¹³⁹La(²⁰Ne,6nγ) 2016Pr06

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 170, 1 (2020)	16-Aug-2020

Data set based on the XUNDL compilation of 2016Pr06 done by A. Chakraborty (Visva-Bharati), S. Bhattacharya (SINP), B. Singh (McMaster).

2016Pr06: $E(^{20}Ne)=139$ MeV. The experiment was carried out at the Variable Energy Cyclotron Centre (VECC), Kolkata, India. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (DCO), $\gamma\gamma$ (linear polarization), isomer half-life by (Rf) γ (t) spectra, two-time gated spectra for 200 ns and 800 ns using INGA array consisting of six Compton-suppressed Clover detectors; two detectors each at 40°, 90°, and 125°. Deduced high-spin levels, J^{π} , multipolarities. Total Routhian surface (TRS) calculations. Comparison of experimental transition probabilities and γ -ray mixing ratios with particle-rotor model calculations.

¹⁵³Ho Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	$11/2^{-}$		
576.1 5	$15/2^{-}$		
726.9 5	$15/2^{-}$		
1091.0 5	$15/2^+$		
1200.9 5	$(10/2)^{-}$		
1646.1.5	(19/2) 19/2 ⁺		
1872.9 6	$\frac{13}{2}$		
2001.9? 7			
2030.8 6	$(23/2)^{-}$		
2124.9 6	$\frac{23}{2^{-}}$		
2202.9 0	23/21		
2357.9 6	$\frac{27}{2}$		
2735.9 7	$\frac{27}{2^+}$		
2771.9 [#] 7	$31/2^{+}$	251 ns +54-38	$T_{1/2}$: from RF- γ (t) spectra (2016Pr06).
3208.9 8	$33/2^+$		
3684.9 [#] 8	$35/2^+$		
4315.9 [#] 10	39/2+		
4678.9 [#] 11	$43/2^{+}$		
5133.9 [#] 12	$45/2^{+}$		
5770.9 <i>13</i>	$47/2^{(+)}$		
6075.9 14	$49/2^{(+)}$		
6175.9 [#] 13	49/2+		
6517.9 <i>15</i>	$53/2^{(+)}$		
6572.9 15	$51/2^{(+)}$		
6936.9 [#] 14	53/2+		
7306.9 16	53/2(-)		
7402.9 [#] 15	57/2+		
7597.9" 16	$61/2^+$		
/649.9? 1/	62/2-		
8933.9 17	$\frac{03/2}{65/2^{-}}$		
9073.9 16	$67/2^{-}$		
9869.9 17	$67/2^{-}$		
10199.9 17	$(69/2^{-})$		
10258.9 17	69/2 ⁻ 71/2-		
10910.9 17	$(73/2^{-})$		
10,10,7 17	(15/2)		

¹³⁹La(²⁰Ne,6nγ) **2016Pr06** (continued)

¹⁵³Ho Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$
11302.9 17	75/2(-)
11678.9 18	$79/2^{(-)}$
12119.9 19	$81/2^{(-)}$

[†] From least-squares fit to γ energies, assuming 0.5 keV uncertainty for each E γ value, as suggested in e-mail correspondence with the authors.

[±] As given in 2016Pr06, based on their $\gamma\gamma(\theta)$ and polarization data, and previous assignments.

[#] Seq.(A): γ cascade based on $31/2^+$ level.

$\gamma(^{153}\text{Ho})$

The DCO ratios (R_{DCO}) are for 40° and 90°. DCO(Q) is for gate on stretched quadrupole transition, and DCO(D) for gate on stretched dipole (M1 or E1). Spin alignment parameter σ /J=0.3 was used in the analysis.

The linear polarization asymmetry (POL) is positive for pure electric and negative for pure magnetic transitions. For mixed transitions, the value is close to zero and sign depends on the mixing ratio.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ	Comments
36‡		2771.9	31/2+	2735.9	27/2+			
61‡		2357.9	$25/2^{-}$	2296.9	$27/2^{-}$			
140	32.7 16	9073.9	67/2-	8933.9	65/2-	(M1+E2)	+0.20 +9-5	R _{DCO} =1.21 9.
151 [‡]		726.9	$15/2^{-}$	576.1	$15/2^{-}$			
153 [‡]		1359.6	$(19/2)^{-}$	1206.9	19/2-			
172 [‡]		2202.9	$23/2^{+}$	2030.8	$(23/2)^{-}$			
195	75.4 <i>3</i> 8	7597.9	$61/2^+$	7402.9	$57/2^{+}$	E2		POL=+0.11 1.
	6 0 0 6 0				aa /a_			R _{DCO} =0.96 <i>3</i> .
233	6.80 68	2357.9	25/2-	2124.9	23/2-			
252	4.66 4/	2124.9	23/2	18/2.9	$\frac{23}{2}$			
287	4.82 48	1646.1	19/2	1359.6	(19/2)			
305	7.97 80	6075.9	$49/2^{(+)}$	5770.9	$47/2^{(+)}$	(M1+E2)	+0.11 + 11 - 5	POL = -0.15 I.
								$R_{DCO} = 1.38 \ 8.$
330 [‡]		2202.9	$23/2^{+}$	1872.9	$23/2^{-}$			
335	48.5 24	8933.9	$65/2^{-}$	8598.9	63/2-	(M1+E2)	+0.10 3	$POL = -0.03 \ 3.$
_								R _{DCO} =1.39 <i>6</i> .
343 [@]		7649.9?		7306.9	$53/2^{(-)}$			
343	11.05 55	10601.9	$71/2^{-}$	10258.9	69/2-	(M1+E2)	+0.19 +9-8	POL=-0.07 3.
								R _{DCO} =1.24 <i>3</i> .
356 [‡]		2357.9	$25/2^{-}$	2001.9?				
363	100 5	4678.9	$43/2^{+}$	4315.9	$39/2^{+}$	E2		POL=+0.18 3.
								R _{DCO} =0.86 2.
364 [‡]		1091.0	$15/2^{+}$	726.9	$15/2^{-}$			
376	19.12 96	11678.9	$79/2^{(-)}$	11302.9	$75/2^{(-)}$	E2		POL=+0.04 8.
			,		,			R _{DCO} =0.89 8.
378	22.2 11	2735.9	$27/2^{+}$	2357.9	$25/2^{-}$			
389	9.68 97	10258.9	69/2-	9869.9	67/2-	(M1+E2)	+0.17 +11-8	POL=-0.02 3.
								R _{DCO} =1.27 4.
392 [‡]		11302.9	$75/2^{(-)}$	10910.9	$(73/2^{-})$			
424	5.91 59	2296.9	$27/2^{-}$	1872.9	$23/2^{-1}$			

Continued on next page (footnotes at end of table)

				¹³⁹ La	a(²⁰ Ne,6n	γ) 2016Pr0	6 (continued)	
$\gamma(^{153}\text{Ho})$ (continued)								
Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ	Comments
437‡		3208.9	$33/2^{+}$	2771.9	$31/2^{+}$			
439 [‡]		1646.1	$19/2^{+}$	1206.9	$19/2^{-}$			
439 [‡]		2735.9	$27/2^+$	2296.9	$\frac{1}{27/2^{-}}$			
441	18.04 90	12119.9	$81/2^{(-)}$	11678.9	$79/2^{(-)}$			POL=-0.01 10.
								R _{DCO} =1.59 <i>3</i> . I _y : the quoted intensity may have contribution from 442-keV transition from 6518 level (2016Pr06).
442		6517.9	53/2(+)	6075.9	49/2(+)			I_{γ} : could not be measured in 2016Pr06 due to doublet.
455	88.7 44	5133.9	45/2+	4678.9	43/2+	(M1+E2)	+0.33 3	POL=+0.09 2. R _{DCO} =1.07 3.
466	71.1 36	7402.9	57/2+	6936.9	53/2+	E2		POL=+0.08 2. R _{DCO} =0.84 3.
475 [‡]		2771.9	$31/2^{+}$	2296.9	$27/2^{-}$			
476 [‡]		3684.9	$35/2^+$	3208.9	$33/2^{+}$			
485 [‡]		2357.9	25/2-	1872.9	23/2-			
497	2.44 24	6572.9	51/2 ⁽⁺⁾	6075.9	49/2 ⁽⁺⁾	(M1(+E2))	+0.3 5	POL=-0.01 5. R _{DCO} =0.79 4.
515	13.87 69	1091.0	$15/2^+$	576.1	15/2-			
533	33.1 17	2735.9	27/2+	2202.9	23/2+			
555+ 557	52 1 26	1646.1	$\frac{19}{2^+}$	1091.0	$15/2^+$ 10/2 ⁺			
576	36.2.18	2202.9 576.1	$\frac{25/2}{15/2^{-}}$	1040.1	$\frac{19/2}{11/2^{-}}$			
631 [‡]	50.2 10	1206.9	$19/2^{-}$	576.1	$15/2^{-1}$			
631	113.1 57	4315.9	39/2+	3684.9	35/2+	E2		POL=+0.02 2. Rpco=0.91 3.
633 [‡]		1359.6	$(19/2)^{-}$	726.9	$15/2^{-}$			
637	14.13 <i>71</i>	5770.9	47/2(+)	5133.9	45/2+	(M1(+E2))	+0.08 +12-9	POL=-0.17 8. R _{DCO} =1.43 1.
652 [‡]		10910.9	$(73/2^{-})$	10258.9	69/2-			
666	8.31 83	1872.9	23/2-	1206.9	19/2-			
671 [‡]		2030.8	(23/2)-	1359.6	$(19/2)^{-}$			
701	12.03 60	11302.9	$75/2^{(-)}$	10601.9	71/2-	E2		$POL = +0.10 \ 8.$
711	7.87 79	10910.9	(73/2 ⁻)	10199.9	(69/2-)	E2		$R_{DCO} = 1.03 \ I.$ POL=+0.03 8.
727	11.99 60	726.9	$15/2^{-}$	0.0	$11/2^{-}$			KDC0=0.02 7.
732	3.65 37	10601.9	71/2-	9869.9	67/2-	E2		R _{DCO} =0.31 2.
734	2.93 29	7306.9	53/2(-)	6572.9	51/2(+)	E1		POL=+0.42 4. R _{DCO} =0.85 3.
761	76.8 38	6936.9	53/2+	6175.9	49/2+	E2		POL=+0.01 2. R _{DCO} =0.89 3.
783	3.86 39	1359.6	$(19/2)^{-}$	576.1	15/2-			
795 [‡]		2001.9?		1206.9	19/2-			
796	9.68 97	9869.9	67/2-	9073.9	67/2-			POL=-0.03 2. Rpco=1.11 8.
824 [‡]		2030.8	$(23/2)^{-}$	1206.9	19/2-			
913 [‡]		3684.9	35/2+	2771.9	$31/2^+$			
918	8.26 83	2124.9	23/2-	1206.9	19/2-			
1001	51.8 26	8598.9	63/2-	7597.9	61/2+	(E1+M2)	+0.19 +5-4	POL=+0.05 2. R _{DCO} =1.24 7.

Continued on next page (footnotes at end of table)

139 La(20 Ne,6n γ)	2016Pr06 (continued)

γ ⁽¹⁵³ Ho) (continued)									
Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ	Comments	
1042	77.3 39	6175.9	49/2+	5133.9	45/2+	E2		POL=+0.02 3.	
								R _{DCO} =0.99 3.	
1126	9.02 90	10199.9	$(69/2^{-})$	9073.9	67/2-	(M1+E2)	+0.17 +14-11	δ: uncertainty is from e-mail reply from the	
								POL = -0.11 I	
								$R_{\rm DCO} = 1.02 \ 4.$	
1185	1.89 <i>19</i>	10258.9	$69/2^{-}$	9073.9	$67/2^{-}$			200	
1325	4.60 46	10258.9	69/2-	8933.9	$65/2^{-}$	E2		POL=+0.02 8.	
								R _{DCO} =0.56 9.	
1476	5.74 57	9073.9	67/2-	7597.9	$61/2^+$	[E3]			
1528	6.09 61	10601.9	$71/2^{-}$	9073.9	67/2-	E2		R _{DCO} =0.42 7.	

[†] Uncertainties of 5% for strong γ rays (I $\gamma \ge 10$) and 10% for weak γ rays (I $\gamma < 10$) assigned, based on e-mail correspondence with authors. Authors also give, in their Table II, intensities of 38 γ rays obtained from 200-ns and 800-ns time gated spectra and resultant matrices.

[‡] The transition shown in Fig. 6 of 2016Pr06, taken from literature (see ¹⁵³Ho Adopted dataset Dec 2005 update, same as presently adopted values). This γ is not listed in Tables I and II of 2016Pr06. [#] (M1+E2) or (E1+M2) assigned by evaluator, as implied by mixing ratios and given J^{π} values.

[@] Placement of transition in the level scheme is uncertain.

¹³⁹La(²⁰Ne,6nγ) 2016Pr06 Legend $\begin{array}{l} I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ \gamma \ \text{Decay} \ (\text{Uncertain}) \end{array}$ Level Scheme Intensities: Relative I_{γ} - • + 441 18:04 1 376 E2 | 81/2(-) 12119.9 $= \frac{1}{22} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \left[\frac{1}{22} \left[\frac{1}{22} \right]_{23} \left[\frac{1}{22} \left$ 201 | 503 <u>79/2</u>(-) 11678.9 $= \begin{bmatrix} 1_{23} \\ 1_{24} \\ 1_{26} \\ 3_{20} \\ 3_{20} \\ 1_{26}$ 75/2(-) 11302.9 - co.6 (3x14) (73/2-) 10910.9 71/2-10601.9 69/2 10258.9 (69/2-205 -- 36 -10199.9 + 145 (E3) 5,24 | 140 (H1, E3) 5,24 | 12 (H1, E3) 32 | 9869.9 67/2 335 an 42 48.5 8.15 CMx1 9073.9 67/2 65/2 8 8933.9 1001 63/2 8598.9 - 195 - 195 - 222 - 354 6 E2 71.1 343 رم. روز ا 7<u>649.9</u> 7597.9 61/2+ 57/2 7402.9 MICES I 53/2(-7306.9 2 20 53/2+ 6936.9 <6: (5) 65 51/2(+) ~ R 6572.9 + 637 | . 53/2(+) 305 ar 6517.9 1045 $\frac{49/2^+}{49/2^{(+)}}$ 6175.9 6075.9 °.° + 455 (A11,42), 47/2(+) 5770.9 + 363 E2 100 45/2+ 5133.9 E2 113.1 43/2+ 4678.9 3, 39/2+ 4315.9 9,3 476 3684.9 35/2+ 33/2+ 3208.9 31/2+ 2771.9 251 ns +54-38 11/2-0.0

¹⁵³₆₇Ho₈₆

5

¹³⁹La(²⁰Ne,6nγ) 2016Pr06

