Adopted Levels, Gammas | | | History | | | | |-----------------|---------|------------------|------------------------|--|--| | Type | Author | Citation | Literature Cutoff Date | | | | Full Evaluation | N. Nica | NDS 200,2 (2025) | 22-Aug-2022 | | | $Q(\beta^-)=5640 \text{ syst}; S(n)=5380 \text{ syst}; S(p)=13450 \text{ syst}; Q(\alpha)=-4760 \text{ syst}$ 2021Wa16 $\Delta Q(\beta^-)=220, \Delta S(n)=280, \Delta S(p)=360, \Delta Q(\alpha)=200 \text{ (syst,}2021Wa16).$ $S(2n)=9380\ 280,\ S(2p)=25190\ 450,\ Q(\beta^-n)=1280\ 200\ (syst, 2021Wa16).$ 2017Wu04: The 154 Ce nuclide was produced at the RIBF-RIKEN facility using the 9 Be(238 U,F) reaction at E=345 MeV/nucleon. Two experiments, optimized for the transmission of 158 Nd and 170 Dy ions, were carried out with average beam intensities of 7 pnA and 12 pnA, respectively. The identification of the nuclide of interest was made in the BigRIPS separator by determining the atomic number and the mass-to-charge ratio of the ion using the tof-B ρ - Δ E method. The reaction products were transported through the ZeroDegree Spectrometer and implanted into the beta-counting system WAS3ABi that was surrounded by the EURICA array comprising of 84 HPGe detectors. The typical implantation rate was 100 ions/s. Measured: implanted ion- β --t, implanted ion- β -- γ -t and implanted ions- γ -t correlations. Deduced: $T_{1/2}$. Others: 1997Be12 and 1994Be24. ### ¹⁵⁴Ce Levels ## Cross Reference (XREF) Flags A ²⁵²Cf, ²⁴⁸Cm SF decay | E(level) [†] | $J^{\pi \ddagger}$ | T _{1/2} | XREF | Comments | | | |-------------------------------|--------------------|-------------------|------|---|--|--| | 0.0# | 0+ | 0.722 s <i>14</i> | A | %β⁻=100; %β⁻n=? %β⁻: Only β⁻ decay mode is expected. T_{1/2}: From 2017Wu04, using a fit to the implanted ion-β⁻-t spectrum using the least-squares and maximum-likelihood methods. The data analysis included contributions from the parent, daughter and ground-daughter decays, as well as a constant background. | | | | 76.30 [#] <i>15</i> | | | A | | | | | 252.30 [#] <i>18</i> | (4^{+}) | | A | | | | | 520.60 [#] 21 | (6^{+}) | | A | | | | | 872.9 [#] 3 | (8+) | | A | | | | $^{^{\}dagger}$ From least-squares fit to γ energies. ### $\gamma(^{154}\text{Ce})$ | $E_i(level)$ | \mathbf{J}_i^{π} | E_{γ}^{\dagger} | I_{γ}^{\dagger} | \mathbf{E}_f | \mathbf{J}_f^{π} | Mult | |--------------|----------------------|------------------------|------------------------|----------------|----------------------|------| | 76.30 | (2^{+}) | 76.30 15 | 100 | 0.0 | 0+ | [E2] | | 252.30 | (4^{+}) | 176.0 <i>I</i> | 100 | 76.30 | (2^{+}) | [E2] | | 520.60 | (6^+) | 268.3 <i>1</i> | 100 | 252.30 | (4^{+}) | [E2] | | 872.9 | (8^{+}) | 352.3 2 | 100 | 520.60 | (6^+) | [E2] | [†] From 2020Ur03, ²⁵²Cf, ²⁴⁸Cm SF decay. [‡] From 2020Ur03 (²⁵²Cf, ²⁴⁸Cm SF decay) based on the assumption that this is the yrast g.s. band. [#] Band(A): Yrast g.s. band. ### **Adopted Levels, Gammas** ## Level Scheme Intensities: Relative photon branching from each level # **Adopted Levels, Gammas** $Band (A) \hbox{:} \ Yrast \ g.s. \ band$