²⁴⁸Cm SF decay **2012Ma13** | | | History | | | |-----------------|---------|-------------------|------------------------|--| | Type Author | | Citation | Literature Cutoff Date | | | Full Evaluation | N. Nica | NDS 170, 1 (2020) | 16-Aug-2020 | | Parent: 248 Cm: E=0.0; $J^{\pi}=0^{+}$; $T_{1/2}=3.48\times10^{5}$ y 6; %SF decay=? Data set based on the XUNDL compilation of 2012Ma13 done by B. Singh (McMaster). Includes ²⁵²Cf SF decay data from 2012Ma13, which differs from ²⁵²Cf SF decay dataset based on 2015Wa28. There are two experiments performed and analyzed by 2012Ma13: - 1. EUROGAM-II measurement. Measured E γ , I γ , $\gamma\gamma\gamma$, $\gamma\gamma(\theta)$ from ²⁴⁸Cm fission source. Four LEPS detectors were also used for x rays and low-energy γ rays. In $\gamma\gamma$ coin, double gates were set on complementary nuclide ⁹³Rb. - 2. Gammasphere measurement: measured E γ , I γ , $\gamma\gamma\gamma$ coin using ²⁵²Cf fission source; deduced mass assignment. Comparison with quasi-particle rotor model calculations. - 2012Ma13 point out that the cascades assigned to ¹⁵³Pr in 2010Hw03 belong instead to ¹⁵⁴Pr (and those assigned to ¹⁵¹Pr belong to ¹⁵⁴Pr, respectively). - However later 2015Wa28 (same group as 2010Hw03) performed a new set of experiments (given in the ²⁵²Cf SF decay dataset of this evaluation) in which 2015Wa28 do not confirm the assignments of 2012Ma13 but basically reaffirm the inital assignments of the above mentioned cascades to ¹⁵³Pr (and to ¹⁵¹Pr, respectively). For a more detailed discussion of 2015Wa28 (and 2010Hw03) versus 2012Ma13 data, see ²⁵²Cf SF decay dataset (of ¹⁵³Pr in this evaluation). Based on the fact that the last published study of 2015Wa28 discuss extensively the differences between 2012Ma13 and 2010Hw03, the assignments of 2015Wa28 were adopted in the Adopted Levels, Gammas dataset. However these assignments are still rather tentative and new studies are needed to elucidate the differences between the three mentioned references. ### ¹⁵³Pr Levels | E(level) [†] | Jπ‡ | Comments | |--------------------------|---------------------|--| | 0.0+x [#] | (7/2 ⁻) | E(level): $x=20$ (from 248 Cm) and $x=37$ (from 252 Cf), from particle-rotor model calculations for $3/2[541]$ band. | | 141.6+x [#] 2 | $(11/2^{-})$ | | | 362.6+x [#] 3 | $(15/2^{-})$ | | | 654.4+x [#] 3 | $(19/2^{-})$ | | | 1012.8+x [#] 4 | $(23/2^{-})$ | | | 1433.7+x [#] 4 | $(27/2^{-})$ | | | 1912.7+x [#] 5 | $(31/2^{-})$ | | | 2446.6+x [#] 6 | $(35/2^{-})$ | | | 3033.6+x [#] 12 | (39/2-) | | [†] From Eγ data ## $\gamma(^{153}Pr)$ | E_{γ}^{\dagger} | I_{γ}^{\ddagger} | $E_i(level)$ | \mathbf{J}_i^{π} | \mathbf{E}_f \mathbf{J}_f^{π} | Mult. | Comments | |------------------------|---------------------------|----------------------|--|---|-------|---| | 141.6 2 | | 141.6+x | $\overline{(11/2^{-})}$ | $0.0+x (7/2^-)$ | | | | 221.0 2 | 70 30 | 362.6+x | $(15/2^{-})$ | $141.6+x (11/2^{-})$ | Q | Mult.: $(291.8\gamma)(221.0\gamma)(\theta)$ consistent with QQ cascade. | | 291.8 2 | 100 10 | 654.4+x | (19/2-) | 362.6+x (15/2 ⁻) | Q | Mult.: $(291.8\gamma)(221.0\gamma)(\theta)$ consistent with QQ cascade.
I _y : 100 10 in ²⁵² Cf SF decay. | | 358.4 2
420.9 2 | 105 <i>10</i> 67 <i>7</i> | 1012.8+x
1433.7+x | (23/2 ⁻)
(27/2 ⁻) | 654.4+x (19/2 ⁻)
1012.8+x (23/2 ⁻) | | I_{γ} : 110 15 in ²⁵² Cf SF decay.
I_{γ} : 85 9 in ²⁵² Cf SF decay. | [‡] Established by 2012Ma13 based on calculations and systematics. [#] Band(A): $\pi 3/2[541]$ band. #### ²⁴⁸Cm SF decay 2012Ma13 (continued) ## $\gamma(^{153}\text{Pr})$ (continued) | E_{γ}^{\dagger} | I_{γ}^{\ddagger} | $E_i(level)$ | \mathbf{J}_i^{π} | \mathbf{E}_f J | f^{π} | Comments | |------------------------|-------------------------|--------------|----------------------|------------------|-----------|--| | | | | | | | I_{γ} : 30 4 in ²⁵² Cf SF decay.
I_{γ} : 18 4 in ²⁵² Cf SF decay. | | | | | | 2446.6+x (35) | | | [†] Same energy values are reported for both ²⁴⁸Cm SF decay and ²⁵²Cf SF decay studies. [‡] From ²⁴⁸Cm SF decay. Values from ²⁵²Cf SF decay are given in comments. [#] Placement of transition in the level scheme is uncertain. 2 # 248 Cm SF decay 2012Ma13 Band(A): $\pi 3/2[541]$ band