¹⁵⁴Gd(d,d'),¹⁵⁴Gd(p,p') **1967Bl05**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 200,2 (2025)	22-Aug-2022

Data are from (d,d') with E(d)=12 MeV on enriched target (< 99%) with d' measured in magnetic spectrometer with FWHM ≈ 8 keV at three angles. Ratio of intensity at 90° to that at 125° ≈ 1.40 for E3 excitation, ≈ 2.1 for E2 excitation, and < 1 for multiple excitation. Other: (p,p') with E(p)=650 MeV with FWHM ≈ 65 keV to measure p'(θ) for ground state and 2⁺ levels at 123 and 996 keV.

Other: 1969Ch09 (d,d') on enriched target, E(d)=12 MeV; d' measured at 25 angles from 15° to 150° for ground state. 1987Gi08 (p,p') with E=650 MeV; measured p' at 23 angles 0° to 13° with FWHM ≈ 65 MeV for ground state and two 2^{+} levels.

¹⁵⁴Gd Levels

E(level)	$J^{\pi \dagger}$	$\sigma(\mu b/sr)^{\#}$	Comments		
0@	0^{+}	47000			
123 [@]	2+	4000			
371 [@]	4+	182			
679 <mark>&</mark>	0^{+}	7			
718 [@]	6+	8			
816 <mark>&</mark>	2+	17			
998 <mark>a</mark>	2+	136			
1048 <mark>&</mark>	4+	6			
1242 <mark>b</mark>	1-	8	J^{π} : Authors show this value in parentheses.		
1253 <mark>b</mark>	3-	246			
1265 ^a	4+	13			
1365 <mark>b</mark>	5-	11	J^{π} : Authors show this value in parentheses.		
1534	2+‡	7			
1618	3-‡	12			
1700	4+‡	13			
1794 ^c	3-	63			
1950	$(5^{-})^{\ddagger}$	5			
2101	(1,2) [‡]	13			
2247	(3) [‡]	8			

[†] For levels above 800 keV, deduced by authors from ratios of cross sections at 90° and 125°. Others are from the adopted values. Differences from authors' values are noted.

^{\ddagger} From the adopted values. Authors do not report a J^{π} value for this level.

[#] Cross section at 90°.

[@] Band(A): $K^{\pi}=0^+$ ground-state band.

- [&] Band(B): $K^{\pi}=0^+$ probable β -vibrational band.
- ^{*a*} Band(C): $K^{\pi}=2^+ \gamma$ -vibrational band.

^{*b*} Band(D): $K^{\pi}=0^{-}$ octupole-vibrational band.

^{*c*} Band(E): $K^{\pi} = 2^{-}$ octupole-vibrational band.

¹⁵⁴Gd(d,d'),¹⁵⁴Gd(p,p') 1967Bl05

				Band(E): $K^{\pi}=2^{-}$ octupole-vibrational band
			Band(D): K ^π =0 [−] octupole-vibrational band	3- 1794
		Band(C): $K^{\pi}=2^+$ γ -vibrational band	5- 1365	
		4+ 1265	$\frac{3^{-}}{1^{-}} \underbrace{1253}_{1242}$	
	Band(B): K ^π =0 ⁺ probable β-vibrational band			
	<u>4+ 1048</u>	2+ 998		
Band(A): $K^{\pi}=0^+$ ground-state band	<u>2+ 816</u>			
<u>6+ 718</u>	0+ 679			
4+ 371				
2+ 123				
<u>0+</u> 0				
		$^{154}_{64}\text{Gd}_{90}$		