$^{153}\mathbf{Yb}$ IT decay (15 $\mu\mathbf{s})$ 1989Mc01,1993Mc03

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 170, 1 (2020)	16-Aug-2020

Parent: ¹⁵³Yb: E=2578.2+x; $J^{\pi}=(27/2^{-})$; $T_{1/2}=15 \ \mu s \ l$; %IT decay=100.0 1989Mc01,1993Mc03: ¹⁰²Pd(⁵⁴Fe,2pn) at 245 MeV followed by mass separation; measured γ 's with Ge detector array.

¹⁵³Yb Levels

E(level) [†]	J ^π ‡	T _{1/2} #	Comments
0.0	$(7/2^{-})$		
566.98 15	$(9/2^{-})$		
1201.66 14	$(13/2^+)$	≈6 ns	$T_{1/2}$: from $\gamma(t)$ (1993Mc03).
1459.27 16	$(9/2^{-})$		
1490.71 <i>16</i>	$(11/2^{-})$		
1762.53 15	$(11/2^+)$		
2030.19 17	$(13/2^+)$		
2137.43 18	$(15/2^+)$		
2152.9 <i>3</i>	$(15/2^{-})$		
2246.94 19	$(17/2^+)$		
2481.34 24	$(19/2^{-})$		
2504.53 22	$(19/2^+)$		
2527.4 <i>3</i>	$(21/2^+)$		
2578.2 <i>3</i>	$(23/2^{-})$		
2578.2+x	(27/2 ⁻)	15 μs 1	Additional information 1. $T_{1/2}$: from γ (t) (1993Mc03, 1989Mc01).

[†] From least-squares fits to γ -ray energies.

[‡] From authors and based primarily on systematics of N=83 nuclides. See Adopted Levels for configuration assignments.

Adopted values.

$\gamma(^{153}\text{Yb})$

I γ normalization: From %IT=100 of the isomeric state giving 100% feeding to the ground state.

E_{γ}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\dagger}	$I_{(\gamma+ce)}$ ‡	Comments
X		2578.2+x	(27/2 ⁻)	2578.2	(23/2 ⁻)			139 6	Unobserved γ ray expected to decay from the 15 μ s isomer. Of all known levels of this nucleus, the only one with $\Delta J \leq 2$ relative to the isomer is 2578.2, therefore assumed to be the final level (other decay patterns not excluded if new γ 's could be discovered).
(23)		2527.4	$(21/2^+)$	2504.53	(19/2+)			104 11	E_{γ} : γ not observed, but required by $\gamma\gamma$ coincidences.
50.8 2	76 8	2578.2	(23/2 ⁻)	2527.4	(21/2 ⁺)	E1	0.391 7		$\alpha(L) = 0.305 \ 6; \ \alpha(M) = 0.0687 \ 13 \ \alpha(N) = 0.0156 \ 3; \ \alpha(O) = 0.00193 \ 4; \ \alpha(P) = 6.32 \times 10^{-5} \ 11 \ Mylk + \ Lemma = 0.54 \ 25 \ from intensity holonood$
96.8 2	5.0 4	2578.2	(23/2-)	2481.34	(19/2-)	(E2)	3.64 6		Mult.: From α =0.34 2.3 from intensity balances. $\alpha(K)$ =1.091 16; $\alpha(L)$ =1.94 4; $\alpha(M)$ =0.480 9
									α (N)=0.1094 <i>19</i> ; α (O)=0.01255 <i>22</i> ; α (P)=4.66×10 ⁻⁵ <i>7</i> Mult.: From intensity balances and ΔJ^{π} .
107.2 2	6.7 4	2137.43	$(15/2^+)$	2030.19	$(13/2^+)$	M1	2.77		$\alpha(K) = 2.31 4; \alpha(L) = 0.354 6; \alpha(M) = 0.0792 12$ $\alpha(K) = 0.0186 2; \alpha(M) = 0.00266 4; \alpha(M) = 0.0001414 22$
									Mult.: From $\alpha = 2.8 \ 3$ from intensity balances.
109.5 2	9.8 5	2246.94	$(17/2^+)$	2137.43	$(15/2^+)$	M1	2.60		$\alpha(K)=2.18 4; \alpha(L)=0.333 5; \alpha(M)=0.0745 12$ $\alpha(N)=0.0175 3; \alpha(O)=0.00250 4; \alpha(P)=0.0001330 20$
234.4 2	22.6 11	2481.34	(19/2 ⁻)	2246.94	(17/2 ⁺)	(E1)	0.0369		Mult.: From α =2.4 6 from intensity balances. $\alpha(K)$ =0.0309 5; $\alpha(L)$ =0.00464 7; $\alpha(M)$ =0.001035 15 $\alpha(K)$ =0.00240 4; $\alpha(Q)$ =3.20×10 ⁻⁵ 5; $\alpha(D)$ =1.520×10 ⁻⁶ 22
									Mult.: From intensity balances.
257.6 2	62 <i>3</i>	2504.53	(19/2+)	2246.94	$(17/2^+)$	M1,E2	0.178 60		$\alpha(\mathbf{K})=0.140\ 60;\ \alpha(\mathbf{L})=0.0295\ 7;\ \alpha(\mathbf{M})=0.00681\ 15$ $\alpha(\mathbf{N})=0.001584\ 25;\ \alpha(\mathbf{O})=0.000211\ 15;\ \alpha(\mathbf{P})=8.0\times10^{-6}\ 41$
2(772)	0.0.4	2020 10	(12/2+)	17(0.50	(11/2+)	N/1	0.214		Mult.: From $\alpha = 0.19$ 8 from intensity balances.
267.72	9.0 4	2030.19	$(13/2^{+})$	1762.53	$(11/2^{+})$	MI	0.214		$\alpha(\mathbf{K})=0.1793; \alpha(\mathbf{L})=0.02704; \alpha(\mathbf{M})=0.006039$ $\alpha(\mathbf{N})=0.00141720; \alpha(\mathbf{O})=0.0002033; \alpha(\mathbf{P})=1.086\times10^{-5}16$
271.7 4	0.6 1	1762.53	(11/2+)	1490.71	(11/2-)	[E1]	0.0254		Mult.: From $\alpha = 0.26 + 15 - 9$ from intensity balances. $\alpha(K) = 0.0214 \ 3; \ \alpha(L) = 0.00317 \ 5; \ \alpha(M) = 0.000707 \ 11$
280.5 3	1.2 2	2527.4	$(21/2^+)$	2246.94	$(17/2^+)$	[E2]	0.0907		$\alpha(N)=0.0001643\ 24;\ \alpha(O)=2.27\times10^{-6}\ 4;\ \alpha(P)=1.073\times10^{-6}\ 76$ $\alpha(K)=0.0635\ 9;\ \alpha(L)=0.0209\ 3;\ \alpha(M)=0.00498\ 8$
303.0 2	4.4 4	1762.53	$(11/2^+)$	1459.27	(9/2-)	[E1]	0.0194		α (N)=0.001149 <i>17</i> ; α (O)=0.0001432 <i>21</i> ; α (P)=3.20×10 ⁻⁶ 5 α (K)=0.01635 <i>23</i> ; α (L)=0.00241 <i>4</i> ; α (M)=0.000536 8
328.4.3	1.7 2	2481.34	$(19/2^{-})$	2152.9	$(15/2^{-})$	[E2]	0.0565		$\alpha(N)=0.0001248 \ 18; \ \alpha(O)=1.729 \times 10^{-5} \ 25; \ \alpha(P)=8.29 \times 10^{-7} \ 12 \ \alpha(K)=0.0412 \ 6; \ \alpha(L)=0.01175 \ 17; \ \alpha(M)=0.00278 \ 4$
2-51.0		2504.52	(10/01)		(15/0+)	[]	0.0400		$\alpha(N) = 0.000641 \ I0; \ \alpha(O) = 8.13 \times 10^{-5} \ I2; \ \alpha(P) = 2.14 \times 10^{-6} \ 3$
367.1 2	38.4 19	2504.53	(19/2 ⁺)	2137.43	$(15/2^{+})$	[E2]	0.0409		$\alpha(K)=0.0506 \ 5; \ \alpha(L)=0.00/96 \ 12; \ \alpha(M)=0.0018/3 \ 3 \ \alpha(N)=0.000433 \ 7; \ \alpha(O)=5.56\times10^{-5} \ 8; \ \alpha(P)=1.619\times10^{-6} \ 23$

 $^{153}_{70} \rm Yb_{83}\text{-}2$

From ENSDF

¹⁵³Yb IT decay (15 μs) **1989Mc01,1993Mc03** (continued)

 $\gamma(^{153}$ Yb) (continued)

E_{γ}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
539.4 2	14.2 7	2030.19	(13/2 ⁺)	1490.71	(11/2 ⁻)	[E1]	0.00514	α (K)=0.00435 6; α (L)=0.000617 9; α (M)=0.0001369 20 α (N)=3.20×10 ⁻⁵ 5; α (O)=4.50×10 ⁻⁶ 7; α (P)=2.30×10 ⁻⁷ 4
561.0 2	4.1 4	1762.53	$(11/2^+)$	1201.66	(13/2 ⁺)	[M1,E2]	0.0219 86	$\alpha(K) = 0.0182 \ 75; \ \alpha(L) = 0.00293 \ 84; \ \alpha(M) = 6.6 \times 10^{-4} \ 18 \ \alpha(N) = 1.55 \times 10^{-4} \ 43; \ \alpha(O) = 2.17 \times 10^{-5} \ 67; \ \alpha(P) = 1.06 \times 10^{-6} \ 47$
567.6 2	18.9 9	566.98	(9/2 ⁻)	0.0	(7/2 ⁻)	[M1,E2]	0.0213 83	α (K)=0.0176 73; α (L)=0.00284 82; α (M)=6.4×10 ⁻⁴ 18 α (N)=1.50×10 ⁻⁴ 42; α (O)=2.10×10 ⁻⁵ 65; α (P)=1.03×10 ⁻⁶ 46
635.1 2	16.0 8	1201.66	$(13/2^+)$	566.98	(9/2 ⁻)	[M2]	0.0633	$\alpha(K)=0.0520 \ 8; \ \alpha(L)=0.00871 \ 13; \ \alpha(M)=0.00198 \ 3 \ \alpha(N)=0.000465 \ 7; \ \alpha(O)=6.62\times10^{-5} \ 10; \ \alpha(P)=3.45\times10^{-6} \ 5$
935.8 2	47.3 24	2137.43	$(15/2^+)$	1201.66	(13/2 ⁺)	[M1,E2]	0.0063 21	$\alpha(K)=0.0053 \ 18; \ \alpha(L)=8.0\times10^{-4} \ 24; \ \alpha(M)=1.78\times10^{-4} \ 51 \ \alpha(N)=4.2\times10^{-5} \ 12; \ \alpha(O)=5.9\times10^{-6} \ 18; \ \alpha(P)=3.1\times10^{-7} \ 12$
951.2 <i>3</i>	1.3 2	2152.9	(15/2 ⁻)	1201.66	(13/2 ⁺)	[E1]	1.64×10^{-3}	$\alpha(K) = 0.001398 \ 20; \ \alpha(L) = 0.000192 \ 3; \ \alpha(M) = 4.25 \times 10^{-5} \ 6 \ \alpha(N) = 9.94 \times 10^{-6} \ 14; \ \alpha(O) = 1.415 \times 10^{-6} \ 20; \ \alpha(P) = 7.52 \times 10^{-8} \ 11$
1045.3 2	61 3	2246.94	$(17/2^+)$	1201.66	(13/2+)	[E2]	0.00339	$\alpha(K) = 0.00282 \ 4; \ \alpha(L) = 0.000440 \ 7; \ \alpha(M) = 9.89 \times 10^{-5} \ 14$ $\alpha(K) = 2.31 \times 10^{-5} \ 4; \ \alpha(\Omega) = 3.24 \times 10^{-6} \ 5; \ \alpha(P) = 1.590 \times 10^{-7} \ 23$
1196.0 3	2.2 2	1762.53	$(11/2^+)$	566.98	(9/2 ⁻)	[E1]	1.10×10^{-3}	$\alpha(K) = 0.000922 \ I3; \ \alpha(L) = 0.0001254 \ I8; \ \alpha(M) = 2.77 \times 10^{-5} \ 4$ $\alpha(K) = 6.48 \times 10^{-6} \ 9; \ \alpha(D) = 9.26 \times 10^{-7} \ I3; \ \alpha(P) = 4.98 \times 10^{-8} \ 7;$
1201.4 2	100 5	1201.66	(13/2+)	0.0	(7/2-)	[E3]	0.00534	$\alpha(\text{IPF})=1.98\times10^{-5} 3$ $\alpha(\text{K})=0.00434 6; \ \alpha(\text{L})=0.000773 \ 11; \ \alpha(\text{M})=0.0001764 \ 25$ $\alpha(\text{N})=4.12\times10^{-5} 6; \ \alpha(\text{O})=5.71\times10^{-6} \ 8; \ \alpha(\text{P})=2.60\times10^{-7} \ 4; \ \alpha(\text{PF})=1.303\times10^{-6} \ 21$
1459.0 2	4.7 4	1459.27	(9/2 ⁻)	0.0	(7/2 ⁻)	[M1,E2]	0.0024 6	$\alpha(\text{II}^{-1}) = 1.393 \times 10^{-21} \text{ a}(\text{K}) = 0.0020 \ 5; \ \alpha(\text{L}) = 0.00028 \ 7; \ \alpha(\text{M}) = 6.3 \times 10^{-5} \ 15$ $\alpha(\text{N}) = 1.5 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 2.1 \times 10^{-6} \ 5; \ \alpha(\text{P}) = 1.13 \times 10^{-7} \ 30;$ $\alpha(\text{IPF}) = 6.6 \times 10^{-5} \ 8$
1490.6 2	14.8 7	1490.71	(11/2 ⁻)	0.0	(7/2 ⁻)	[E2]	1.76×10^{-3}	$\alpha(K) = 0.001430 \ 20; \ \alpha(L) = 0.000208 \ 3; \ \alpha(M) = 4.64 \times 10^{-5} \ 7$ $\alpha(N) = 1.087 \times 10^{-5} \ 16; \ \alpha(O) = 1.544 \times 10^{-6} \ 22; \ \alpha(P) = 8.04 \times 10^{-8} \ 12;$ $\alpha(IPF) = 6.79 \times 10^{-5} \ 10$

 $\boldsymbol{\omega}$

[†] Additional information 2.
[‡] For absolute intensity per 100 decays, multiply by 0.72 *3*.

0 - 083