¹⁵⁷Ta α decay (10.1 ms) 1997Ir01

Type Author Citation Literature Cutoff Date

Full Evaluation N. Nica NDS 170, 1 (2020) 16-Aug-2020

Parent: 157 Ta: E=0.0; $J^{\pi}=1/2^+$; $T_{1/2}=10.1$ ms 4; $Q(\alpha)=6355$ 6; $\%\alpha$ decay=96.6 12

¹⁵⁷Ta-%α decay: From p-decay intensity of 3.4% 12 (1997Ir01) and assuming no significant ε + β + decay.

Experimental methods:

1996Pa01: produced by heavy-ion fusion-evaporation reaction with products separated in recoil mass spectrometer. Measured α' s with Si strip detector.

¹⁵³Lu Levels

E(level) J^{π} Comments 80 5 $1/2^{+}$ E(level): Level populated by α decay is deduced (1997Ir01) to be $s_{1/2}$ state.

α radiations

E α E(level) $I\alpha^{\ddagger}$ HF \dagger Comments6117 4801001.43 7E α : From 1997Ir01.
I α : Value assumes that all of the α decay is via this branch.

^{\dagger} The nuclear radius parameter $r_0(^{153}Lu)=1.5551$ 66 is deduced from interpolation (or unweighted average) of radius parameters of the adjacent even-even nuclides.

[‡] For absolute intensity per 100 decays, multiply by 0.966 12.