150 Nd(9 Be,5n γ) 1989Mo20

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 200,2 (2025)	22-Aug-2022

Additional information 1. ¹⁵⁰Nd(⁹Be,5n γ), E(⁹Be)=55 MeV; measured E γ , I γ , and $\gamma\gamma(\theta)$ in the TESSA2 multidetector array, consisting of six escape-suppressed Ge detectors and a 50-element BGO crystal ball. Report level scheme and an interpretation in terms of a cranked shell-model calculation.

Band-labeling convention for neutrons

А	$(\alpha = +1/2,$	$\pi = +)_1$		
В	$(\alpha = -1/2,$	$\pi = +)_1$		
С	(α =+1/2,	$\pi = +)_2$		
D	$(\alpha = -1/2.$	$\pi = +)_2$		
E	$(\alpha = +1/2,$	$\pi = -)_1$		
F	$(\alpha = -1/2,$	$\pi = -)_1$		
Х	(α =+1/2,	<i>π</i> =-)		
Y	$(\alpha = -1/2,$	<i>π</i> =-)		
At $\hbar\omega=0$, the second	ne labels	X and Y	correspon	nd
to the $11/2^{-1}$	-[505] Nil	.sson orb	oital,	
A and B to 3	3/2 ⁺ [651]	Nilsson	orbital,	and
C and D to 1	1/2+[660]	Nilsson	orbital.	

¹⁵⁴Gd Levels

E(level)	$J^{\pi \dagger}$	Comments
0‡	0+	
123.1 [‡] <i>1</i>	2+	
371.1 [‡] <i>1</i>	4+	
717.8 [‡] 2	6+	
815.6 [#] 2	2^{+}	
1047.7 [#] 2	4+	
1144.5 [‡] 2	8+	
1365.9 [#] 2	6+	
1637.1 [‡] 2	10^{+}	
1731.8 6	(7 ⁻)	Additional information 2.
1756.5 2	8+	
2040.5 ^{x} 4	(9 ⁻)	
$2137.6^{\circ} 3$	/ o(=)	
$2183.3^{\circ}3$	8	
2184.8# 2	12'	
2194.2" 2 2251 3 ^{<i>a</i>} 1	$0^{(-)}$	
2309.6° 3	8(-)	J^{π} : (8 ⁻) in the adopted values
2475.5 [°] 3	9 ⁽⁻⁾	J^{π} : (9 ⁻) in the adopted values.
2482.4 ^{&} 4	(11 ⁻)	
2579.7 ^a 3	$10^{(-)}$	
2616.2 [°] 3	$10^{(-)}$	
2619.7 ^b 3	$10^{(-)}$	
2621.8 [@] 2	12^{+}	

 150 Nd(9 Be,5n γ)

				15	⁵⁴ Gd Lev	vels (continued)	
E(level)	J^{π}	E(level)	J^{π}	E(level)	J ^π †	E(level)	$J^{\pi \dagger}$
2775.5 [°] 3	$11^{(-)}$	3599.4 ^d 7		4735.6 ^{&} 4	$19^{(-)}$	6121.7 [@] 4	24+
2777.4 [‡] 2	14^{+}	3629.6 ^c 3	$15^{(-)}$	4782.4 [‡] 4	20^{+}	6136.3 ^{&} 6	(23 ⁻)
2950.7 ^a 3	$12^{(-)}$	3894.5 <mark>b</mark> 3	$16^{(-)}$	4788.7 ^c 4	19(-)	6178.1 ^c 6	(23 ⁻)
2955.8 ^b 3	$12^{(-)}$	3987.4 ^a 4	$16^{(-)}$	5116.5 ^b 4	$20^{(-)}$	6294.2 [‡] 5	24+
2981.4 ^{&} 3	$13^{(-)}$	4016.2 [@] 3	18^{+}	5209.3 ^a 8	$20^{(-)}$	6535.6 ^a 9	(24 ⁻)
3027.3 [@] 3	14^{+}	4087.2 [‡] <i>3</i>	18^{+}	5254.5 ^d 10		6555.5 ^b 6	(24 ⁻)
3155.0 ^d 5		4099.5 ^d 7		5350.0 [@] 4	22^{+}	6883.4? ^{&} 7	(25 ⁻)
3158.9 ^c 3	13(-)	4102.1 ^{&} 4	$17^{(-)}$	5415.9 ^{&} 5	21(-)	6946.2? ^C 7	(25 ⁻)
3384.1 ^b 4	$14^{(-)}$	4176.5 ^c 4	$17^{(-)}$	5457.6 ^c 5	21(-)	6955.1 [@] 6	(26^{+})
3404.5 [‡] <i>3</i>	16+	4475.0 ^b 4	$18^{(-)}$	5519.6 [‡] 4	22+	7055.6 [‡] 6	26^{+}
3428.1 ^{<i>a</i>} 4	$14^{(-)}$	4595.2 ^a 5	$18^{(-)}$	5811.0 ^b 5	(22 ⁻)	7274.0? ^a 10	(26 ⁻)
3490.9 [@] 3	16+	4646.4 [@] 3	20^{+}	5848.5 ^a 8	(22 ⁻)	7353.2? ^b 10	(26 ⁻)
3519.2 ^{&} 3	15 ⁽⁻⁾	4656.2 ^d 9		5889.6? ^d 11			

1989Mo20 (continued)

[†] Authors' assignments, which are based on deduced γ multipolarities and band structure, as well as the previously known assignments. These are in agreement with the Adopted Values, unless noted otherwise.

[‡] Band(A): $K^{\pi}=0^+$ ground-state band.

[#] Band(B): First excited $K^{\pi}=0^+$ band. Probable β^- vibration.

^(a) Band(C): Aligned two-neutron-quasiparticle band. Configuration=AB crosses the g.s. band at $\hbar\omega$ =0.31 MeV (near the 18⁺ level).

[&] Band(D): $K^{\pi}=0^{-}$ octupole-vibrational band. At higher spins, it can be ascribed to the cranked shell-model configuration AE.

^{*a*} Band(E): Band interpreted as the two-neutron-quasiparticle configuration AF. Crossed by the configuration β c near $\hbar\omega$ =0.30 MeV, with configuration becoming AFBC.

^b Band(F): Band interpreted as the two-neutron-quasiparticle configuration AY.

^c Band(G): Band interpreted as the two-neutron-quasiparticle configuration AX.

^d Band(H): Level sequence.

$\gamma(^{154}\text{Gd})$

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	Comments
123.1 <i>1</i>	100	123.1	2+	0	0^{+}	(E2)	DCO=0.90 2.
144.0 2	0.7	2619.7	$10^{(-)}$	2475.5	9(-)		
155.6 2	4.7	2775.5	$11^{(-)}$	2619.7	$10^{(-)}$	(D)	DCO=0.29 3.
159.6 2	1.6	2775.5	$11^{(-)}$	2616.2	$10^{(-)}$	(D)	DCO=0.29 5.
165.8 <i>1</i>	2.7	2475.5	9(-)	2309.6	8(-)	(D)	DCO=0.22 5.
172.0 <i>1</i>	4.2	2309.6	$8^{(-)}$	2137.6	7-	(D)	DCO=0.22 4.
180.3 <i>1</i>	4.7	2955.8	$12^{(-)}$	2775.5	$11^{(-)}$	(D)	DCO=0.30 <i>3</i> .
203.0 1	3.5	3158.9	$13^{(-)}$	2955.8	$12^{(-)}$	(D)	DCO=0.39 3.
225.3 2	3.2	3384.1	$14^{(-)}$	3158.9	$13^{(-)}$	(D)	DCO=0.45 2.
232.0 2	0.7	1047.7	4+	815.6	2+		
245.4 4		3629.6	$15^{(-)}$	3384.1	$14^{(-)}$		
248.0 1	100	371.1	4+	123.1	2+	(E2)	DCO=1.01 2.
264.9 1	1.4	3894.5	$16^{(-)}$	3629.6	$15^{(-)}$	(D)	DCO=0.30 4.
282.0 2	1.1	4176.5	$17^{(-)}$	3894.5	16 ⁽⁻⁾	(D)	DCO=0.34 4.
298.6 <i>3</i>	0.9	4475.0	$18^{(-)}$	4176.5	$17^{(-)}$		
300.4 4	1.0	2775.5	$11^{(-)}$	2475.5	9(-)		
313.7 2	0.7	4788.7	19 ⁽⁻⁾	4475.0	18(-)		

Continued on next page (footnotes at end of table)

¹⁵⁰Nd(⁹Be,5nγ) **1989Mo20** (continued)

$\gamma(^{154}\text{Gd})$ (continued)

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	C	omments
318.2 1	3.3	1365.9	6+	1047.7 4	1 ⁺	(E2)	DCO=1.10 9.	
327.9 3		5116.5	$20^{(-)}$	4788.7 1	19(-)			
328.4 2	1.7	2579.7	$10^{(-)}$	2251.3 9) (-)	(D)	DCO=0.58 6.	
336.0 2	1.9	2955.8	$12^{(-)}$	2619.7 1	$10^{(-)}$	(E2)	DCO=1.30 <i>13</i> .	
339.7.4	1.3	2955.8	$12^{(-)}$	2616.2 1	$10^{(-)}$	(E2)	DCO=1.00.9	
341.2# 3		5457.6	$21^{(-)}$	5116.5	DO(-)	()		
346.7 <i>1</i>	97.6	717.8	6^{+}	371.1 4	1 ⁺	(E2)	DCO=1.12 2.	
371.1 2	4.8	2950.7	$12^{(-)}$	2579.7 1	$10^{(-)}$	(E2)	DCO=1.14 7.	
383.4 1	3.0	3158.9	$13^{(-)}$	2775.5 1	11(-)	(E2)	DCO=1.11 9.	
390.6 1	10.2	1756.5	8+	1365.9 6	5+	(E2)	DCO=1.11 6.	
405.6 2	12.8	3027.3	14+	2621.8 1	12+	(E2)	DCO=1.16 3.	
426.8 2	89.0	1144.5	8+	717.8 6	5+	(E2)	DCO=1.16 2.	
427.8 2	11.0	2621.8	12+	2194.2 1	10+	(E2)	DCO=1.10 3.	
428.2 5		3384.1	$14^{(-)}$	2955.8 1	$12^{(-)}$			
433.0 2	2.4	2616.2	$10^{(-)}$	2183.3 8	3(-)	(E2)	DCO=1.22 7.	
436.3 2	3.0	2619.7	$10^{(-)}$	2183.3 8	3(-)			
437.7 1	13.4	2194.2	10^{+}	1756.5 8	3+	(E2)	DCO=1.15 3.	
444.4 4		3599.4	$\langle \rangle$	3155.0				
451.5 5		2183.3	8(-)	1731.8 ((7-)			
463.6 1	9.1	3490.9	16+	3027.3 1	14+	(E2)	DCO=1.15 3.	
470.7 1	3.4	3629.6	15(-)	3158.9 1	13(-)	(E2)	DCO=1.16 <i>12</i> .	
477.4 2	3.0	3428.1	$14^{(-)}$	2950.7 1	$12^{(-)}$	(E2)	DCO=1.26 9.	
492.6 <i>1</i>	63.9	1637.1	10+	1144.5 8	3+	(E2)	DCO=1.16 <i>1</i> .	
498.9 <i>3</i>		2981.4	$13^{(-)}$	2482.4 ((11 ⁻)			
500.1 2		4099.5		3599.4				
510.5 6	2.7	3894.5	$16^{(-)}$	3384.1 1	[4 ⁽⁻⁾	(T. 4)		
525.3 1	6.0	4016.2	18	3490.9	l6 ⁺	(E2)	DCO=1.20 6.	
537.8 1	2.8	3519.2	15(-)	2981.4 1	13(-)	(E2)	DCO=1.16 8.	
547.1 6	2.4	4176.5	17(-)	3629.6 1	15(-)	(E2)	DCO=0.96 6.	
547.6 1	47.4	2184.8	12+	1637.1 1	10+	(E2)	DCO=1.21 <i>1</i> .	
550./ 5	1.0	4656.2	10+	4099.5	10+			
550.2.2	1.0	2194.2	10^{-1}	103/.1 1	10^{-1}	$(\mathbf{D}\mathbf{A})$	DCO 124.9	
559.5 Z	2.3	3987.4	$10^{(-)}$	3428.1 1	(-)	(E2)	DCO=1.24 8.	
580.5 2	2.1	4475.0	$18^{(-)}$	3894.5	$10^{(-)}$	(E2)	DCO=1.1/13.	
582.9 2	4.4	4102.1	14+	3519.2	15()	(E2)	DCO=1.24 7.	
506.2.2	34.1	2///.4	14'	2184.8 1	12'	(E2)	DCO=1.18 2.	
508 3 5	2.4	4087.2	18	2490.9 I	10	(E2)	DCO=1.07 9.	
590.5 J	1.6	5254.5 4505 2	10(-)	4030.2	$16^{(-)}$	(E2)	DCO = 1.12.7	
611 5 2	1.0	4395.2	18+	3404 5 1	16+	(E2)	DCO=1.127.	
612.1.2	3.8	1756 5	8 ⁺	1144 5 8	2+	(L2)	DC0=1.04 <i>4</i> .	
612.1.2	1.8	4788 7	19(-)	4176 5 1	, 17 ⁽⁻⁾	(F2)	$DCO = 0.85 I_{5}$	
614.1.6	1.0	5200.3	$20^{(-)}$	1505 2 1	18(-)	(E2)	DCO=1.05.19	
627.1.1	25.0	3404 5	20** 16 ⁺	4393.2 I	1/1+	(E2)	DCO=1.03 19.	
630 2 1	23.0	4646 4	20^{+}	4016.2 1	18+	(E2)	DCO=1.17 4.	
633 5 2	2.5	4735.6	19(-)	4102 1 1	7(-)	(E2)	DCO=1.21.9	
635.1 [#] 5	2.5	5880 69	17	5254.5	. /	(12)	200-1.21 /.	
(20.2.2	0.6	5049.01	(22-)	5200.2	$\mathbf{n}(-)$			
641 5 2	0.6	J848.J	(22)	3209.3 2	20`' 10(-)	$(\mathbf{E}^{\mathbf{a}})$	DCO_{-1} 42.22	
041.3 Z	1.4	J110.J 1265.0	20` ' 6 ⁺	44/3.0	10`' <+	(E2)	DCO=1.42 22.	
040.1 Z	5.7	1303.9 5457.4	21(-)	111.0 0) 10(-)	$(\mathbf{E2})$	DCO=0.09.9	
676 6 2	0.8	3437.0 1047.7	Δ1`´´ Λ+	4/00./ 1	Lツ` / 1+	(E2)	DCO=0.93 23.	
680.2.2	3.1 1 1	104/./ 5/15 0	$\frac{1}{21(-)}$	1725 4	T 1 O(-)	(\mathbf{F}^{2})	DCO=1.00 9. DCO=1.25 12	
000.3 3	1.1	5415.9	Z1` '	+/33.0 1	レフ` ′	(E2)	DCO=1.23 13.	

Continued on next page (footnotes at end of table)

¹⁵⁰Nd(⁹Be,5nγ) **1989Mo20** (continued)

$\gamma(^{154}\text{Gd})$ (continued)

E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	Comments
682.7 2	7.4	4087.2	18^{+}	3404.5 16+	(E2)	DCO=1.13 4.
687.1 4	0.5	6535.6	(24^{-})	5848.5 (22-)		
694.5 2	0.6	5811.0	(22^{-})	5116.5 20 ⁽⁻⁾		
695.2 2	6.1	4782.4	20^{+}	4087.2 18+	(E2)	DCO=0.97 7.
703.6 2	3.8	5350.0	22^{+}	4646.4 20+	(E2)	DCO=1.08 7.
713.5 2	2.8	3490.9	16^{+}	2777.4 14+	(E2)	DCO=1.12 7.
720.4 3	0.6	6136.3	(23-)	5415.9 21 ⁽⁻⁾		
720.5 <i>3</i>		6178.1	(23-)	5457.6 21 ⁽⁻⁾		
737.2 1	2.7	5519.6	22^{+}	4782.4 20+	(E2)	DCO=1.17 9.
738.4 [#] 4		7274.0?	(26^{-})	6535.6 (24-)		
741.8 2	4.3	3519.2	$15^{(-)}$	2777.4 14+		DCO=0.71 13.
744.5 <i>3</i>		6555.5	(24 ⁻)	5811.0 (22-)		
747.1 [#] 3		6883.4?	(25^{-})	6136.3 (23 ⁻)		
761.4 3	0.8	7055.6	26+	6294.2 24+	(E2)	DCO=0.90 <i>30</i> .
765.9 2	1.3	2950.7	$12^{(-)}$	2184.8 12+		DCO=1.23 10.
768.1 [#] 4		6946.2?	(25^{-})	6178.1 (23 ⁻)		
771.7 2	1.9	6121.7	24+	5350.0 22+	(E2)	DCO=0.94 13.
774.6 <i>3</i>	1.5	6294.2	24+	5519.6 22+	(E2)	DCO=1.07 12.
796.6 2	4.5	2981.4	$13^{(-)}$	2184.8 12+	(D)	DCO=0.56 4.
797.7 [#] 4		7353.2?	(26^{-})	$6555.5(24^{-})$		
815.6 3		815.6	2+	$0 0^+$		
833.4 4	0.5	6955.1	(26^{+})	6121.7 24+		
845.2 <i>3</i>		2482.4	(11^{-})	1637.1 10+		
845.3 4		3155.0		2309.6 8 ⁽⁻⁾		
896.0 <i>3</i>		2040.5	(9 ⁻)	1144.5 8+		
924.4 <i>3</i>		1047.7	4+	$123.1 \ 2^+$		
942.6 2	4.0	2579.7	$10^{(-)}$	1637.1 10+		DCO=1.37 10.
979.5 <i>3</i>	3.3	2616.2	$10^{(-)}$	1637.1 10+		DCO=1.53 20.
982.4 2	3.8	2619.7	$10^{(-)}$	1637.1 10+		DCO=1.33 12.
984.7 <i>3</i>	1.8	2621.8	12^{+}	$1637.1 \ 10^+$	(E2)	DCO=1.14 17.
992.7 5		2137.6	7-	1144.5 8+		
994.9 <i>3</i>	1.8	1365.9	6+	371.1 4+	(E2)	DCO=1.04 8.
1038.9 5	1.0	1756.5	8+	717.8 6+		
1039.0 4	5.3	2183.3	8(-)	1144.5 8+		DCO=1.15 14.
1049.8 5	1.4	2194.2	10^{-1}	1144.5 8	(E2)	DCO=1.08 11.
1107.4 8	3.1	2251.3	9(-)	1144.5 8+	(D)	DCO=0.49 7.
1419.57		2137.6		717.8 6		

[†] Relative values, normalized to $I\gamma(248.0\gamma)=100$, at $E(^{9}Be)=55$ MeV.

[‡] Values are based on the measured DCO-ratio data. 1989Mo20 point out that DCO ratios near 1.0 correspond to stretched quadrupoles, while those near 0.6 correspond to stretched dipoles. Pure dipoles with $\Delta J=0$ are distinguished from stretched quadrupoles on the basis of the implications for the J^{π} values of nearby states. These multipolarities are not included in the Adopted Gammas data set.

[#] Placement of transition in the level scheme is uncertain.

 $^{154}_{64}Gd_{90}$

 $^{154}_{64}Gd_{90}$

¹⁵⁰Nd(⁹Be,5nγ) 1989Mo20

 $^{154}_{64}\text{Gd}_{90}$

¹⁵⁰Nd(⁹Be,5nγ) 1989Mo20

 $^{154}_{64}Gd_{90}$

 $^{154}_{64}\text{Gd}_{90}$