### <sup>154</sup>Tb ε+β<sup>+</sup> decay (22.7 h) 1975So03,1972Vy04,1973La20

|                 |         | History          |                        |
|-----------------|---------|------------------|------------------------|
| Туре            | Author  | Citation         | Literature Cutoff Date |
| Full Evaluation | N. Nica | NDS 200,2 (2025) | 22-Aug-2022            |

Parent: <sup>154</sup>Tb: E=0+y;  $J^{\pi}=7^-$ ;  $T_{1/2}=22.7$  h 5;  $Q(\varepsilon)=3550\ 50$ ;  $\%\varepsilon+\%\beta^+$  decay=98.2 6

<sup>154</sup>Tb-J<sup> $\pi$ </sup>: Additional information 1.

 $^{154}$ Tb-T<sub>1/2</sub>: Additional information 2.

<sup>154</sup>Tb-Q( $\varepsilon$ + $\beta$ <sup>+</sup>): Additional information 3.

<sup>154</sup>Tb-Q( $\varepsilon$ + $\beta$ <sup>+</sup>): From 2021Wa16.

<sup>154</sup>Tb-% $\varepsilon$ +% $\beta$ <sup>+</sup> decay: From  $\varepsilon$  decay branch of 1.8% 6 (1973La20).

#### Additional information 4.

Three <sup>154</sup>Tb isomers (21.5, 9.4, and 22.7 h) have been observed. The most complete decomposition of the  $\gamma$  data among these isomers is from 1975S003, so these data are used to place the  $\gamma$ 's.

A study of the <sup>154</sup>Tb isomers is reported as a part of the thesis which constitutes 2001KuZS. These data are not included here, since further analysis appears to be required.

#### <sup>154</sup>Gd Levels

Additional information 5.

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | E(level) <sup>†</sup>       | $J^{\pi \ddagger}$ | E(level) <sup>†</sup>         | $J^{\pi \ddagger}$ | E(level) <sup>†</sup>    | $J^{\pi \ddagger}$ |
|-----------------------|--------------------|-----------------------------|--------------------|-------------------------------|--------------------|--------------------------|--------------------|
| 0.0 <sup>#</sup>      | $0^+$              | 996.28 <mark>&amp;</mark> 4 | $2^{+}$            | 1365.8 <sup>@</sup> 6         | 6+                 | 1911.57 <sup>a</sup> 6   | 6+                 |
| 123.06 <sup>#</sup> 3 | $2^{+}$            | 1047.59 <sup>@</sup> 5      | 4+                 | 1432.39 <mark>&amp;</mark> 8  | 5+                 | 2137.51 <mark>b</mark> 6 | 7-                 |
| 371.00 <sup>#</sup> 4 | 4+                 | 1127.77 <sup>&amp;</sup> 5  | 3+                 | 1606.78 <sup>&amp;</sup> 13   | 6+                 | 2309.50 7                | (8-)               |
| 717.72 <sup>#</sup> 5 | 6+                 | 1144.52 <sup>#</sup> 8      | 8+                 | 1645.80 <sup><i>a</i></sup> 5 | $4^{+}$            | 2459.4 5                 | $6^+, 7, 8^+$      |
| 815.47 <sup>@</sup> 5 | $2^{+}$            | 1263.73 <sup>&amp;</sup> 5  | 4+                 | 1770.23 <sup><i>a</i></sup> 6 | 5+                 |                          |                    |

<sup>†</sup> Values are from least-squares fit to the  $\gamma$  energies.

<sup>‡</sup> From <sup>154</sup>Gd Adopted Levels.

<sup>#</sup> Band(A):  $K^{\pi}=0^+$  ground-state band.

<sup>@</sup> Band(B): First excited  $K^{\pi}=0^+$  band. Probable  $\beta^-$  vibrational band.

& Band(C):  $K^{\pi}=2^+ \gamma$ -vibrational band.

<sup>*a*</sup> Band(D):  $K^{\pi}=4^+$  band. Probable hexadecapole vibration.

<sup>b</sup> Band(E):  $K^{\pi}=7^{-}$  band. Configuration=( $\nu 3/2[651]$ )+( $\nu 11/2[505]$ ).

#### $\varepsilon, \beta^+$ radiations

| E(decay)               | E(level) | Log ft | $I(\varepsilon + \beta^+)^{\dagger \ddagger \# @}$ |
|------------------------|----------|--------|----------------------------------------------------|
| $(1.24 \times 10^3 5)$ | 2309.50  | 7.2    | 6.6 8                                              |
| $(1.41 \times 10^3 5)$ | 2137.51  | 6.2    | 85 7                                               |

<sup>†</sup> Values are from γ-transition-intensity balances. Due to the incompleteness of the decay scheme, values less than 2% are considered unreliable and are not given. For the same reason, uncertainties are not given for values less than 5%. All negative values are omitted. Several values that are incompatible with the J<sup>π</sup> values are also omitted; these are 2% 12 to 4<sup>+</sup> at 371 keV, 2.6% 4 to 2<sup>+</sup> at 815, 2.4% 7 to 4<sup>+</sup> at 1263, and 10.8% 12 to 4<sup>+</sup> at 1645.

<sup>±</sup> As a check of the normalization, it is noted that  $\Sigma I(\varepsilon + \beta^+)$  is 94% 10 for the values given, 125% 23 for all positive values computed. The most meaningful sum may be of the positive values to states with J $\geq$ 5; this sum is 97% 10.

<sup>#</sup> The total-absorption  $\gamma$  spectrum of 1980By03 indicates that for a <sup>154</sup>Tb source of unstated isomer content, the feeding is

primarily to levels near 2.0 MeV. This measured feeding appears compatible with any combination of the three <sup>154</sup>Tb isomers. <sup>(a)</sup> Absolute intensity per 100 decays.

## $\gamma(^{154}\text{Gd})$

I $\gamma$  normalization: Value is an average of that which gives 100%  $\varepsilon + \beta^+$  decay (0.186 *19*), that which gives 100% feeding of the g.s. (0.178 *32*), and that which gives 100% feeding of the 123 keV, 2<sup>+</sup> level (0.166 *15*). This normalization gives g.s. feeding of 99% *18*.

I $\gamma$  values are not given for several  $\gamma$ 's by 1975So03. These  $\gamma$ 's are known from other studies to deexcite levels observed in this decay, but for various reasons are not seen in this decay (1975So03).

| $E_{\gamma}^{\dagger \ddagger}$                 | $I_{\gamma}^{@}$               | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$ .   | $\int_{f}^{\pi}$ Mu | ılt. <sup>#</sup> | $\delta^{\#}$ | α <sup>&amp;</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------|--------------------------------|---------------|----------------------|-----------|---------------------|-------------------|---------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 123.07 3                                        | 250 45                         | 123.06        | 2+                   | 0.0 (     | ) <sup>+</sup> E2   |                   |               | 1.187              | %Iγ=43 8<br>$\alpha(K)=0.656$ 10; $\alpha(L)=0.411$ 6; $\alpha(M)=0.0963$ 14; $\alpha(N+)=0.0244$ 4<br>$\alpha(N)=0.0215$ 3; $\alpha(O)=0.00286$ 4; $\alpha(P)=3.36\times10^{-5}$ 5<br>I <sub>γ</sub> : This value gives I(γ+ce)(123)=550 100 units. A more precise value of<br>601 56 is obtained from the feeding of this level, with the reasonable                    |
| (124.4)                                         |                                | 1770.23       | 5+                   | 1645.80 4 | + [M1               | ,E2]              |               | 1.11 4             | assumption that there is no $\varepsilon + \beta^{+}$ feeding.<br>$\alpha(K)=0.77 \ 14; \ \alpha(L)=0.26 \ 13; \ \alpha(M)=0.06 \ 4; \ \alpha(N+)=0.015 \ 8$                                                                                                                                                                                                              |
| 141.33 <i>3</i>                                 | 42 4                           | 1911.57       | 6+                   | 1770.23 5 | 5+ E2+              | M1                | 7 +6-3        | 0.729              | $\alpha(N)=0.0147; \alpha(O)=0.00199; \alpha(P)=3.0\times10^{-178}$<br>%Iy=7.39<br>$\alpha(K)=0.44310; \alpha(L)=0.2216; \alpha(M)=0.051615; \alpha(N+)=0.01314$<br>$\alpha(N)=0.01164; \alpha(Q)=0.001554; \alpha(P)=2.37\times10^{-5}10$                                                                                                                                |
| 171.99 4                                        | 26.4 22                        | 2309.50       | (8 <sup>-</sup> )    | 2137.51   | 7- [M1              | +E2]              |               | 0.40 4             | $\alpha(N)=0.01164, \alpha(O)=0.001554, \alpha(I)=2.57\times 10^{-1}10^{-1}$<br>%Iy=4.6 5<br>$\alpha(K)=0.317; \alpha(L)=0.07523; \alpha(M)=0.0176; \alpha(N+)=0.004414$                                                                                                                                                                                                  |
| 225.94 3                                        | 155 12                         | 2137.51       | 7-                   | 1911.57 6 | 5+ E1               |                   |               | 0.0329             | $\alpha(N)=0.0058\ 15;\ \alpha(O)=0.00055\ 14;\ \alpha(P)=2.0\times10^{-7}\ 7$<br>%Iy=26.8 28<br>$\alpha(K)=0.0279\ 4;\ \alpha(L)=0.00393\ 6;\ \alpha(M)=0.000849\ 12;\ \alpha(N+)=0.000225\ 4$                                                                                                                                                                           |
| (232.10 4)                                      |                                | 1047.59       | 4+                   | 815.47 2  | 2+ E2               |                   |               | 0.1359             | $\alpha(N)=0.0001943; \alpha(O)=2.92\times10^{-5}4; \alpha(P)=1.732\times10^{-5}25$<br>$\alpha(K)=0.098614; \alpha(L)=0.02904; \alpha(M)=0.0066310; \alpha(N+)=0.00170824$<br>$\alpha(N)=0.00149421; \alpha(O)=0.0002083; \alpha(P)=5.86\times10^{-6}9$                                                                                                                   |
| 247.94 <i>3</i>                                 | 456 50                         | 371.00        | 4+                   | 123.06 2  | 2+ E2               |                   |               | 0.1098             | $\alpha(1)=0.00147421$ , $\alpha(0)=0.00020635$ , $\alpha(1)=0.000140457$<br>%Iy=79 10<br>$\alpha(K)=0.080912$ ; $\alpha(L)=0.02244$ ; $\alpha(M)=0.005138$ ; $\alpha(N+)=0.00132219$<br>$\alpha(N)=0.00115647$ ; $\alpha(O)=0.000161623$ ; $\alpha(D)=0.00132219$                                                                                                        |
| 265.83 6                                        | 22.5 23                        | 1911.57       | 6+                   | 1645.80 4 | + [E2]              | l                 |               | 0.0879             | $\alpha(N)=0.001136\ 17;\ \alpha(O)=0.0001616\ 23;\ \alpha(P)=4.87\times10^{-5}7$<br>% $I\gamma=3.9\ 5$<br>$\alpha(K)=0.0658\ 10;\ \alpha(L)=0.01723\ 25;\ \alpha(M)=0.00392\ 6;\ \alpha(N+)=0.001014\ 15$<br>$\alpha(N)=0.000886\ 13;\ \alpha(O)=0.0001246\ 18;\ \alpha(P)=4.02\times10^{-6}6$                                                                           |
| <sup>x</sup> 267.5 <i>3</i><br>304.75 <i>12</i> | 22.7 <i>23</i><br>8.2 <i>2</i> | 1911.57       | 6+                   | 1606.78 6 | 5+ E2               |                   |               | 0.0574             | $\alpha(\Lambda)=0.000000$ 15, $\alpha(\Lambda)=0.0001240$ 10, $\alpha(\Lambda)=4.02\times10^{-10}$ 0<br>%Iy=3.9 5<br>%Iy=1.42 10<br>$\alpha(K)=0.0440$ 7; $\alpha(L)=0.01043$ 15; $\alpha(M)=0.00236$ 4; $\alpha(N+)=0.000613$ 9                                                                                                                                         |
| (330.00 16)                                     |                                | 1047.59       | 4+                   | 717.72 6  | 6 <sup>+</sup> E2   |                   |               | 0.0451             | $\begin{aligned} \alpha(N) &= 0.000534 \ 8; \ \alpha(O) &= 7.59 \times 10^{-5} \ 11; \ \alpha(P) &= 2.76 \times 10^{-6} \ 4 \\ \alpha(K) &= 0.0350 \ 5; \ \alpha(L) &= 0.00786 \ 11; \ \alpha(M) &= 0.00177 \ 3; \ \alpha(N+) &= 0.000461 \ 7 \\ \alpha(N) &= 0.000401 \ 6; \ \alpha(O) &= 5.75 \times 10^{-5} \ 9; \ \alpha(P) &= 2.22 \times 10^{-6} \ 4 \end{aligned}$ |

 $\mathbf{b}$ 

|                                |                  |                        |                      | <sup>154</sup> <b>Τb</b> ε | $+\beta^+$ decay (22.7 | h) <b>1975S</b>           | 003,1972Vy0    | 4,1973La20 (continued)                                                                                                                                                                                                                                     |
|--------------------------------|------------------|------------------------|----------------------|----------------------------|------------------------|---------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                  |                        |                      |                            |                        | $\gamma(^{154}\text{Gd})$ | (continued)    |                                                                                                                                                                                                                                                            |
| $E_{\gamma}^{\dagger\ddagger}$ | $I_{\gamma}^{@}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f = J_f^{\pi}$          | Mult. <sup>#</sup>     | δ <b>#</b>                | α <b>&amp;</b> | Comments                                                                                                                                                                                                                                                   |
| 337.9 2                        | 7.0 21           | 1770.23                | 5+                   | 1432.39 5+                 | (E0+M1+E2)             |                           | 0.12           | % $I\gamma = 1.2 4$<br>$\alpha(K) = 0.046 14; \alpha(L) = 0.0078 6; \alpha(M) = 0.00172 9;$<br>$\alpha(N+) = 0.00045 3$                                                                                                                                    |
| 246 70 4                       | 400.20           | 717 70                 | < <sup>+</sup>       | 271.00 4+                  | E2                     |                           | 0.0280         | $\alpha(N)=0.000392\ 24;\ \alpha(O)=5.9\times10^{-5}\ 6;\ \alpha(P)=3.2\times10^{-6}\ 12$<br>$\alpha$ : From the adopted values. The listed subshell coefficients do not include a contribution from the E0 component.                                     |
| 540.70 4                       | 400 50           | /1/./2                 | 0                    | 5/1.00 4                   | E2                     |                           | 0.0389         | $\alpha(K) = 0.0304 5; \alpha(L) = 0.00662 10; \alpha(M) = 0.001490 21; \alpha(N+) = 0.000388 6$                                                                                                                                                           |
| 382.12 4                       | 3.2 10           | 1645.80                | 4+                   | 1263.73 4+                 | E2+M1                  |                           | 0.040 11       | $\alpha(N)=0.000338 5; \alpha(O)=4.86\times10^{-5} 7; \alpha(P)=1.95\times10^{-6} 3$<br>%I $\gamma=0.55 18$<br>$\alpha(K)=0.033 10; \alpha(L)=0.0054 7; \alpha(M)=0.00118 12;$<br>$\alpha(N+)=0.00031 4$                                                   |
| 426.78 7                       | 100              | 1144.52                | 8+                   | 717.72 6+                  | E2                     |                           | 0.0214         | $\alpha(N)=0.00027 \ 3; \ \alpha(O)=4.1\times10^{-5} \ 6; \ \alpha(P)=2.3\times10^{-6} \ 9$<br>%Iy=17.3 12<br>$\alpha(K)=0.01716 \ 24; \ \alpha(L)=0.00332 \ 5; \ \alpha(M)=0.000741 \ 11;$                                                                |
| (444.58 9)                     |                  | 815.47                 | 2+                   | 371.00 4+                  | E2                     |                           | 0.0191         | $\alpha(N=0.0001684\ 24;\ \alpha(O)=2.46\times10^{-5}\ 4;\ \alpha(P)=1.132\times10^{-6}\ 16$<br>$\alpha(K)=0.01539\ 22;\ \alpha(L)=0.00292\ 4;\ \alpha(M)=0.000650\ 10;$<br>$\alpha(N+)=0.0001705\ 24$                                                     |
| 479.18 <i>11</i>               | 22.0 22          | 1911.57                | 6+                   | 1432.39 5+                 | [M1,E2]                |                           | 0.022 7        | $\alpha$ (N)=0.0001478 21; $\alpha$ (O)=2.17×10 <sup>-5</sup> 3; $\alpha$ (P)=1.020×10 <sup>-6</sup> 15<br>%I $\gamma$ =3.8 5<br>$\alpha$ (K)=0.018 6; $\alpha$ (L)=0.0028 5; $\alpha$ (M)=0.00062 11;<br>$\alpha$ (N+ )=0.00016 3                         |
| 506.43 11                      | 23.2 26          | 1770.23                | 5+                   | 1263.73 4+                 | E2                     |                           | 0.01349        | $\alpha(N)=0.000141\ 25;\ \alpha(O)=2.2\times10^{-5}\ 5;\ \alpha(P)=1.3\times10^{-6}\ 5$<br>%I $\gamma=4.0\ 5$<br>$\alpha(K)=0.01098\ 16;\ \alpha(L)=0.00196\ 3;\ \alpha(M)=0.000434\ 6;$                                                                  |
| 518.04 6                       | 22.0 15          | 1645.80                | 4+                   | 1127.77 3+                 | E2+M1                  | -7 3                      | 0.0129 5       | $\alpha(N+)=0.0001143 \ 16$<br>$\alpha(N)=9.89\times10^{-5} \ 14; \ \alpha(O)=1.464\times10^{-5} \ 21; \ \alpha(P)=7.37\times10^{-7} \ 11$<br>$\%_{I\gamma}=3.8 \ 4$<br>$\alpha(K)=0.0106 \ 4; \ \alpha(L)=0.00185 \ 5; \ \alpha(M)=0.000409 \ 10;$        |
| (545.5 4)                      |                  | 1263.73                | 4+                   | 717.72 6+                  | [E2]                   |                           | 0.01113        | $\alpha(N+)=0.000108 \ 3$<br>$\alpha(N)=9.33\times10^{-5} \ 22; \ \alpha(O)=1.39\times10^{-5} \ 4; \ \alpha(P)=7.1\times10^{-7} \ 3$<br>$\alpha(K)=0.00912 \ 13; \ \alpha(L)=0.001575 \ 23; \ \alpha(M)=0.000348 \ 5; \ \alpha(N+)=9.19\times10^{-5} \ 13$ |
| 545.7                          | 3.3 12           | 1911.57                | 6+                   | 1365.8 6+                  |                        |                           |                | $\alpha$ (N)=7.94×10 <sup>-5</sup> <i>1</i> 2; $\alpha$ (O)=1.181×10 <sup>-5</sup> <i>1</i> 7; $\alpha$ (P)=6.16×10 <sup>-7</sup> 9<br>%I $\gamma$ =0.57 21                                                                                                |
| 598.19 6                       | 4.2 6            | 1645.80                | 4+                   | 1047.59 4+                 | M1+E2                  | 0.65 20                   | 0.0139 10      | $\%_{1\gamma=2.59} \frac{50}{317}$<br>$\%_{1\gamma=0.73} \frac{11}{11}$<br>$\alpha(K)=0.0118 9; \alpha(L)=0.00169 9; \alpha(M)=0.000366 19;$                                                                                                               |

ω

 $^{154}_{64}{
m Gd}_{90}$ -3

|                                       |                      |                        |                      | <sup>154</sup> <b>Tb</b>                        | $\varepsilon + \beta^+$ decay (22) | .7 h) <b>197</b>             | 5So03,1972Vy                 | 04,1973La20 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------|----------------------|------------------------|----------------------|-------------------------------------------------|------------------------------------|------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                      |                        |                      |                                                 |                                    | $\gamma$ ( <sup>154</sup> Gd | l) (continued)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ${\rm E}_{\gamma}^{\dagger \ddagger}$ | $I_{\gamma}^{@}$     | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$             | Mult. <sup>#</sup>                 | $\delta^{\#}$                | α <b>&amp;</b>               | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (625.19 22)                           |                      | 996.28                 | 2+                   | 371.00 4+                                       | E2                                 |                              | 0.00792                      | $\begin{array}{c} \alpha(\mathrm{N}+)=9.8\times10^{-5}\ 6\\ \alpha(\mathrm{N})=8.4\times10^{-5}\ 5;\ \alpha(\mathrm{O})=1.30\times10^{-5}\ 8;\ \alpha(\mathrm{P})=8.5\times10^{-7}\ 7\\ \alpha(\mathrm{K})=0.00655\ 10;\ \alpha(\mathrm{L})=0.001075\ 15;\ \alpha(\mathrm{M})=0.000237\ 4;\\ \alpha(\mathrm{N}+)=6.26\times10^{-5}\ 9 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 642.19 <i>22</i><br>648 <i>1</i>      | 23.8 <i>17</i><br>≈2 | 1770.23<br>1365.8      | 5+<br>6+             | 1127.77 3 <sup>+</sup><br>717.72 6 <sup>+</sup> | E2<br>E0+M1+E2                     | +1.30 20                     | 0.00743 <i>11</i><br>0.045 8 | $\alpha(N)=5.41\times10^{-5} 8; \ \alpha(O)=8.11\times10^{-6} 12; \ \alpha(P)=4.47\times10^{-7} 7$<br>%Iy=4.1 4<br>%Iy≈0.346<br>$\alpha(K)=0.0079 5; \ \alpha(L)=0.00119 5; \ \alpha(M)=0.000258 11;$<br>$\alpha(N+)=6.9\times10^{-5} 3$<br>(N)=5.02\times10^{-5} 24 (O)=0.1\times10^{-6} 4 (D)=5.0\times10^{-7} 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 649.44 6                              | 50 4                 | 1645.80                | 4+                   | 996.28 2+                                       | E2                                 |                              | 0.00723                      | $\alpha(N)=5.93\times10^{-5}\ 24;\ \alpha(O)=9.1\times10^{-6}\ 4;\ \alpha(P)=5.6\times10^{-7}\ 4$<br>$\alpha:$ From the adopted values. The listed subshell coefficients do not<br>include a contribution from the E0 component.<br>$\%I\gamma=8.6\ 9$<br>$\alpha(K)=0.00599\ 9;\ \alpha(L)=0.000970\ 14;\ \alpha(M)=0.000213\ 3;$<br>$\alpha(N+)=5.65\times10^{-5}\ 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 676.55 7                              | 9.7 15               | 1047.59                | 4+                   | 371.00 4+                                       | E0+M1+E2                           | +2.9 4                       | 0.053 3                      | $\alpha(N)=4.87\times10^{-5}$ 7; $\alpha(O)=7.32\times10^{-6}$ 11; $\alpha(P)=4.09\times10^{-7}$ 6<br>%I $\gamma=1.68$ 28<br>$\alpha$ : Deduced from $\alpha(K)\exp=0.044$ 3. See the Adopted Gammas data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (692.41 4)                            |                      | 815.47                 | 2+                   | 123.06 2+                                       | E0+M1+E2                           | 7.5 4                        | 0.00629                      | set.<br>$\delta$ : From <sup>154</sup> Eu $\beta^-$ decay.<br>$\alpha(K)=0.00524 \ 8; \ \alpha(L)=0.000828 \ 12; \ \alpha(M)=0.000182 \ 3; \ \alpha(N+)=4.81\times10^{-5} \ 7 \ \alpha(N)=4.15\times10^{-5} \ 6; \ \alpha(\Omega)=6.27\times10^{-6} \ 9; \ \alpha(P)=3.60\times10^{-7} \ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 714.6                                 | 4.5 13               | 1432.39                | 5+                   | 717.72 6+                                       | E2,M1                              |                              | 0.0081 23                    | $ α(\mathbf{r})=4.15\times10^{-5}$ , $α(\mathbf{r})=0.27\times10^{-5}$ , $α(\mathbf{r})=2.00\times10^{-5}$ S are specific to the second state of the second sta |
| 722.5                                 | 6.1 20               | 1770.23                | 5+                   | 1047.59 4+                                      | [M1,E2]                            |                              | 0.0078 23                    | $\begin{aligned} &\alpha(\mathbf{N}) = 4.9 \times 10^{-5} \ 12; \ \alpha(\mathbf{O}) = 7.5 \times 10^{-6} \ 19; \ \alpha(\mathbf{P}) = 4.8 \times 10^{-7} \ 16 \\ &\%[\gamma = 1.05 \ 35 \\ &\alpha(\mathbf{K}) = 0.0066 \ 20; \ \alpha(\mathbf{L}) = 0.00095 \ 22; \ \alpha(\mathbf{M}) = 0.00021 \ 5; \\ &\alpha(\mathbf{N}+) = 5.5 \times 10^{-5} \ 13 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 756.71 6                              | 9 <i>3</i>           | 1127.77                | 3+                   | 371.00 4+                                       | E2+M1                              | -6.1 3                       | 0.00516                      | $\begin{aligned} \alpha(N) = 4.8 \times 10^{-5} \ II; \ \alpha(O) = 7.3 \times 10^{-6} \ I8; \ \alpha(P) = 4.7 \times 10^{-7} \ I5 \\ \% I\gamma = 1.6 \ 5 \\ \alpha(K) = 0.00431 \ 7; \ \alpha(L) = 0.000663 \ I0; \ \alpha(M) = 0.0001450 \ 2I; \\ \alpha(N+) = 3.85 \times 10^{-5} \ 6 \\ \alpha(N) = 3.32 \times 10^{-5} \ 5; \ \alpha(O) = 5.03 \times 10^{-6} \ 7; \ \alpha(P) = 2.97 \times 10^{-7} \ 5 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (815.49 7)                            |                      | 815.47                 | 2+                   | 0.0 0+                                          | E2                                 |                              | 0.00427                      | δ: From <sup>154</sup> Eu $\beta^-$ decay.<br>$\alpha(K)=0.00358$ 5; $\alpha(L)=0.000542$ 8; $\alpha(M)=0.0001185$ 17;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

4

|                                       |                                 |                        |                                  | 15               | <sup>4</sup> Tb a    | $\varepsilon$ + $\beta^+$ decay (22 | 2.7 h) 1         | 1975So03,1972               | Vy04,1973La20 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------|---------------------------------|------------------------|----------------------------------|------------------|----------------------|-------------------------------------|------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                 |                        |                                  |                  |                      |                                     | $\gamma(^{154})$ | Gd) (continue               | <u>d)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ${\rm E_{\gamma}}^{\dagger \ddagger}$ | Ι <sub>γ</sub> @                | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$             | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup>                  | $\delta^{\#}$    | α <b>&amp;</b>              | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 830.49 9<br>873.21 <i>4</i>           | 2.7 <i>10</i><br>19.5 <i>20</i> | 1645.80<br>996.28      | 4 <sup>+</sup><br>2 <sup>+</sup> | 815.47<br>123.06 | 2+<br>2+             | [E2]<br>E0+M1+E2                    | -9.4 4           | 0.00410 <i>6</i><br>0.00371 | $\begin{aligned} &\alpha(\mathrm{N}+)=3.15\times10^{-5} \ 5\\ &\alpha(\mathrm{N})=2.71\times10^{-5} \ 4; \ \alpha(\mathrm{O})=4.12\times10^{-6} \ 6; \ \alpha(\mathrm{P})=2.47\times10^{-7} \ 4\\ &\%\mathrm{I}\gamma=0.47 \ 18\\ &\%\mathrm{I}\gamma=3.4 \ 4\\ &\alpha(\mathrm{K})=0.00311 \ 5; \ \alpha(\mathrm{L})=0.000463 \ 7; \ \alpha(\mathrm{M})=0.0001010 \ 15; \\ &\alpha(\mathrm{N}+)=2.69\times10^{-5} \ 4 \end{aligned}$                                                     |
| 888.8 <i>3</i>                        | 8.1 <i>12</i>                   | 1606.78                | 6+                               | 717.72           | 6+                   | E2+M1                               | >1.8             | 0.0038 <i>3</i>             | $\begin{aligned} &\alpha(N) = 2.31 \times 10^{-5} \ 4; \ \alpha(O) = 3.53 \times 10^{-6} \ 5; \ \alpha(P) = 2.15 \times 10^{-7} \ 3 \\ &\alpha: \text{ Theoretical value since } \alpha(K) \text{exp indicates negligible E0} \\ &\text{ component.} \\ &\% I\gamma = 1.40 \ 23 \\ &\alpha(K) = 0.0032 \ 3; \ \alpha(L) = 0.00047 \ 4; \ \alpha(M) = 0.000103 \ 7; \\ &\alpha(N+) = 2.74 \times 10^{-5} \ 19 \end{aligned}$                                                               |
| 892.76 6                              | 26.9 22                         | 1263.73                | 4+                               | 371.00           | 4+                   | E0+M1+E2                            | -3.8 3           | 0.00367                     | $\alpha(N)=2.36\times10^{-5} \ 16; \ \alpha(O)=3.6\times10^{-6} \ 3; \ \alpha(P)=2.25\times10^{-7} \ 21$<br>%Iy=4.6 5<br>$\alpha(K)=0.00309 \ 5; \ \alpha(L)=0.000454 \ 7; \ \alpha(M)=9.88\times10^{-5} \ 15; \ \alpha(N+)=2.63\times10^{-5} \ 4$                                                                                                                                                                                                                                        |
| 924.6 <i>3</i>                        | ≈2                              | 1047.59                | 4+                               | 123.06           | 2+                   | E2                                  |                  | 0.00325                     | $ α(N)=2.26 \times 10^{-5} 4; α(O)=3.46 \times 10^{-5} 6; α(P)=2.14 \times 10^{-7} 4 $<br>α: Theoretical value since α(K)exp indicates negligible E0 component.<br>δ: From <sup>154</sup> Eu β <sup>-</sup> decay.<br>%Iγ≈0.346<br>α(K)=0.00274 4; α(L)=0.000402 6; α(M)=8.76 \times 10^{-5} 13;                                                                                                                                                                                          |
| 927.5 4                               | 1.5 6                           | 1645.80                | 4+                               | 717.72           | 6+                   | [E2]                                |                  | 0.00323                     | $\begin{aligned} \alpha(\text{N}) = 0.00274 \ 4, \ \alpha(\text{L}) = 0.000402 \ 6, \ \alpha(\text{M}) = 8.70 \times 10^{-7} \ 3, \\ \alpha(\text{N}) = 2.33 \times 10^{-5} \ 4 \\ \alpha(\text{N}) = 2.01 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 3.07 \times 10^{-6} \ 5; \ \alpha(\text{P}) = 1.89 \times 10^{-7} \ 3 \\ \% \text{Iy} = 0.26 \ 11 \\ \alpha(\text{K}) = 0.00272 \ 4; \ \alpha(\text{L}) = 0.000400 \ 6; \ \alpha(\text{M}) = 8.70 \times 10^{-5} \ 13; \end{aligned}$ |
| 992.92 12                             | 94 8                            | 2137.51                | 7-                               | 1144.52          | 8+                   | E1                                  |                  | $1.15 \times 10^{-3}$       | $\alpha(N+)=2.32\times10^{-5} 4$<br>$\alpha(N)=1.99\times10^{-5} 3; \ \alpha(O)=3.05\times10^{-6} 5; \ \alpha(P)=1.88\times10^{-7} 3$<br>$\%_{I}\gamma=16.2 \ 18$<br>$\alpha(K)=0.000987 \ 14; \ \alpha(L)=0.0001289 \ 18; \ \alpha(M)=2.77\times10^{-5} 4; $<br>$\alpha(N+)=7.41\times10^{-6} \ 11$                                                                                                                                                                                      |
| 996.24 6                              | 13.8 14                         | 996.28                 | 2+                               | 0.0              | $0^+$                | E2                                  |                  | 0.00277                     | $\alpha(N)=6.35\times10^{-6} 9; \ \alpha(O)=9.85\times10^{-7} 14; \ \alpha(P)=6.63\times10^{-8} 10$<br>%I $\gamma$ =2.39 29<br>$\alpha(K)=0.00234 4; \ \alpha(L)=0.000339 5; \ \alpha(M)=7.37\times10^{-5} 11;$                                                                                                                                                                                                                                                                           |
| 1004.73 5                             | 41 3                            | 1127.77                | 3+                               | 123.06           | 2+                   | E2+M1                               | -7.4 4           | 0.00276                     | $\alpha(N+)=1.97\times10^{-5} 3$<br>$\alpha(N)=1.690\times10^{-5} 24; \ \alpha(O)=2.59\times10^{-6} 4; \ \alpha(P)=1.621\times10^{-7} 23$<br>$\%_{I}\gamma=7.1 7$<br>$\alpha(K)=0.00233 4; \ \alpha(L)=0.000336 5; \ \alpha(M)=7.30\times10^{-5} 11;$                                                                                                                                                                                                                                     |

S

|                                  |                      |                              |                                                                      | <sup>154</sup> <b>Tb</b> $\varepsilon$ + $\beta$ <sup>+</sup> d          | lecay (22.7 l | h) <b>1975So03</b> ,1            | 1972Vy04,197          | 73La20 (continued)                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------|----------------------|------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|---------------|----------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                      |                              |                                                                      |                                                                          |               | $\gamma(^{154}\text{Gd})$ (conti | inued)                |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $E_{\gamma}^{\dagger \ddagger}$  | Ι <sub>γ</sub> @     | E <sub>i</sub> (level)       | $\mathbf{J}_i^{\pi}$                                                 | $E_f  J_f^{\pi}$                                                         | Mult.#        | δ#                               | α <b>&amp;</b>        | Comments                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |                      |                              |                                                                      |                                                                          |               |                                  |                       | $\begin{array}{l} \alpha(\mathrm{N}+)=1.95\times10^{-5} \ 3\\ \alpha(\mathrm{N})=1.675\times10^{-5} \ 24; \ \alpha(\mathrm{O})=2.57\times10^{-6} \ 4; \\ \alpha(\mathrm{P})=1.615\times10^{-7} \ 23\\ \delta: \ \mathrm{From} \ ^{154}\mathrm{Eu} \ \beta^{-} \ \mathrm{decay}. \end{array}$                                                                                                                     |
| 1061.39 9                        | 24 4                 | 1432.39                      | 5+                                                                   | 371.00 4+                                                                | E2+M1         | -4.3 +12-26                      | 0.00251 8             | %Iγ=4.1 7<br>$\alpha$ (K)=0.00212 7; $\alpha$ (L)=0.000303 9; $\alpha$ (M)=6.57×10 <sup>-5</sup><br>18; $\alpha$ (N+)=1.75×10 <sup>-5</sup> 5<br>$\alpha$ (N)=1.51×10 <sup>-5</sup> 4; $\alpha$ (O)=2.32×10 <sup>-6</sup> 7;<br>$\alpha$ (P)=1.48×10 <sup>-7</sup> 5                                                                                                                                             |
| 1093.6 7<br>1140.75 8            | ≈2<br>13.3 <i>15</i> | 2459.4<br>1263.73            | 6 <sup>+</sup> ,7,8 <sup>+</sup><br>4 <sup>+</sup>                   | 1365.8 6 <sup>+</sup><br>123.06 2 <sup>+</sup>                           | E2            |                                  | 0.00210               | %I $\gamma \approx 0.346$<br>%I $\gamma = 2.30 \ 30$<br>$\alpha(K) = 0.001779 \ 25; \ \alpha(L) = 0.000251 \ 4;$<br>$\alpha(M) = 5.45 \times 10^{-5} \ 8; \ \alpha(N+) = 1.581 \times 10^{-5} \ 23$<br>$\alpha(N) = 1.251 \times 10^{-5} \ 18; \ \alpha(O) = 1.92 \times 10^{-6} \ 3;$<br>$\alpha(P) = 1.233 \times 10^{-7} \ 18; \ \alpha(IPF) = 1.253 \times 10^{-6} \ 18$                                     |
| 1193.34 <i>24</i><br>1235.6      | 17.2 26<br>3.5 5     | 1911.57<br>1606.78           | 6+<br>6+                                                             | 717.72 6 <sup>+</sup><br>371.00 4 <sup>+</sup>                           | [E2]          |                                  | 0.00180               | %I $\gamma$ =3.0 5<br>%I $\gamma$ =0.60 10<br>$\alpha$ (K)=0.001518 22; $\alpha$ (L)=0.000212 3;<br>$\alpha$ (M)=4.59×10 <sup>-5</sup> 7; $\alpha$ (N+)=2.21×10 <sup>-5</sup> 3<br>$\alpha$ (N)=1.053×10 <sup>-5</sup> 15; $\alpha$ (O)=1.623×10 <sup>-6</sup> 23;<br>$\alpha$ (P)=1.053×10 <sup>-7</sup> 15; $\alpha$ (IPF)=9.87×10 <sup>-6</sup> 14                                                            |
| (1274.7)<br>1315.1 7<br>1399.2 3 | ≈2<br>3.1 5          | 1645.80<br>2459.4<br>1770.23 | 4 <sup>+</sup><br>6 <sup>+</sup> ,7,8 <sup>+</sup><br>5 <sup>+</sup> | 371.00 4 <sup>+</sup><br>1144.52 8 <sup>+</sup><br>371.00 4 <sup>+</sup> | [M1,E2]       |                                  | 0.0018 4              | %Iy $\approx 0.346$<br>%Iy $= 0.54.9$<br>$\alpha(K) = 0.0015.3; \alpha(L) = 0.00020.4; \alpha(M) = 4.3 \times 10^{-5}.8; \alpha(N+) = 5.7 \times 10^{-5}.5$<br>$\alpha(N) = 9.9 \times 10^{-6}.19; \alpha(O) = 1.5 \times 10^{-6}.3; \alpha(P) = 1.05 \times 10^{-7}.23; \alpha(P) = 4.6 \times 10^{-5}.3$                                                                                                       |
| 1419.81 8                        | 267 17               | 2137.51                      | 7-                                                                   | 717.72 6+                                                                | E1            |                                  | 7.54×10 <sup>-4</sup> | 25, $\alpha(\Pi^{F})=4.0\times10^{-5}$<br>% $I\gamma=46$ 4<br>$\alpha(K)=0.000521$ 8; $\alpha(L)=6.71\times10^{-5}$ 10;<br>$\alpha(M)=1.439\times10^{-5}$ 21; $\alpha(N+)=0.0001515$ 22<br>$\alpha(N)=3.31\times10^{-6}$ 5; $\alpha(O)=5.14\times10^{-7}$ 8;<br>$\alpha(P)=3.52\times10^{-8}$ 5; $\alpha(IPF)=0.0001476$ 21                                                                                      |
| 1522.8                           | 1.3 6                | 1645.80                      | 4+                                                                   | 123.06 2+                                                                | [E2]          |                                  | 1.27×10 <sup>-3</sup> | $ \begin{aligned} & & \approx 0.22 \ 10^{-1} \ 5.5 \ \alpha(\text{L}) = 0.001181 \ 20; \\ & & \alpha(\text{M}) = 2.98 \times 10^{-5} \ 5; \ \alpha(\text{N}+) = 9.00 \times 10^{-5} \ 13 \\ & & \alpha(\text{N}) = 6.85 \times 10^{-6} \ 10; \ \alpha(\text{O}) = 1.060 \times 10^{-6} \ 15; \\ & & \alpha(\text{P}) = 7.05 \times 10^{-8} \ 10; \ \alpha(\text{IPF}) = 8.20 \times 10^{-5} \ 12 \end{aligned} $ |
| 1541.2 4                         | 2.4                  | 1911.57                      | 6+                                                                   | 371.00 4+                                                                | [E2]          |                                  | $1.25 \times 10^{-3}$ | %Iγ=0.415 28<br>α(K)=0.000993 14; α(L)=0.0001348 19;                                                                                                                                                                                                                                                                                                                                                             |

6

|                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                      | <sup>154</sup> Tk | $\varepsilon + \beta^+$ decay (22.7 h) 1975So03,1972Vy04,1973La20 (continued)                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                      |                   | $\gamma$ ( <sup>154</sup> Gd) (continued)                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| $E_{\gamma}^{\dagger\ddagger}$                                                                                                | Ι <sub>γ</sub> @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f  J_f^{\pi}$  | Comments                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 1741.6 6                                                                                                                      | 3.2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2459.4                 | 6+,7,8+              | 717.72 6+         | $ \begin{array}{c} \alpha(\mathrm{M}) = 2.91 \times 10^{-5} \ 4; \ \alpha(\mathrm{N}+) = 9.63 \times 10^{-5} \ 14 \\ \alpha(\mathrm{N}) = 6.68 \times 10^{-6} \ 10; \ \alpha(\mathrm{O}) = 1.035 \times 10^{-6} \ 15; \ \alpha(\mathrm{P}) = 6.89 \times 10^{-8} \ 10; \ \alpha(\mathrm{IPF}) = 8.85 \times 10^{-5} \ 13 \\ \% \mathrm{I}\gamma = 0.55 \ 6 \end{array} $ |  |  |  |  |  |
| <ul> <li><sup>†</sup> From w</li> <li><sup>‡</sup> Because</li> <li><sup>#</sup> Assignn<br/>radiation<br/>measure</li> </ul> | <sup>†</sup> From weighted average of values of 1972Vy04 and 1975So03. Values without uncertainties were computed from level energies by 1975So03.<br><sup>‡</sup> Because of the more definitive isomer assignment only the unplaced $\gamma$ 's of 1975So03 are given.<br><sup>#</sup> Assignments and values are from <sup>154</sup> Gd adopted $\gamma$ radiations and include the results of all types of experiments and all decay modes. See <sup>154</sup> Gd adopted $\gamma$ radiations for other information including: (1) mixing ratios such as $\delta$ (M3/E2) and $\delta$ (M2/E1) where $\delta$ can be zero and is not included here; (2) comments on measurements for lines which are multiplets; and (3) identification of $\alpha$ values that are based on experimental values rather than theory. |                        |                      |                   |                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |

<sup>@</sup> For absolute intensity per 100 decays, multiply by 0.173 12.

<sup>&</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with "Frozen Orbitals" approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$  ray not placed in level scheme.



8

# <sup>154</sup>Tb ε decay (22.7 h) 1975So03,1972Vy04,1973La20



 $^{154}_{64}Gd_{90}$