153 Lu ε decay 1989Ni04 | | | History | | | |-----------------|---------|-------------------|------------------------|--| | Type | Author | Citation | Literature Cutoff Date | | | Full Evaluation | N. Nica | NDS 170, 1 (2020) | 16-Aug-2020 | | Parent: 153 Lu: E=0.0; J^{π} =(11/2⁻); $T_{1/2}$ =0.9 s 2; $Q(\varepsilon)$ =884×10¹ 25; $\%\varepsilon+\%\beta^+$ decay=? ## ¹⁵³Yb Levels Assignment of γ 's to 153 Lu decay and their placement was based (1989Ni04) on their previous observation in the IT decay of the 2578.2+x level. | E(level) | $J^{\pi \dagger}$ | $T_{1/2}^{\ddagger}$ | |----------|-------------------|----------------------| | 0.0 | $(7/2^{-})$ | 4.2 s 2 | | 566.5 | $(9/2^{-})$ | | | 1202 | $(13/2^+)$ | ≈6 ns | | 1491 | $(11/2^{-})$ | | $^{^{\}dagger}$ See Adopted Levels for configuration assignments. $$\gamma$$ (153 Yb) Since this scheme is very incomplete, no I γ normalization is given. | E_{γ} | I_{γ} | $E_i(level)$ | \mathbf{J}_i^{π} | \mathbf{E}_f | \mathbf{J}_f^{π} | |--------------|--------------|--------------|----------------------|----------------|------------------------| | 566.5 | 100 | 566.5 | (9/2-) | 0.0 | $\overline{(7/2^{-})}$ | | 1202 | ≈10 | 1202 | $(13/2^+)$ | 0.0 | $(7/2^{-})$ | | 1491 | ≈15 | 1491 | $(11/2^{-})$ | 0.0 | $(7/2^{-})$ | $^{^{153}}$ Lu- $\Delta Q(\varepsilon)$ based on syst, 2017Wa10. ¹⁵³Lu produced by ⁹²Mo(⁶⁴Zn,p2n) at 285 MeV followed by mass separation. Measured singles and coincidence spectra with Si ΔE-E telescope and Ge and plastic scintillator detectors. [‡] Adopted values. ## 153Lu ε decay 1989Ni04 ## Decay Scheme Intensities: Relative I_{γ}