}): From I(ce(K) 680)/I(ce(K) 557)=1.5 7 from
692.41 <i>4</i>	16.9 <i>15</i>	815.49	2+	123.07	2+	E0+M1+E2	7.5 4	0.00629 9		several measurements and I(ce(K) 557)=0.014. %I γ =3.3 6 α (K)=0.00524 7; α (L)=0.000828 12; α (M)=0.0001815
										$\alpha(N)=4.15\times10^{-5} 6$; $\alpha(O)=6.27\times10^{-6} 9$; $\alpha(P)=3.60\times10^{-7} 5$ α : From the adopted values. The listed subshell coefficients do not include a contribution from the E0 component.
705.1 [#] 2	<0.014 [@]	1701.30	4+	996.31	2+	[E2]		0.00595 8		%I γ =0.0027 4 α (K)=0.00495 7; α (L)=0.000781 11; α (M)=0.0001714 24
										$\alpha(N)=3.92\times10^{-5} 5; \alpha(O)=5.92\times10^{-6} 8; \alpha(P)=3.40\times10^{-7} 5$
(714.6)		1432.35	5+	717.70	6+	E2,M1		0.0081 23		α (K)=0.0068 20; α (L)=0.00098 23; α (M)=0.00021 5 α (N)=4.9×10 ⁻⁵ 11; α (O)=7.5×10 ⁻⁶ 18; α (D)=4.8×10 ⁻⁷ 16
715.786 18	2.9 4	1531.28	2^{+}	815.49	2+	E0,M1,E2		0.0080 23		$\alpha(\mathbf{r}) = 4.8 \times 10^{-10}$ $\Re[\gamma = 0.57 \ 12$ $\kappa(\mathbf{r}) = 0.00021 \ 5$
										$\alpha(\mathbf{N}) = 0.0008 \ 20; \ \alpha(\mathbf{L}) = 0.00098 \ 23; \ \alpha(\mathbf{M}) = 0.00021 \ 3$ $\alpha(\mathbf{N}) = 4.9 \times 10^{-5} \ 11; \ \alpha(\mathbf{O}) = 7.5 \times 10^{-6} \ 18; $ $\alpha(\mathbf{P}) = 4.8 \times 10^{-7} \ 15$
										 α: From the adopted values. The listed subshell coefficients do not include a contribution from the E0
722.5	1.9 5	1770.09	5+	1047.58	4+	[M1,E2]		0.0078 22		%I γ =0.37 <i>11</i> α (K)=0.0066 <i>19</i> ; α (L)=0.00095 <i>22</i> ; α (M)=0.00021 <i>5</i>
										$\alpha(N)=4.8\times10^{-5}$ 11; $\alpha(O)=7.3\times10^{-6}$ 18; $\alpha(P)=4.7\times10^{-7}$ 15
723.6 9	1.2 4	1719.7	2-	996.31	2+	E1+M2	+0.022 13	0.00215 4		$ \begin{array}{l} & \alpha(\mathbf{r}) & \alpha(\mathbf{r}) & \alpha(\mathbf{r}) \\ & & \kappa(\mathbf{r}) \\ & \alpha(\mathbf{K}) = 0.001838 \ 31; \ \alpha(\mathbf{L}) = 0.000244 \ 4; \\ & \alpha(\mathbf{M}) = 5.24 \times 10^{-5} \ 9 \\ & \alpha(\mathbf{N}) = 1.202 \times 10^{-5} \ 21; \ \alpha(\mathbf{O}) = 1.855 \times 10^{-6} \ 32; \end{array} $
										$\alpha(P)=1.228\times10^{-7} \ 21$ $\delta: \text{ From } {}^{154}\text{Eu} \ \beta^{-} \text{ decay.}$
^x 749.4 8	<1									%Iγ=0.196 <i>31</i>

From ENSDF

 $^{154}_{64}\mathrm{Gd}_{90}\text{-}6$

	¹³⁴ Tb ε + β ⁺ decay (9.973 h) 1975So03,1972Vy04,1973La20 (continued)											
							γ ⁽¹⁵⁴ Gd)	(continued)				
$E_{\gamma}^{\dagger\ddagger}$	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	E_f J	\mathbf{J}_{f}^{π}	Mult. ^{&}	δ ^{&}	α^{a}	Comments			
753.1 9	1.2 6	2185.98	4-	1432.35 5	5+	[E1]		1.97×10 ⁻³ 3	%I γ =0.23 <i>12</i> α (K)=0.001686 <i>24</i> ; α (L)=0.0002229 <i>32</i> ; α (M)=4.79×10 ⁻⁵ <i>7</i> α (N)=1.099×10 ⁻⁵ <i>16</i> ; α (O)=1.698×10 ⁻⁶ <i>24</i> ; α (P)=1.126×10 ⁻⁷ <i>16</i>			
756.71 6	13.6 8	1127.76	3+	371.00 4	4+	E2+M1	-6.1 3	0.00516 7	$%I\gamma$ =2.7 5 α (K)=0.00431 6; α (L)=0.000663 9; α (M)=0.0001450 20 α (N)=3.32×10 ⁻⁵ 5; α (O)=5.03×10 ⁻⁶ 7; α (P)=2.97×10 ⁻⁷ 4 δ: From ¹⁵⁴ Eu β ⁻ decay.			
800.7 10	1.3 <i>I</i> 0.5 <i>I</i>	1796.44	3-	996.31 2	2+	E1		1.74×10 ⁻³ 3	%1 γ =0.25 5 %1 γ =0.098 25 α (K)=0.001492 21; α (L)=0.0001967 28; α (M)=4.23×10 ⁻⁵ 6 α (N)=9.70×10 ⁻⁶ 14; α (O)=1.499×10 ⁻⁶ 21; α (P)=9.98×10 ⁻⁸ 14			
815.49 7	4.8 5	815.49	2+	0.0 (0+	E2		0.00427 6	%I γ =0.94 <i>18</i> α (K)=0.00358 <i>5</i> ; α (L)=0.000543 <i>8</i> ; α (M)=0.0001185 <i>17</i> α (N)=2.71×10 ⁻⁵ <i>4</i> ; α (O)=4.12×10 ⁻⁶ <i>6</i> ; α (P)=2.469×10 ⁻⁷ <i>35</i>			
^x 826.29 21 830.49 9	0.7 <i>1</i> 3.5 <i>3</i>	1645.81	4+	815.49 2	2+	[E2]		0.00410 6	% $I_{\gamma}=0.137\ 29$ % $I_{\gamma}=0.68\ 12$ $\alpha(K)=0.00344\ 5;\ \alpha(L)=0.000519\ 8;\ \alpha(M)=0.0001133\ 16$ $\alpha(N)=2\ 59\times10^{-5}\ 4;\ \alpha(Q)=3\ 95\times10^{-6}\ 6;\ \alpha(P)=2\ 37\times10^{-7}\ 4$			
845.423 8	1.3 1	1660.91	3+	815.49 2	2+	E2		0.00395 6	$\begin{array}{l} \alpha(1)=2.57\times10^{-4}, \ \alpha(0)=3.55\times10^{-6}, \ \alpha(1)=2.57\times10^{-4}, \ \alpha(1)=2.57\times10^{-4}, \ \alpha(1)=2.57\times10^{-4}, \ \alpha(1)=2.57\times10^{-5}, \ \alpha(1)=2.25\times10^{-5}, \ \alpha(1)=2.25\times10^{-5}, \ \alpha(1)=2.25\times10^{-7}, \ \alpha($			
850.643 12	0.8 2	1531.28	2+	680.64 (0+	E2		0.00389 5	52 ${}^{\%}$ I γ =0.16 5 α (K)=0.00327 5; α (L)=0.000490 7; α (M)=0.0001069 15 α (N)=2.448×10 ⁻⁵ 34; α (O)=3.73×10 ⁻⁶ 5; α (P)=2.256×10 ⁻⁷ 32			
^x 857.2 <i>15</i> 873.21 <i>4</i>	0.5 <i>1</i> 47 <i>3</i>	996.31	2+	123.07 2	2+	E0+M1+E2	-9.4 4	0.00371 5	%Iy=0.098 25 %Iy=9.2 16 $\alpha(K)=0.00311 4; \alpha(L)=0.000463 6; \alpha(M)=0.0001010 14$ $\alpha(N)=2.314\times10^{-5} 32; \alpha(O)=3.53\times10^{-6} 5; \alpha(P)=2.153\times10^{-7}$ 30			
880.6 <i>6</i>	1.6 2	1251.82	3-	371.00 4	4+	E1+M2	+0.07 3	0.00152 8	δ: From ¹⁵⁴ Eu β^- decay. %Lγ=0.31 6 α(K)=0.00130 6; α(L)=0.000172 10; α(M)=3.69×10 ⁻⁵ 21 α(N)=8.5×10 ⁻⁶ 5; α(O)=1.31×10 ⁻⁶ 7; α(P)=8.8×10 ⁻⁸ 5			
885.8 [#] 2	0.058 [@]	1701.30	4+	815.49 2	2+	[E2]		0.00356 5	%I γ =0.0113 18 α (K)=0.00300 4; α (L)=0.000445 6; α (M)=9.70×10 ⁻⁵ 14			

 $^{154}_{64}\mathrm{Gd}_{90}$ -7

From ENSDF

 $^{154}_{64}\mathrm{Gd}_{90}$ -7

				¹⁵⁴ 7	Г b ε+	-β ⁺ decay (9.97	'3 h) 1 9	75So03,1972Vy	04,1973La20 (continued)
							<u>γ(¹⁵⁴G</u>	d) (continued)	
$E_{\gamma}^{\dagger\ddagger}$	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult.&	δ ^{&}	α^{a}	Comments
892.76 6	16.1 <i>11</i>	1263.72	4+	371.00	4+	E0+M1+E2	-3.8 3	0.00367 6	$\begin{aligned} &\alpha(\mathrm{N})=2.222\times10^{-5} \ 31; \ \alpha(\mathrm{O})=3.39\times10^{-6} \ 5; \ \alpha(\mathrm{P})=2.070\times10^{-7} \ 29 \\ &\%\mathrm{I}\gamma=3.1 \ 5 \\ &\alpha(\mathrm{K})=0.00309 \ 5; \ \alpha(\mathrm{L})=0.000454 \ 7; \ \alpha(\mathrm{M})=9.88\times10^{-5} \ 15 \\ &\alpha(\mathrm{N})=2.264\times10^{-5} \ 35; \ \alpha(\mathrm{O})=3.46\times10^{-6} \ 5; \ \alpha(\mathrm{P})=2.144\times10^{-7} \ 35 \\ &\delta: \ \mathrm{From} \ ^{154}\mathrm{Eu} \ \beta^{-} \ \mathrm{decay.} \\ &\alpha: \ \mathrm{Theoretical \ value \ since \ } \alpha(\mathrm{K})\mathrm{exp \ indicates \ negligible \ E0} \end{aligned}$
922.1 ^c 9	2.0 ^c 6	2185.98	4-	1263.72	4+	[E1]		1.32×10 ⁻³ 2	component. %I γ =0.39 <i>13</i> α (K)=0.001135 <i>16</i> ; α (L)=0.0001487 <i>21</i> ; α (M)=3.19×10 ⁻⁵ 5 α (N)=7 33×10 ⁻⁶ <i>10</i> ; α (Q)=1 135×10 ⁻⁶ <i>16</i> ; α (P)=7 62×10 ⁻⁸ <i>11</i>
922.1 ^{cd} 9	2.6 ^c 6	2336.02	3-	1418.23	2+	[E1]		1.32×10 ⁻³ 2	
924.6 <i>3</i>	7.2 7	1047.58	4+	123.07	2+	E2		0.00325 5	E _{γ} : Poor energy fit. %I γ =1.41 26 α (K)=0.00274 4; α (L)=0.000402 6; α (M)=8.76×10 ⁻⁵ 12
927.5 4	1.8 6	1645.81	4+	717.70	6+	[E2]		0.00323 5	$\alpha(N) = 2.008 \times 10^{-5} 28; \ \alpha(O) = 3.07 \times 10^{-5} 4; \ \alpha(P) = 1.892 \times 10^{-7} 27$ %Iy=0.35 13 $\alpha(K) = 0.00272 4; \ \alpha(L) = 0.000400 6; \ \alpha(M) = 8.70 \times 10^{-5} 12$
953.18 <i>13</i>	2.9 2	2080.81	4+	1127.76	3+	M1,E2		0.0041 10	$\alpha(N)=1.993\times10^{-5}\ 28;\ \alpha(O)=3.05\times10^{-6}\ 4;\ \alpha(P)=1.880\times10^{-7}\ 26$ %Iy=0.57 10 $\alpha(K)=0.0035\ 9;\ \alpha(L)=0.00048\ 11;\ \alpha(M)=0.000105\ 23$ $\alpha(N)=2.4\times10^{-5}\ 5;\ \alpha(O)=3.7\times10^{-6}\ 9;\ \alpha(P)=2.5\times10^{-7}\ 7$
964.9 <i>3</i> ^x 982.0 <i>4</i>	1.7 2 1.6 <i>3</i>	2495.96	1,2+	1531.28	2+				% Iy=0.33 7 % Iy=0.31 8
983.7 [#] 2 984.3 4	0.6 [@] 2.3 <i>3</i>	1701.30 2416.16	4+ 4+	717.70 1432.35	6+ 5+	[M1,E2]		0.0038 10	%I γ =0.117 <i>19</i> %I γ =0.45 <i>9</i> α (K)=0.0032 <i>8</i> ; α (L)=0.00045 <i>10</i> ; α (M)=9.7×10 ⁻⁵ <i>21</i> α (N)=2 2×10 ⁻⁵ 5: α (Q)=3 5×10 ⁻⁶ 8: α (P)=2 3×10 ⁻⁷ 6
996.24 6	44 <i>4</i>	996.31	2+	0.0	0+	E2		0.00277 4	$^{\alpha}(\Lambda)=2.2\times10^{-5}$ 3; $\alpha(G)=3.5\times10^{-6}$ 6; $\alpha(I)=2.5\times10^{-6}$ 0 $^{\beta}(I)=8.6$ 16 $\alpha(K)=0.002342$ 33; $\alpha(L)=0.000339$ 5; $\alpha(M)=7.37\times10^{-5}$ 10 $\alpha(N)=1.690\times10^{-5}$ 24; $\alpha(O)=2.59\times10^{-6}$ 4; $\alpha(P)=1.621\times10^{-7}$ 23

From ENSDF

	¹⁵⁴ Tb ε + β ⁺ decay (9.973 h) 1975So03,1972Vy04,1973La20 (continued)												
	γ ⁽¹⁵⁴ Gd) (continued)												
$E_{\gamma}^{\dagger\ddagger}$	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	Mult. ^{&}	δ&	α^{a}	Comments					
1004.73 5	56 4	1127.76	3+	123.07 2+	E2+M1	-7.4 4	0.00276 4	%I γ =10.9 <i>19</i> α (K)=0.002329 <i>33</i> ; α (L)=0.000336 <i>5</i> ; α (M)=7.30×10 ⁻⁵ <i>10</i> α (N)=1.675×10 ⁻⁵ <i>24</i> ; α (O)=2.57×10 ⁻⁶ <i>4</i> ; α (P)=1.615×10 ⁻⁷ <i>23</i>					
1012.9 <i>3</i>	0.5 1	2277.11	3	1263.72 4+	[E1]		1.11×10 ⁻³ 2	δ: From ¹⁵⁴ Eu β ⁻ decay. %Iγ=0.098 25 α (K)=0.000951 13; α (L)=0.0001241 17; α (M)=2.66×10 ⁻⁵ 4					
^x 1020.4 4	1.5 2							$\alpha(N)=6.12\times10^{-6}$ 9; $\alpha(O)=9.48\times10^{-7}$ 13; $\alpha(P)=6.39\times10^{-6}$ 9 %I γ =0.29 6 Placed from the 3363 level by 1975So03, but they do not report that the final level implied by this placement is populated in this decay (although it is populated in the decay of one of the other ¹⁵⁴ Tb activities).					
1033.30 <i>9</i> 1041.9 <i>2</i>	2.4 2 1.1 <i>I</i>	2080.81 2305.66	4+ 3+	1047.58 4 ⁺ 1263.72 4 ⁺	[M1,E2]		0.0033 8	%Iγ=0.47 8 %Iγ=0.22 4 α (K)=0.0028 7; α (L)=0.00039 9; α (M)=8.5×10 ⁻⁵ 18 α (N)=2.0×10 ⁻⁵ 4: α (O)=3.0×10 ⁻⁶ 7: α (P)=2.0×10 ⁻⁷ 5					
1047.22 <i>15</i>	0.7 1	1418.23	2+	371.00 4+	E2		2.50×10 ⁻³ 4	$\alpha(N) = 2.0 \times 10^{-4}, \ \alpha(O) = 3.0 \times 10^{-7}, \ \alpha(I) = 2.0 \times 10^{-5} $ $\% I\gamma = 0.137 \ 29$ $\alpha(K) = 0.002114 \ 30; \ \alpha(L) = 0.000303 \ 4; \ \alpha(M) = 6.59 \times 10^{-5} \ 9$ $\alpha(N) = 1.510 \times 10^{-5} \ 21; \ \alpha(O) = 2.317 \times 10^{-6} \ 32;$ $\alpha(P) = 1.465 \times 10^{-7} \ 21$					
1053.9 7	1.1 3	2305.66	3+	1251.82 3-	[E1]		1.03×10 ⁻³ 1	% $I\gamma=0.22$ 7 $\alpha(K)=0.000884$ 12; $\alpha(L)=0.0001152$ 16; $\alpha(M)=2.472\times10^{-5}$ 35					
1058.34 18	1.4 2	2185.98	4-	1127.76 3+	[E1]		1.02×10 ⁻³ 1	$ \begin{aligned} &\alpha(\mathrm{N}) = 5.68 \times 10^{-6} \ 8; \ \alpha(\mathrm{O}) = 8.80 \times 10^{-7} \ 12; \ \alpha(\mathrm{P}) = 5.94 \times 10^{-8} \ 8 \\ &\% \mathrm{I}\gamma = 0.27 \ 6 \\ &\alpha(\mathrm{K}) = 0.000877 \ 12; \ \alpha(\mathrm{L}) = 0.0001142 \ 16; \ \alpha(\mathrm{M}) = 2.452 \times 10^{-5} \\ &34 \end{aligned} $					
1061.39 9	0.7 1	1432.35	5+	371.00 4+	E2+M1	-4.3 +12-26	0.00251 7	$\alpha(N) = 5.63 \times 10^{-6} \ 8; \ \alpha(O) = 8.73 \times 10^{-7} \ 12; \ \alpha(P) = 5.90 \times 10^{-8} \ 8$ %Iy=0.137 29 $\alpha(K) = 0.00212 \ 6; \ \alpha(L) = 0.000303 \ 8; \ \alpha(M) = 6.57 \times 10^{-5} \ 18$					
1072.37 <i>13</i>	1.8 2	2336.02	3-	1263.72 4+	[E1]		9.98×10 ⁻⁴ 14	$\alpha(N)=1.51\times10^{-3} 4; \ \alpha(O)=2.32\times10^{-6} 6; \ \alpha(P)=1.48\times10^{-7} 5$ %Iy=0.35 7 $\alpha(K)=0.000856 \ 12; \ \alpha(L)=0.0001115 \ 16; \ \alpha(M)=2.393\times10^{-5}$ 33					
1084.21 ^c 14 1084.21 ^c 14	1.9 ^c 2 1.9 ^c 2	2080.81 2336.02	4+ 3-	996.31 2 ⁺ 1251.82 3 ⁻	[M1,E2]		0.0030 7	$\alpha(N)=5.49\times10^{-6}$ 8; $\alpha(O)=8.52\times10^{-7}$ 12; $\alpha(P)=5.76\times10^{-8}$ 8 %I $\gamma=0.37$ 7 %I $\gamma=0.37$ 7					

 $^{154}_{64}\mathrm{Gd}_{90}$ -9

				154 Tb ε + β^+ d	lecay (9.973	h) 1975So03 ,	1972Vy04,1973La20 (continued)
						$\gamma(^{154}\text{Gd})$ (conti	nued)
${\rm E_{\gamma}}^{\dagger \ddagger}$	Ι _γ b	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	α^{a}	Comments
1102.43 20	1.4 2	2230.04	2+,3,4+	1127.76 3+	[M1,E2]	0.0029 7	$\alpha(K)=0.0026 \ 6; \ \alpha(L)=0.00036 \ 8; \ \alpha(M)=7.7\times10^{-5} \ 16$ $\alpha(N)=1.8\times10^{-5} \ 4; \ \alpha(O)=2.8\times10^{-6} \ 6; \ \alpha(P)=1.8\times10^{-7} \ 5$ $\%I\gamma=0.27 \ 6$ $\alpha(K)=0.0025 \ 6; \ \alpha(L)=0.00034 \ 7; \ \alpha(M)=7.4\times10^{-5} \ 16$ $\alpha(K)=1.7\times10^{-5} \ 4; \ \alpha(O)=2.7\times10^{-6} \ 6; \ \alpha(D)=1.8\times10^{-7} \ 5$
1105.8 8 1118.03 22	0.3 2 2.7 6	2368.76 1241.19	2 ⁺ ,3,4 ⁺ 1 ⁻	1263.72 4 ⁺ 123.07 2 ⁺	E1	9.28×10 ⁻⁴ 13	$\alpha(N)=1.7\times10^{-5} 4; \ \alpha(O)=2.7\times10^{-5} 6; \ \alpha(P)=1.8\times10^{-7} 5; \ \alpha(IPF)=3.43\times10^{-7} 20 \ \%I\gamma=0.06 4 \ \%I\gamma=0.53 14 \ \alpha(K)=0.000793 11; \ \alpha(L)=0.0001031 14; \ \alpha(M)=2.214\times10^{-5} 31 \ \alpha(L)=0.0001031 14; \ \alpha(M)=0.0001031 14; \ \alpha(M)=0.00001031 14; \ \alpha(M)=0.0001031 14; \ \alpha(M)=0.00001031 14; \\alpha(M)=0.00001031 14; \\alpha(M)=0.00001031 14; \\alpha(M)=0.00001031 14; \\alpha(M)=0.00001031 14; \\alpha(M)=0.00001031 14; \\alpha(M)=0.000001031 14; \\alpha(M)=0.0000$
(1123.09 16)		2654.62	2+	1531.28 2+	[M1,E2]	0.0028 7	$\begin{aligned} &\alpha(\mathrm{N}) = 5.08 \times 10^{-6} \ 7; \ \alpha(\mathrm{O}) = 7.88 \times 10^{-7} \ 11; \ \alpha(\mathrm{P}) = 5.34 \times 10^{-8} \ 7; \\ &\alpha(\mathrm{IPF}) = 3.45 \times 10^{-6} \ 5 \\ &\alpha(\mathrm{K}) = 0.0024 \ 6; \ \alpha(\mathrm{L}) = 0.00033 \ 7; \ \alpha(\mathrm{M}) = 7.1 \times 10^{-5} \ 15 \\ &\alpha(\mathrm{N}) = 1.64 \times 10^{-5} \ 35; \ \alpha(\mathrm{O}) = 2.5 \times 10^{-6} \ 6; \ \alpha(\mathrm{P}) = 1.7 \times 10^{-7} \ 4; \end{aligned}$
1128.77 <i>13</i>	8.1 6	1251.82	3-	123.07 2+	E1	9.14×10 ⁻⁴ 13	$\alpha(\text{IPF})=7.4\times10^{-7} 4$ %I γ =1.58 28 $\alpha(\text{K})=0.000780 \ 11; \ \alpha(\text{L})=0.0001013 \ 14; \ \alpha(\text{M})=2.175\times10^{-5} \ 30$ $\alpha(\text{N})=4.99\times10^{-6} \ 7; \ \alpha(\text{O})=7.75\times10^{-7} \ 11; \ \alpha(\text{P})=5.25\times10^{-8} \ 7;$
1140.75 8	7.1 6	1263.72	4+	123.07 2+	E2	2.10×10 ⁻³ 3	$\alpha(\text{IPF})=4.81\times10^{-6} 7$ %Iy=1.39 25 $\alpha(\text{K})=0.001779 25; \ \alpha(\text{L})=0.0002514 35; \ \alpha(\text{M})=5.45\times10^{-5} 8$ $\alpha(\text{N})=1.251\times10^{-5} 18; \ \alpha(\text{O})=1.923\times10^{-6} 27; \ \alpha(\text{P})=1.233\times10^{-7} 17;$
1149.66 <i>13</i>	5.0 8	2277.11	3	1127.76 3+	[E1]	8.88×10 ⁻⁴ 12	$\alpha(\text{IPF})=1.253\times10^{-5}\ 18$ %I γ =0.98 22 $\alpha(\text{K})=0.000754\ 11;\ \alpha(\text{L})=9.80\times10^{-5}\ 14;\ \alpha(\text{M})=2.102\times10^{-5}\ 29$ $\alpha(\text{N})=4.83\times10^{-6}\ 7;\ \alpha(\text{O})=7.49\times10^{-7}\ 10;\ \alpha(\text{P})=5.08\times10^{-8}\ 7;$ $\alpha(\text{IPF})=8\ 50\times10^{-6}\ 12$
1152.42 9	11.1 <i>15</i>	2416.16	4+	1263.72 4+	[M1,E2]	0.0027 6	$\alpha(\text{IPF})=8.39\times10^{-12}$ %I $\gamma=2.2.5$ $\alpha(\text{K})=0.0023.5$; $\alpha(\text{L})=0.00031.7$; $\alpha(\text{M})=6.7\times10^{-5}.14$ $\alpha(\text{N})=1.54\times10^{-5}.32$; $\alpha(\text{O})=2.4\times10^{-6}.5$; $\alpha(\text{P})=1.6\times10^{-7}.4$; $\alpha(\text{IPF})=1.87\times10^{-6}.10$
1177.71 <i>19</i>	1.5 2	2305.66	3+	1127.76 3+	[M1,E2]	0.0025 6	
1189.10 <i>12</i> 1208.06 <i>14</i>	3.1 <i>10</i> 2.6 <i>2</i>	1560.10 2336.02	(4 ⁻) 3 ⁻	371.00 4 ⁺ 1127.76 3 ⁺	[E1]	8.32×10 ⁻⁴ 12	%Iγ=0.61 22 %Iγ=0.51 9

From ENSDF

				¹⁵⁴ Tb ε + β ⁺	decay (9.973	3 h) 1975	So03,1972Vy04,1	973La20 (continued)
						$\gamma(^{154}\text{Gd})$	(continued)	
$E_{\gamma}^{\dagger\ddagger}$	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	δ ^{&}	α^{a}	Comments
^x 1214.3 4	0.54 7							$\begin{split} &\alpha(\mathrm{K}){=}0.000690 \ 10; \ \alpha(\mathrm{L}){=}8.95{\times}10^{-5} \ 13; \ \alpha(\mathrm{M}){=}1.920{\times}10^{-5} \ 27 \\ &\alpha(\mathrm{N}){=}4.41{\times}10^{-6} \ 6; \ \alpha(\mathrm{O}){=}6.84{\times}10^{-7} \ 10; \ \alpha(\mathrm{P}){=}4.65{\times}10^{-8} \ 7; \\ &\alpha(\mathrm{IPF}){=}2.81{\times}10^{-5} \ 4 \\ &\%\mathrm{I}\gamma{=}0.106 \ 22 \end{split}$
1229.42 20	3.0 5	2277.11	3	1047.58 4+	[E1]		8.17×10 ⁻⁴ 11	%Iγ=0.59 14 α (K)=0.000669 9; α (L)=8.67×10 ⁻⁵ 12; α (M)=1.860×10 ⁻⁵ 26 α (N)=4.27×10 ⁻⁶ 6; α (O)=6.63×10 ⁻⁷ 9; α (P)=4.51×10 ⁻⁸ 6; α (PE)=3.77×10 ⁻⁵ 5
1234.0 9	0.6 3	2230.04	2+,3,4+	996.31 2+	[M1,E2]		0.0023 5	
^x 1237.5 8 1241.23 <i>16</i>	0.8 <i>4</i> 1.4 2	1241.19	1-	0.0 0+	E1		8.10×10 ⁻⁴ 11	%I γ =0.16 8 %I γ =0.27 6 α (K)=0.000658 9; α (L)=8.52×10 ⁻⁵ 12; α (M)=1.828×10 ⁻⁵ 26 α (N)=4.20×10 ⁻⁶ 6; α (O)=6.52×10 ⁻⁷ 9; α (P)=4.44×10 ⁻⁸ 6;
1246.2 6	1.4 <i>3</i>	1617.2	3-	371.00 4+	E1		8.07×10 ⁻⁴ 11	$\alpha(\text{IFP})=4.32\times10^{-6} \text{ o}$ %I γ =0.27 7 $\alpha(\text{K})$ =0.000653 9; $\alpha(\text{L})$ =8.46×10 ⁻⁵ 12; $\alpha(\text{M})$ =1.815×10 ⁻⁵ 25 $\alpha(\text{N})$ =4.17×10 ⁻⁶ 6; $\alpha(\text{O})$ =6.47×10 ⁻⁷ 9; $\alpha(\text{P})$ =4.40×10 ⁻⁸ 6; $\alpha(\text{IPF})$ =4.55×10 ⁻⁵ 7
1258.17 14	8.3 6	2305.66	3+	1047.58 4+	[M1,E2]		0.0022 5	%I γ =1.62 29 α (K)=0.0019 4; α (L)=0.00025 5; α (M)=5.5×10 ⁻⁵ 11 α (N)=1.26×10 ⁻⁵ 25; α (O)=2.0×10 ⁻⁶ 4; α (P)=1.32×10 ⁻⁷ 31; α (IPF)=1.38×10 ⁻⁵ 7
1265.0 <i>4</i> 1274.46 <i>5</i>	0.4 2 4.0 7	2080.81 1397.53	4+ 2-	815.49 2 ⁺ 123.07 2 ⁺	E1+M2	+0.035 9	7.97×10 ⁻⁴ 12	$%1\gamma$ =0.08 4 %Iγ=0.78 19 α (K)=0.000634 9; α (L)=8.21×10 ⁻⁵ 12; α (M)=1.760×10 ⁻⁵ 27 α (N)=4.04×10 ⁻⁶ 6; α (O)=6.28×10 ⁻⁷ 9; α (P)=4.28×10 ⁻⁸ 6; α (IPF)=5.91×10 ⁻⁵ 8 δ: From ¹⁵⁴ Eu β ⁻ decay
1274.7	1.6 6	1645.81	4+	371.00 4+	[E2+M1]		0.0021 4	% Iy=0.31 <i>I3</i> $\alpha(K)=0.0018 4; \alpha(L)=0.00025 5; \alpha(M)=5.3\times10^{-5} 10$ $\alpha(N)=1.23\times10^{-5} 24; \alpha(O)=1.9\times10^{-6} 4; \alpha(P)=1.29\times10^{-7} 30;$ $\alpha(IPF)=1.65\times10^{-5} 9$
1280.8 5	0.9 5	2277.11	3	996.31 2+	[E1]		7.87×10 ⁻⁴ 11	%Iγ=0.18 <i>10</i>

Т

				¹⁵⁴ Tb ε + β ⁺ d	ecay (9.973 h)	1975So03,19	72Vy04,1973La20 (continued)
					- -	γ(¹⁵⁴ Gd) (continu	ed)
$E_{\gamma}^{\dagger \ddagger}$	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	α^{a}	Comments
1288.39 ^c 14	7.1 ^c 6	2336.02	3-	1047.58 4+	[E1]	7.84×10 ⁻⁴ 11	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000623 \ 9; \ \alpha(\mathrm{L}) = 8.05 \times 10^{-5} \ 11; \ \alpha(\mathrm{M}) = 1.727 \times 10^{-5} \ 24 \\ &\alpha(\mathrm{N}) = 3.97 \times 10^{-6} \ 6; \ \alpha(\mathrm{O}) = 6.16 \times 10^{-7} \ 9; \ \alpha(\mathrm{P}) = 4.20 \times 10^{-8} \ 6; \\ &\alpha(\mathrm{IPF}) = 6.23 \times 10^{-5} \ 9 \\ &\% \mathrm{Iy} = 1.39 \ 25 \\ &\alpha(\mathrm{K}) = 0.000616 \ 9; \ \alpha(\mathrm{L}) = 7.97 \times 10^{-5} \ 11; \ \alpha(\mathrm{M}) = 1.709 \times 10^{-5} \ 24 \\ &\alpha(\mathrm{N}) = 3.93 \times 10^{-6} \ 5; \ \alpha(\mathrm{O}) = 6.10 \times 10^{-7} \ 9; \ \alpha(\mathrm{P}) = 4.16 \times 10^{-8} \ 6; \end{aligned}$
1288.39 ^c 14	7.1 ^c 6	2416.16	4+	1127.76 3+	[M1,E2]	0.0021 4	$\alpha(\text{IPF})=6.62 \times 10^{-5} \text{ g}$ %I γ =1.39 25
1309.05 22	0.6 1	2305.66	3+	996.31 2+	[M1,E2]	0.0020 4	$\begin{aligned} \alpha(\mathbf{K}) = 0.0018 \ 4; \ \alpha(\mathbf{L}) = 0.00024 \ 5; \ \alpha(\mathbf{M}) = 5.2 \times 10^{-5} \ 10 \\ \alpha(\mathbf{N}) = 1.20 \times 10^{-5} \ 23; \ \alpha(\mathbf{O}) = 1.9 \times 10^{-6} \ 4; \ \alpha(\mathbf{P}) = 1.26 \times 10^{-7} \ 29; \\ \alpha(\mathbf{IPF}) = 1.89 \times 10^{-5} \ 10 \\ \% \mathbf{I}\gamma = 0.117 \ 27 \end{aligned}$
							$\begin{aligned} &\alpha(\mathbf{K}) = 0.00171 \ 35; \ \alpha(\mathbf{L}) = 0.00023 \ 4; \ \alpha(\mathbf{M}) = 5.0 \times 10^{-5} \ 10 \\ &\alpha(\mathbf{N}) = 1.16 \times 10^{-5} \ 22; \ \alpha(\mathbf{O}) = 1.8 \times 10^{-6} \ 4; \ \alpha(\mathbf{P}) = 1.21 \times 10^{-7} \ 27; \\ &\alpha(\mathbf{IPF}) = 2.29 \times 10^{-5} \ 13 \end{aligned}$
1330.3 [#] 2	0.49 [@]	1701.30	4 ⁺	371.00 4+			%Iγ=0.096 <i>15</i>
1330.8 6	0.3 1	3517.10	(3+,4+)	2185.98 4	[EI]	7.6/×10 ⁻⁴ 11	${}^{\circ}_{\alpha}_{1\gamma=0.059} 22$ $\alpha(K)=0.000582 \ 8; \ \alpha(L)=7.52\times10^{-5} \ 11; \ \alpha(M)=1.613\times10^{-5} \ 23$ $\alpha(N)=3.71\times10^{-6} \ 5; \ \alpha(O)=5.76\times10^{-7} \ 8; \ \alpha(P)=3.93\times10^{-8} \ 6; \ \alpha(PF)=8.94\times10^{-5} \ 13$
1339.53 23	1.5 2	2336.02	3-	996.31 2+	[E1]	7.65×10 ⁻⁴ 11	%Iy=0.29 6
							$\alpha(K)=0.000576 \ 8; \ \alpha(L)=7.44\times10^{-5} \ 10; \ \alpha(M)=1.594\times10^{-5} \ 22$ $\alpha(N)=3.66\times10^{-6} \ 5; \ \alpha(O)=5.69\times10^{-7} \ 8; \ \alpha(P)=3.88\times10^{-8} \ 5; $ $\alpha(IPF)=9.47\times10^{-5} \ 13$
^x 1346.0 <i>6</i>	0.2 1						%Iy=0.039 21
$x^{1360.3} 6$	$0.2 \ 1$ 0 4 2						$\% I\gamma = 0.039 \ 2I$ %Iv=0.08 4
^x 1377.6 ^d 9	0.31 16						%Iy=0.061 <i>33</i>
^x 1387.76 22	1.5 1						%Iy=0.29 5
(1391.2 3)		2654.62	2+	1263.72 4+	[E2]	1.46×10 ⁻³ 2	$\alpha(K)=0.001206 \ 17; \ \alpha(L)=0.0001657 \ 23; \ \alpha(M)=3.58\times10^{-5} \ 5$ $\alpha(N)=8.22\times10^{-6} \ 12; \ \alpha(O)=1.271\times10^{-6} \ 18; \ \alpha(P)=8.37\times10^{-8} \ 12; \ \alpha(IPF)=4.10\times10^{-5} \ 6$
1399.2 <i>3</i>	0.3 1	1770.09	5+	371.00 4+	[M1,E2]	0.00178 34	%Iy=0.059 22 $\alpha(K)=0.00148$ 29; $\alpha(L)=0.00020$ 4; $\alpha(M)=4.3\times10^{-5}$ 8 $\alpha(N)=9.9\times10^{-6}$ 18; $\alpha(O)=1.55\times10^{-6}$ 29; $\alpha(P)=1.05\times10^{-7}$ 22; $\alpha(IPF)=4.58\times10^{-5}$ 27
(1408.34 20)		1531.28	2+	123.07 2+	E0,M1,E2	0.00176 33	$\alpha(K)=0.00146\ 28;\ \alpha(L)=0.00020\ 4;\ \alpha(M)=4.3\times10^{-5}\ 8$

From ENSDF

 $^{154}_{64}\mathrm{Gd}_{90}$ -12

 $^{154}_{64}\mathrm{Gd}_{90}$ -12

				¹⁵⁴ Tb ε + β ⁺	decay (9.97	3 h) 1975So03	3,1972Vy04,1973La20 (continued)
						γ ⁽¹⁵⁴ Gd) (con	tinued)
${\rm E_{\gamma}}^{\dagger \ddagger}$	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	α^{a}	Comments
							α (N)=9.8×10 ⁻⁶ 18; α (O)=1.52×10 ⁻⁶ 29; α (P)=1.03×10 ⁻⁷ 22; α (IPF)=4.85×10 ⁻⁵ 29 α : From the adopted values. The listed subshell coefficients do not include a contribution from the E0 component.
1419.4 7	3.7 7	2416.16	4+	996.31 2+	[E2]	1.41×10 ⁻³ 2	%I γ =0.72 <i>18</i> α (K)=0.001160 <i>16</i> ; α (L)=0.0001591 <i>22</i> ; α (M)=3.44×10 ⁻⁵ <i>5</i> α (N)=7.89×10 ⁻⁶ <i>11</i> ; α (O)=1.220×10 ⁻⁶ <i>17</i> ; α (P)=8.05×10 ⁻⁸ <i>11</i> ; α (IPF)=4.89×10 ⁻⁵ <i>7</i>
1451.1 <i>3</i> 1490.37 22	0.70 8 5.3 4	2266.10 2305.66	2 ⁺ ,3,4 ⁺ 3 ⁺	815.49 2 ⁺ 815.49 2 ⁺	[M1,E2]	0.00159 28	%I γ =0.137 27 %I γ =1.04 18 α (K)=0.00129 24; α (L)=0.000174 30; α (M)=3.8×10 ⁻⁵ 7 α (N)=8.7×10 ⁻⁶ 15; α (O)=1.35×10 ⁻⁶ 24; α (P)=9.2×10 ⁻⁸ 18; α (IPF)=7 5×10 ⁻⁵ 5
1494.1 <i>3</i>	1.4 2	1617.2	3-	123.07 2+	E1	7.56×10 ⁻⁴ 11	
1515.8 <i>3</i> 1520.69 <i>19</i>	1.6 2 2.9 2	2336.02	3-	815.49 2+	[E1]	7.59×10 ⁻⁴ 11	$%1\gamma = 0.31$ 6 $%1\gamma = 0.57$ 10 $\alpha(K) = 0.000464$ 6; $\alpha(L) = 5.96 \times 10^{-5}$ 8; $\alpha(M) = 1.278 \times 10^{-5}$ 18 $\alpha(N) = 2.94 \times 10^{-6}$ 4; $\alpha(O) = 4.57 \times 10^{-7}$ 6; $\alpha(P) = 3.13 \times 10^{-8}$ 4; $\alpha(PF) = 0.0002195$ 31
1522.8	1.7 8	1645.81	4+	123.07 2+	[E2]	1.27×10 ⁻³ 2	%Iy=0.33 <i>17</i> $\alpha(K)=0.001016 \ 14; \ \alpha(L)=0.0001381 \ 19; \ \alpha(M)=2.98\times10^{-5} \ 4$ $\alpha(N)=6.85\times10^{-6} \ 10; \ \alpha(O)=1.060\times10^{-6} \ 15; \ \alpha(P)=7.05\times10^{-8} \ 10; \ \alpha(IPF)=8.20\times10^{-5} \ 11$
(1527.2 4)		2654.62	2+	1127.76 3+	[M1,E2]	0.00153 26	$\alpha(K) = 0.00123 \ 22; \ \alpha(L) = 0.000165 \ 28; \ \alpha(M) = 3.6 \times 10^{-5} \ 6$ $\alpha(N) = 8.2 \times 10^{-6} \ 14; \ \alpha(O) = 1.28 \times 10^{-6} \ 22; \ \alpha(P) = 8.7 \times 10^{-8} \ 17;$ $\alpha(IPF) = 8.9 \times 10^{-5} \ 6$
1553.0 4	1.2 2	2368.76	2+,3,4+	815.49 2+			%Iy=0.23 5
1578.2 [#] 2	0.06 [@]	1701.30	4+	123.07 2+	[E2]	1.22×10 ⁻³ 2	%I γ =0.0117 19 α (K)=0.000950 13; α (L)=0.0001286 18; α (M)=2.78×10 ⁻⁵ 4 α (N)=6.38×10 ⁻⁶ 9; α (O)=9.88×10 ⁻⁷ 14; α (P)=6.59×10 ⁻⁸ 9; α (IPF)=0.0001020 14
(1607 1)		2654.62	2+	1047.58 4+	[E2]	$1.19 \times 10^{-3} 2$	$\alpha(K)=0.000918 \ I3; \ \alpha(L)=0.0001241 \ I7; \ \alpha(M)=2.68\times 10^{-5} \ 4$

L.

				¹⁵⁴ Tb ε + β	+ decay (9.97	(3 h) 1975So0	3,1972Vy04,1973La20 (continued)
						$\gamma(^{154}\text{Gd})$ (con	tinued)
${\rm E}_{\gamma}^{\dagger \ddagger}$	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.&	α^{a}	Comments
^x 1618.9 <i>3</i> ^x 1651.8 <i>4</i>	2.0 2 0.6 2	1706 44	2-	122.07.2+	1711	7.02×10 ⁻⁴ 11	$ \begin{array}{l} \alpha(\mathrm{N}) = 6.15 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 9.53 \times 10^{-7} \ 13; \ \alpha(\mathrm{P}) = 6.37 \times 10^{-8} \ 9; \\ \alpha(\mathrm{IPF}) = 0.0001130 \ 16 \\ \% \mathrm{Iy} = 0.39 \ 7 \\ \% \mathrm{Iy} = 0.12 \ 4 \\ \% \mathrm{Iy} = 0.45 \ 8 \end{array} $
1673.15 20	2.3 2	1796.44	3	123.07 2*	[61]	7.95×10 * 11	α (Y)=0.45 8 α (K)=0.000395 6; α (L)=5.07×10 ⁻⁵ 7; α (M)=1.086×10 ⁻⁵ 15 α (N)=2.496×10 ⁻⁶ 35; α (O)=3.88×10 ⁻⁷ 5; α (P)=2.67×10 ⁻⁸ 4; α (IPF)=0.000333 5
^x 1715 <i>I</i> ^x 1721 2	$0.2 \ 1$ 0 7 4						$\%_{1\gamma=0.039} 2I$ $\%_{1\gamma=0.14.8}$
1814.9 3	0.7 2	2185.98	4-	371.00 4+	[E1]	8.41×10 ⁻⁴ 12	%Iy=0.14 4
							$\alpha(K)=0.000346\ 5;\ \alpha(L)=4.43\times10^{-5}\ 6;\ \alpha(M)=9.48\times10^{-6}\ 13$ $\alpha(N)=2.179\times10^{-6}\ 31;\ \alpha(O)=3.39\times10^{-7}\ 5;\ \alpha(P)=2.338\times10^{-8}\ 33;$ $\alpha(IPF)=0.000439\ 6$
1858.4 <i>4</i>	1.1 <i>1</i>	2230.04	2+,3,4+	371.00 4+	[E2]	1.04×10 ⁻³ 2	%I γ =0.22 4 α (K)=0.000701 10; α (L)=9.35×10 ⁻⁵ 13; α (M)=2.014×10 ⁻⁵ 28 α (N)=4.63×10 ⁻⁶ 6; α (O)=7.19×10 ⁻⁷ 10; α (P)=4.86×10 ⁻⁸ 7; α (IPF)=0.0002211 31
^x 1887 <i>1</i>	0.2 I	2266-10	2+ 2 4+	271.00 4+			%Iy=0.039 21
1894.7 5	0.85 12	2200.10	$2^{+}, 5, 4^{+}$ 1 2 ⁺	$123.07 2^+$			$\%1\gamma = 0.100\ 5.5$ % $I_{\nu} = 0.068\ 33$
1905.0 12	0.8 1	2021.0	3	371.00 4+	[E1]	8.78×10 ⁻⁴ 12	%Iy=0.156 32
							α (K)=0.000320 4; α (L)=4.09×10 ⁻⁵ 6; α (M)=8.75×10 ⁻⁶ 12 α (N)=2.012×10 ⁻⁶ 28; α (O)=3.13×10 ⁻⁷ 4; α (P)=2.162×10 ⁻⁸ 30; α (PE)=0.000506 7
^x 1931.0 5	0.6 1						%Iy=0.117 27
1934.71 <i>14</i>	3.7 3	2305.66	3+	371.00 4+	[M1,E2]	0.00115 <i>13</i>	% $I_{\gamma}=0.72 \ I3$ $\alpha(K)=0.00075 \ I0; \ \alpha(L)=9.9\times10^{-5} \ I3; \ \alpha(M)=2.14\times10^{-5} \ 28$ $\alpha(N)=4.9\times10^{-6} \ 6; \ \alpha(O)=7.7\times10^{-7} \ I0; \ \alpha(P)=5.3\times10^{-8} \ 8;$
^x 1949 <i>1</i>	0.2 1						$\alpha(IFF) = 0.00027519$ %I $\gamma = 0.03921$
1965.03 7	9.9 7	2336.02	3-	371.00 4+	[E1]	9.03×10 ⁻⁴ 13	%Iy=1.94 34
					-		α (K)=0.000304 4; α (L)=3.89×10 ⁻⁵ 5; α (M)=8.32×10 ⁻⁶ 12 α (N)=1.913×10 ⁻⁶ 27; α (O)=2.98×10 ⁻⁷ 4; α (P)=2.058×10 ⁻⁸ 29; α (IPF)=0.000550 8
(1974.3)		2654.62	2+	680.64 0+	[E2]	1.01×10 ⁻³ 1	α (K)=0.000627 9; α (L)=8.33×10 ⁻⁵ 12; α (M)=1.794×10 ⁻⁵ 25 α (N)=4.12×10 ⁻⁶ 6; α (O)=6.41×10 ⁻⁷ 9; α (P)=4.35×10 ⁻⁸ 6; α (IPF)=0.000275 4

 $^{154}_{64}\mathrm{Gd}_{90}$ -14

From ENSDF

 $^{154}_{64}\mathrm{Gd}_{90}$ -14

				154 Tb ε + β^+	decay (9.97	3 h) 1975So03	3,1972Vy04,1973La20 (continued)
						$\gamma(^{154}\text{Gd})$ (con	tinued)
$E_{\gamma}^{\dagger \ddagger}$	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	α^{a}	Comments
1997.6	1.9 5	2368.76	$2^+, 3, 4^+$	371.00 4+			%Iy=0.37 11
^x 2014.9 7	0.3 1						%Iγ=0.059 22
2024.9 3	1.0 1	2024.8	1,2+	0.0 0+			%Iγ=0.20 <i>4</i>
2035.5 4	0.2 1	2405.92	2+	371.00 4+	[E2]	9.97×10^{-4} 14	%Iγ=0.039 21
							$\alpha(K)=0.000593 \ 8; \ \alpha(L)=7.86 \times 10^{-5} \ 11; \ \alpha(M)=1.692 \times 10^{-5} \ 24$
							$\alpha(N)=3.89\times10^{-6}$ 5; $\alpha(O)=6.05\times10^{-7}$ 8; $\alpha(P)=4.11\times10^{-6}$ 6;
x2054 2 4	0.45.6						α (IPF)=0.000304 4 % I ₂ (-0.088, 18
2034.2 4	0.45 0	3517 10	$(3^+ 4^+)$	1/132 35 5+	[E2]	0.01×10^{-4} 14	$\frac{1}{2}$
2004.7 5	0.05 0	5517.10	(5,4)	1452.55 5	[[]2]	9.91×10 14	$\alpha(K) = 0.00568 \ 8^{\circ} \alpha(L) = 7.52 \times 10^{-5} \ 11^{\circ} \alpha(M) = 1.618 \times 10^{-5} \ 23$
							$\alpha(\mathbf{N}) = 0.0000000000000000000000000000000000$
							α (IPF)=0.000327 5
^x 2101.6 7	0.2 1						%Iγ=0.039 21
2106.9	0.8 1	2230.04	$2^+, 3, 4^+$	123.07 2+	[M1,E2]	0.00110 11	%Iγ=0.156 <i>32</i>
							$\alpha(K)=0.00063$ 7; $\alpha(L)=8.3\times10^{-5}$ 9; $\alpha(M)=1.79\times10^{-5}$ 20
							$\alpha(N)=4.1\times10^{-6} 5; \alpha(O)=6.4\times10^{-7} 7; \alpha(P)=4.4\times10^{-8} 6;$
ratacac	0.0.1						α (IPF)=0.000363 26
*2126.3.6	0.2 I	2266 10	$2^+ 2 4^+$	122.07.2+			$\%1\gamma = 0.039\ 21$
2142.9 3 2152 91 15	1.1 <i>I</i> 5 1 2	2200.10	2, 3,4	$123.07 2^{+}$ $122.07 2^{+}$	[E]1]	0.87×10^{-4} 14	$\%1\gamma = 0.22.4$
2133.01 13	5.1 5	2277.11	3	125.07 2		9.07×10 14	$\gamma(V) = 1.0017$ $\gamma(V) = 0.000263 4$; $\gamma(U) = 2.35 \times 10^{-5} 5$; $\gamma(M) = 7.18 \times 10^{-6} 10$
							$\alpha(\mathbf{N}) = 1.650 \times 10^{-6} 23; \ \alpha(\mathbf{O}) = 2.57 \times 10^{-7} 4; \ \alpha(\mathbf{P}) = 1.780 \times 10^{-8} 25;$
							$\alpha(\text{IPF})=0.000682 \ 10$
2182.6 5	0.9 2	2305.66	3+	123.07 2+	[M1,E2]	0.00108 10	%Iy=0.18 5
							$\alpha(K)=0.00058\ 6;\ \alpha(L)=7.7\times10^{-5}\ 8;\ \alpha(M)=1.66\times10^{-5}\ 18$
							$\alpha(N)=3.8\times10^{-6} 4; \ \alpha(O)=6.0\times10^{-7} 7; \ \alpha(P)=4.1\times10^{-8} 5;$
							α (IPF)=0.000402 28
2212.92 15	4.2 3	2336.02	3-	123.07 2+	[E1]	1.01×10^{-3} I	$\%1\gamma = 0.82$ 14
							$\alpha(\mathbf{K}) = 0.0002522 35; \ \alpha(\mathbf{L}) = 3.21 \times 10^{-7} 24; \ \alpha(\mathbf{M}) = 6.8 \times 10^{-7} 10^{-8} 24$
							$\alpha(N)=1.580\times10^{\circ}$ 22; $\alpha(O)=2.462\times10^{\circ}$ 34; $\alpha(P)=1.706\times10^{\circ}$ 24; $\alpha(P)=0.000721$ 10
2245 7 2	232	2368 76	$2^+ 3 4^+$	123.07 2+			%Iv=0.45.8
2251.8 7	0.4 2	3517.10	$(3^+, 4^+)$	$1263.72 4^+$	[M1,E2]	0.00108 9	$\% I\gamma = 0.08 4$
							$\alpha(K)=0.00055\ 5;\ \alpha(L)=7.2\times10^{-5}\ 7;\ \alpha(M)=1.56\times10^{-5}\ 16$
							$\alpha(N)=3.6\times10^{-6} 4; \ \alpha(O)=5.6\times10^{-7} 6; \ \alpha(P)=3.9\times10^{-8} 4;$
							α (IPF)=0.000437 <i>31</i>
2282.8 <i>1</i>	1.1 1	2405.92	2+	123.07 2+	[M1,E2]	0.00108 9	%Iy=0.22 4
							$\alpha(K)=0.00053 5; \alpha(L)=7.0\times10^{-5} 7; \alpha(M)=1.51\times10^{-5} 15$

 $^{154}_{64}{
m Gd}_{90}$ -15

I.

				¹³⁴ Τb ε	$+\beta^+$ de	cay (9.9	73 h) 1975S o	03,1972Vy04,1973La20 (continued)
							$\gamma(^{154}\text{Gd})$ (c	ontinued)
$\mathrm{E}_{\gamma}^{\dagger\ddagger}$	I_{γ}^{b}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f} .	J_f^{π} N	Iult. <mark>&</mark>	α^{a}	Comments
								α (N)=3.48×10 ⁻⁶ 35; α (O)=5.4×10 ⁻⁷ 5; α (P)=3.7×10 ⁻⁸ 4; α (IPF)=0.000453 32
x2295.9 3	1.6 <i>1</i>							%Iy=0.31 5
*2358.3 3 2372 4 4	1.0 1	2/05 06	1.2+	123.07	2+			$\%_{1\gamma=0.204}$
2389.5 2	1.0 <i>I</i>	3517.10	$(3^+, 4^+)$	1127.76	2 3 ⁺ [N	A1,E2]	0.00108 9	%Iy=0.151 25 %Iy=0.20 4
			(-))		- L	, 1		$\alpha(K)=0.00049 \ 4; \ \alpha(L)=6.4\times10^{-5} \ 6; \ \alpha(M)=1.38\times10^{-5} \ 12$
								$\alpha(N)=3.17\times10^{-6}\ 29;\ \alpha(O)=4.9\times10^{-7}\ 5;\ \alpha(P)=3.42\times10^{-8}\ 34;$
								α (IPF)=0.00051 4
^x 2411.1 4	0.5 2	2550.2	2+ 2 4+	1107.76	2+			%Iy=0.10 4
2422.2 3 x2473 1	0.155	3550.2	2, 3,4	1127.76 .	3			$\%1\gamma=0.029$ 11 % $I_{2}=0.059$ 22
2496.3 8	0.5 2	2495.96	1.2^{+}	0.0	0^{+}			%Iy=0.03922 %Iy=0.104
2520.8 10	0.10 5	3517.10	$(3^+, 4^+)$	996.31	2+ [N	/1,E2]	0.00108 8	%Iy=0.020 10
								α (K)=0.000437 33; α (L)=5.7×10 ⁻⁵ 5; α (M)=1.23×10 ⁻⁵ 10
								$\alpha(N)=2.84\times10^{-6}\ 23;\ \alpha(O)=4.4\times10^{-7}\ 4;\ \alpha(P)=3.07\times10^{-8}\ 27;$
X0505 1 7	0.2.1							$\alpha(\text{IPF}) = 0.00057 \ 4$
2525.17	0.2 I 0 11 5	2654 62	2+	123.07	2 ⁺ IN	/1 F21	0.00109.8	$\%_{1} = 0.039 21$ % $I_{2} = 0.022 10$
2352.57	0.11 5	2031.02	2	125.07	2 [N	11,02]	0.00109 0	$\alpha(K) = 0.000433 \ 32; \ \alpha(L) = 5.7 \times 10^{-5} \ 4; \ \alpha(M) = 1.22 \times 10^{-5} \ 10$
								$\alpha(N)=2.81\times10^{-6}\ 22;\ \alpha(O)=4.4\times10^{-7}\ 4;\ \alpha(P)=3.04\times10^{-8}\ 27;$
								α (IPF)=0.00058 4
^x 2540 1	0.09 4	22/2/	(2+)	015 40	o+ D	(1 50)	0.00100.0	%Iy=0.018 8
2546.9 8	0.14 7	3363.6	(2^{+})	815.49	2* [N	AI,E2]	0.00109 8	$\% 1\gamma = 0.027/14$
								$\alpha(\mathbf{K}) = 0.000428 \ 51; \ \alpha(\mathbf{L}) = 5.0 \times 10^{-7} \ 4; \ \alpha(\mathbf{M}) = 1.21 \times 10^{-9} \ 9$ $\alpha(\mathbf{N}) = 2.78 \times 10^{-6} \ 22; \ \alpha(\mathbf{O}) = 4.34 \times 10^{-7} \ 35; \ \alpha(\mathbf{D}) = 3.00 \times 10^{-8} \ 26;$
								$\alpha(\text{IPF})=0.00059\ 4$
2554.1 5	0.28 3	3550.2	2+,3,4+	996.31	2+			%Iy=0.055 <i>11</i>
x2559.6 4	0.73 5							%Iy=0.143 25
^x 2575.1 5	0.55 6							$\%1\gamma = 0.108\ 21$
^x 2630.5 8	0.25 0							$\%_{1} = 0.049 \ 14$ %Iv=0.049 \ 14
^x 2643 1	0.4 2							%Iy=0.08 4
^x 2652 1	0.4 2							%Iy=0.08 4
(2655.8 8)		2654.62	2^{+}	0.0	0 ⁺ [E	22]	1.03×10^{-3} 1	$\alpha(K)=0.0003695; \alpha(L)=4.81\times10^{-5}7; \alpha(M)=1.033\times10^{-5}14$
								$\alpha(N)=2.376\times10^{-6} 33; \ \alpha(O)=3.70\times10^{-7} 5; \ \alpha(P)=2.55\times10^{-8} 4;$
2692 4 5	0.22.2	2262 6	(2^{+})	600 64	0+ гт	201	1.02×10^{-3} 1	α (IPF)=0.000596 8
2083.4 3	0.32 3	3303.0	(2^{+})	080.04	U [E	22]	1.05×10 ° I	$\%_{1\gamma=0.005}$ 12 $\alpha(K) = 0.000362$ 5: $\alpha(L) = 4.72 \times 10^{-5}$ 7: $\alpha(M) = 1.014 \times 10^{-5}$ 14
								$\alpha(\mathbf{N}) = 2.31 \times 10^{-6} 33$; $\alpha(\mathbf{O}) = 3.63 \times 10^{-7} 5$; $\alpha(\mathbf{P}) = 2.506 \times 10^{-8} 35$:
								$u(1) = 2.501 \times 10^{-5}$, $u(0) = 5.55 \times 10^{-5}$, $u(1) = 2.500 \times 10$

 $^{154}_{64}\mathrm{Gd}_{90}$ -16

Т

γ ⁽¹⁵⁴ Gd) (continued)									
I_{γ}^{b}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	α^{a}	Comments		
	2934.3	1+	123.07	2+	[M1,E2]	0.00113 7	$\alpha(K)=0.000352 \ 19; \ \alpha(L)=4.60\times10^{-5} \ 27; \ \alpha(M)=9.9\times10^{-6} \ 6 \ \alpha(N)=2.28\times10^{-6} \ 14; \ \alpha(O)=3.55\times10^{-7} \ 22; \ \alpha(P)=2.47\times10^{-8} \ 16; \ \alpha(IPF)=0.00072 \ 5$		
0.10 3 0.02 1							%1y=0.020 7 %Iy=0.0039 21		
0.11 <i>3</i>	2934.3	1+	0.0	0+	[M1]	1.23×10 ⁻³ 2	% $I_{\gamma}=0.022\ 7$ $\alpha(K)=0.000338\ 5;\ \alpha(L)=4.44\times10^{-5}\ 6;\ \alpha(M)=9.54\times10^{-6}\ 13$ $\alpha(N)=2.196\times10^{-6}\ 31;\ \alpha(O)=3.43\times10^{-7}\ 5;\ \alpha(P)=2.394\times10^{-8}\ 34;$		
0.14 5							α(IPF)=0.000832 <i>12</i> %Iγ=0.027 <i>11</i>		

 $%I\gamma = 0.0187$

%Iy=0.018 10

7

 $\alpha(K)=0.000267 \ 8; \ \alpha(L)=3.48\times10^{-5} \ 12; \ \alpha(M)=7.47\times10^{-6} \ 26$

 $\alpha(N)=1.72\times10^{-6}$ 6; $\alpha(O)=2.68\times10^{-7}$ 10; $\alpha(P)=1.87\times10^{-8}$ 7; $\alpha(IPF)=0.00092$

¹⁵⁴Tb $\varepsilon + \beta^+$ decay (9.973 h) 1975So03,1972Vy04,1973La20 (continued)

3240.4 15 0.09 3 3363.6 (2^+) 123.07 2^+ [M1,E2] 0.00123 8

0.09 5

[†] From weighted average of values of 1972Vy04 and 1975So03. Values without uncertainties were computed from level energies by 1975So03.

[‡] Because of the more definitive isomer assignment only the unplaced γ 's of 1975So03 are given.

[#] From 2003Ku19. The uncertainties are nominal values (from a private communication from J.L. Wood, one of the authors of 2003Ku19).

[@] Computed by the evaluator from the relative B(E2) values in 2003Ku19, normalized to $I\gamma(983.7\gamma)=0.6$.

& Assignments and values are from ¹⁵⁴Gd adopted γ radiations and include the results of all types of experiments and all decay modes. See ¹⁵⁴Gd adopted γ radiations for other information including: (1) mixing ratios such as $\delta(M3/E2)$ and $\delta(M2/E1)$ where δ can be zero and is not included here; (2) comments on measurements for lines which are multiplets; and (3) identification of α values that are based on experimental values rather than theory.

^{*a*} Additional information 6.

 $E_{\gamma}^{\dagger\ddagger}$

(2811.4 8)

^x2839.2 15

x2921.4 15

2934.2 7

x2942.2 10

x3260.0 15

17

^b For absolute intensity per 100 decays, multiply by 0.196 33.

^c Multiply placed with undivided intensity.

^d Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁵⁴Tb ε+ $β^+$ decay (9.973 h) 1975So03,1972Vy04,1973La20

 $^{154}_{64}\rm{Gd}_{90}$

¹⁵⁴Tb ε + β ⁺ decay (9.973 h) 1975So03,1972Vy04,1973La20

¹⁵⁴₆₄Gd₉₀

¹⁵⁴Tb ε + β ⁺ decay (9.973 h) 1975So03,1972Vy04,1973La20

¹⁵⁴Tb ε + β ⁺ decay (9.973 h) 1975So03,1972Vy04,1973La20

21

¹⁵⁴Tb ε+β⁺ decay (9.973 h) 1975So03,1972Vy04,1973La20

Decay Scheme (continued)

¹⁵⁴Tb ε decay (9.973 h) 1975So03,1972Vy04,1973La20

 $^{154}_{64}\text{Gd}_{90}$