		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 170, 1 (2020)	16-Aug-2020

 $Q(\beta^{-}) = -484.7$ 7; S(n) = 8550.28 12; S(p) = 5893.6 7; $Q(\alpha) = 272.1$ 20 2017Wa10

Model calculations that may be of interest include: γ half-lives (1966Fa06,1966Fa07); reflection asymmetry (1993Af01, 1995Af01, 1995Af05); configurations (1971SoZW, 1972So12, 1985GuZS, 1988Al32, 1993Ne10, 1993No01, 1995Dz02); and combined electron-nuclear radiation for ¹⁵³Gd ε decay (1995Sa56).

Some recent measurements of hyperfine structure: 2004Mb03, 2004Ma04, 2002Ga49, 2001Ga72, 2000Tr07.

Calcula Tr	ted co	nfigurations for bandheads are:
4-	fformer	t from the emperimental energy the calculated energy
	.iieren	t from the experimental energy, the calculated energy
15	given	in parentheses after the keynumber.
Energy	J^{π}	Configuration
0	5/2+	5/2[413] 94-98% 1972So12, 1985GuZS, 1988Al32, 1993No01
97	$5/2^{-}$	5/2[532] 90-94% 1972So12 (20 keV), 1985GuZS, 1988Al32,
		1993No01
103	3/2+	3/2[411] 86-98% 1972So12 (-20 keV), 1985GuZS, 1988Al32,
		1993No01 with 1/2[411]+vibr. 5-6% 1972So12, 1988A132
569	7/2+	7/2[404] 88-93% 1985GuZS (342 keV), 1993No01 and 63%
		1988Al32 (1609 keV) with 21%, 7/2[523]+vibr.
617	5/2+	5/2[413]+Q ₂₀ 55-91% with 5/2[402] 5-40% 1985GuZS,
		1988A132
634	$1/2^{+}$	1/2[420] 64-76% 1985GuZS, 1988Al32, 1993No01 with
		various vibr. contribution
636	$3/2^{-}$	3/2[541] 77-85% 1985GuZS (797 keV), 1988Al32(448
		<pre>keV), 1993No01 with various vibr. contributions</pre>
707	5/2+	5/2[402] 16-42% 1985GuZS (1109 keV), 1988Al32 (1118
		keV) with 5/2[413]+vibr. 7-36% and various other
		vibr. components. According to 2005Bu02, the strength
		of 5/2[402] is spread over many levels and no single
		level can be assigned a dominant 5/2[402] configuration
	$1/2^{+}$	1/2[411] 47-71% 1985GuZS, 1988A132 (612 keV) with
		various other components
634 636 707	1/2 ⁺ 3/2 ⁻ 5/2 ⁺ 1/2 ⁺	<pre>5/2[413]+Q₂₀</pre>

¹⁵³Eu Levels

Cross Reference (XREF) Flags

F(level) [†]	Iπ	Tuo	A 153 Sm β^- deca B 153 Gd ε decay C 150 Nd(7 Li,4n γ) D 151 Eu(t,p) E 152 Sm(3 He,d) XREE	y F G) H J J	$^{152}Sm(\alpha,t)$ $^{152}Eu(n,\gamma) E=thermal$ $^{152}Eu(d,p)$ $^{153}Eu(\gamma,\gamma')$ $^{153}Eu(n,n'\gamma)$	K L M N O	¹⁵³ Eu(p,p') Coulomb excitation ¹⁵⁴ Sm(p,2n γ) ¹⁵⁴ Sm(d,3n γ) ¹⁵⁴ Gd(t, α)
0.0 [@]	$\frac{J^{n}}{5/2^{+}}$	stable	ABCD FGHIJKLMNO	$\mu = +1.5$ $T_{1/2}: \ge$ by us decay $< r^2 > ^{1/2}$ $J^{\pi}: \text{ spin}$	324 3; Q=+2.412 21 5.5E17 y is given by 20 ing the Gaussian fit to th γ of ¹⁴⁹ Pm g.s. following =5.1115 fm 62 (2013An(from electron paramagn	12Da e 285 α de 02,eva etic re	Comments 16 (at 68% confidence level) from limit set .9 keV γ in ¹⁴⁹ Sm, the daughter from β cay of ¹⁵³ Eu. luation). esonance (1955B116), optical spectroscopy

¹⁵³Eu Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				(1935Sc01), laser spectroscopy (1985Ah02 and 1992HuZW); parity from M1+E2 γ from 5/2 ⁺ (172.8 level); also L(d,p)=5 from 3 ⁻ (¹⁵² Eu target). μ : From 2014StZZ compilation and from 1993HuZU based on collinear fast beam laser spectroscopy – accelerated beam. Others: +1.538 <i>13</i> (1985Ah02) and +1.555 <i>42</i> (see 1989Ra17 for original reference), 1.5330 & (1965Ev08), +1.54 (1984Do11), and +1.56 <i>4</i> (1986A133). Q: From 2016St14 compilation and based on muonic atom x ray data of 1983Ta14; others: +2.28 9 (1986A133), 3.92 <i>12</i> (1981Br17), 3.6 <i>4</i> (1981Ar25), and 2.22 (1987Se12). 1993Mo04 give Q(¹⁵¹ Eu)/Q(¹⁵³ Eu)=0.3919 2 from laser spectroscopy and indicate this is not in good agreement with muonic atom data. $\Delta < r^2 > (151,153)=0.577 \text{ fm}^2 25$ (1981Br17 and 1984Do11), 0.606 fm ² <i>18</i> (1984Ta05), +0.577 fm ² 25 (1986A133). Other: 1987NeZW. See, also, 1995Fr22 for summary of data from methods based on electromagnetic interactions. $< r^2 >:$ From others data, 1993Ba55 deduce $< r^2 >= 25.99 \text{ fm}^2 9$. See also 2004Mb03. Batio of octupole moments for ¹⁵¹ Eu and ¹⁵³ Eu given by 1991Cb43
83.36728 [@] 13	7/2+	0.793 ns <i>17</i>	ABC EFGHIJKLMNO	Ratio of octupole moments for ¹²⁷ Eu and ¹²⁷ Eu given by 1991Ch43. μ =+1.81 6; Q=0.44 2 J ^{π} : From Coulomb excited, M1 γ component to 5/2 ⁺ level, and band structure. T _{1/2} : Weighted average of 0.80 ns 2 (1966As03, Coul. ex.); 0.82 ns 7 [1966GrZZ, (γ , γ')]; 0.73 ns 7 (quoted in 1972Th09 from unpublished Coul. ex.); and 0.77 ns 5 (1986Sa34, ¹⁵³ Gd ε decay). Other: 1.09 ns 5 (1961Bi11). μ : From 2014StZZ compilation based on Mossbauer measurements. Q: From 2016St14 compilation and based on muonic atom x ray data of 1984Ta04.
				The isomer shift, $\Delta < r^2 > (0 \text{ keV}, 83 \text{ keV}) = -0.0017 \text{ fm}^2 11 \text{ from}$ Mossbauer measurements (1968At02) and 0.0036 fm ² 32 (1984Ta05).
97.43098 ^{&} 14	5/2-	0.198 ns <i>16</i>	ABC eFG IJ LMNo	μ =+3.22 23 or -0.52 23. J ^π : From E1 γ's to 5/2 ⁺ and 7/2 ⁺ levels and log <i>t</i> =6.7 from 3/2 ⁻ . T _{1/2} : Weighted average of 0.16 ns 2 [1964Ha43, (γ,γ')]; 0.214 ns 20 (1966At01, Mossbauer); 0.26 ns 3 [1966GrZZ, (γ,γ')]; 0.180 ns 20 (1968Ma15, ¹⁵³ Gd ε decay); and 0.23 ns 4 (1972Th09) quoted in 1972Th09 from unpublished Coul. ex. These data are slightly inconsistent with the reduced- χ^2 =2.62; the major difference is from the 0.16 <i>I</i> and 0.26 <i>3</i> values. μ : From 2014StZZ compilation and based on Mossbauer data of 1966At01.
103.18017 ^{<i>a</i>} 12	3/2+	3.87 ns 5	ABC eFG J LMNo	The isomer shift, $\Delta < r^2 > (0 \text{ keV}, 97 \text{ keV}) = -0.14 \text{ fm}^2 3 \text{ from}$ Mossbauer measurements (1968Ko27). $\mu = +2.048 6$; Q=1.253 <i>12</i> J^{π} : From M1 γ component to $5/2^+$ level, J $\neq 5/2$ from $\gamma\gamma(\theta)$, J $\neq 7/2$ from log <i>t</i> =6.7 in β - decay from $3/2^+$ level; and μ =2.0 is consistent with Nilsson state assignment and Mossbauer measurement (1972Cr09). T _{1/2} : Weighted average of the following values (in ns): 3.95 <i>11</i> (2002Mo46), 3.87 <i>10</i> (1986Sa34), 3.9 <i>5</i> (1972Th09), 3.9 <i>2</i> (1966GrZZ), 3.90 <i>5</i> (1965Me08), 4.3 <i>5</i> (1961Ve04), 3.3 <i>2</i> (1961Re11), 3.8 <i>2</i> (1961Na06), 4.0 <i>2</i> (1956Ve19), 4.0 <i>2</i>

¹⁵³Eu Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				(1954Gr19), 3.0 3 (1950Mc64). These data are slightly inconsistent with a reduced- χ^2 =1.91 (critical- χ^2 =1.83). Other value: 3.4 (1954Mc10). μ : From 2014StZZ compilation and based on data of 1972Cr09 and 1975Si07 based on Mossbauer effect and integral perturbed angular correlation method. Others: +2.01 9 (1964At01) and
e.				1.23 33 (19/1Be23). Q: From 2016St14 compilation. The isomer shift, $\Delta < r^2 > (0 \text{ keV}, 103 \text{ keV}) = -0.16 \text{ fm}^2 3$ (1968Ko27) and $-0.085 \text{ fm}^2 13$ (1969Ri02) from Mossbauer measurements.
151.6239 ^{&} 3	7/2-	0.36 ns 7	ABC EFG J LMNO	J^{π} : From E1 γ 's to $5/2^+$ and $7/2^+$ levels, $\log f_{1u}t \approx 10$ from $3/2^+$ in β - decay, and band structure. T _{1/2} : From unpublished Coulomb excitation data quoted in 1972Th09.
172.85316 ^{<i>a</i>} 13	5/2+	0.14 ns	ABCDEFG J LMNO	T _{1/2} : From $\beta\gamma$ (t) (1954Gr19). Other: < 1 ns $\beta\gamma$ (t) (1956Ve19). J ^{π} : From L=0 in (t,p) from 5/2 ⁺ target and M1 γ components to 3/2 ⁺ and 7/2 ⁺ levels.
193.0654 [@] 6	9/2+	0.179 ns 9	C FGH JKLMNO	J ^{π} : From Coulomb excited, E2 γ to 5/2 ⁺ , and band structure. T _{1/2} : Weighted average of values from Coulomb excitation: 173 ps 6 (1998Sm06), 201 ps 14 (1972Th09) and 208 ps 21 (1966As03); the reduced- χ^2 is 2.7.
235.2805 ^{&} 6	(9/2 ⁻)		C FG LMNO	XREF: F(?). J ^{π} : From band structure and E1 γ to 7/2 ⁺ level, and possibly γ to 9/2 ⁺ level.
269.7361 ^{<i>a</i>} 5	$(7/2^+)$		A C FG J LMNO	J ^{π} : From band structure, E2 γ to 3/2 ⁺ level, and γ to 9/2 ⁺ .
321.8589 ^{&} 6	$(11/2)^{-}$		C EFGH LMNO	J ^{π} : From L=5 in (³ He,d), E1 γ to 9/2 ⁺ level, and band structure.
325.0661 [@] 9	11/2+	52 ps 3	C G JKLMN	J^{π} : From Coulomb excited, band structure, and M1 γ to 9/2 ⁺ . T _{1/2} : From Coulomb excitation (1998Sm06, recoil-distance method).
396.4028 ^{<i>a</i>} 8	$(9/2^+)$		C EFG MNO	J ^{π} : From band structure, E1 γ to 7/2 ⁻ level, and γ to (11/2) ⁻ .
403.289? 4 442.622? 3 448.1384? 11	(*)		G G G	J^{π} : possible M1 γ to (7/2 ⁺).
477.9272 ^{&} 12	$(13/2^{-})$		C G LMNo	J ^{π} : From band structure and γ 's to (9/2 ⁻) and 11/2 ⁺ levels.
481.0512 [@] 15	13/2+	19.8 ps 5	C G KLMNo	J ^{π} : From band structure, E2 γ to 9/2 ⁺ level, and dipole γ to (11/2) ⁻ .
				1 _{1/2} : From Coulomb excitation (1998Sm06, recoil-distance method)
537.9413 ^a 12 552.4727? 14 559.7390 16	(11/2 ⁺)		C G MNO G G	J^{π} : From band structure, E2 γ to 7/2 ⁺ level, and γ to (11/2) ⁻ .
569.31 ^b 14	(7/2 ⁺)		EFG J LMNO	J ^{π} : From band assignment and γ 's to 5/2 ⁺ and 7/2 ⁺ levels. L=(4) in (³ He,d).
585.02 15	(1.5.(2-))		A	
589.34° 11 617.18° 24	$(15/2^{-})$ $(5/2^{+})$		CEG LMNO FGHJLM	J^{π} : From band structure and γ' s to $11/2^{-}$ and $13/2^{+}$ levels. J^{π} : From band assignment and γ' s to $5/2^{+}$ and $7/2^{+}$ levels.
634.62 ^{<i>a</i>} 6 636.516 ^{<i>e</i>} 18 641.587 3	$(1/2^+)$ $3/2^-$		A eG J Mo A eG J o G	J ^{<i>n</i>} : From band assignment and γ 's to $3/2^+$ and $5/2^+$ levels. J ^{π} : From band assignment and γ 's to $3/2^+$, $5/2^+$, and $5/2^-$ levels.
654.700 [@] 9	(15/2+)	10.05 ps 21	C G LMN	J ^{π} : From band structure, E2 γ to 11/2 ⁺ level, and γ to 13/2 ⁻ . T _{1/2} : From Coulomb excitation (1998Sm06, recoil-distance method)
657.68? 14			A	incurve).

¹⁵³Eu Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
681.90 ^e 6	(5/2 ⁻)		A G J M	I J^{π} : From band assignment and γ 's to $3/2^+$, $5/2^-$, and $7/2^+$ levels.
694.185 ^d 24 701.39 <i>17</i>	5/2+		A DEFG J M A	INO J^{π} : From L=0 in (t,p) from $5/2^+$ target.
706.629 ^{‡#} 24	5/2+		A DEFG J M	1 0 J^{π} : From L=0 in (t,p) from $5/2^+$ target.
711.1 ^b 5	$(9/2^+)$		J LM	I J ^{π} : From band assignment and γ 's to 5/2 ⁺ and 9/2 ⁺ levels.
713.11 19	$(3/2^+)$		A G	J ^{π} : primary γ from $1/2^-$ capture state; γ to $7/2^+$.
716.173 ^{<i>a</i>} 7	$(13/2^+)$		C G M	IN J^{π} : From band structure and γ' s to $(9/2^+)$ and $(11/2^+)$ levels.
718.69 ^d 14	(3/2+)		A EFG J M	1 0 XREF: F(716). J^{π} : From band assignment and γ 's to $3/2^+$ and $5/2^+$ levels. L=(2) from $(\alpha,t)/({}^{3}\text{He},\text{d}) \sigma$ ratio.
732.52 [°] 8	$(7/2^+)$		Gh J M	E(level): Uncertainty is from primary γ from (n,γ) data.
736 <i>3</i>			Fh	0 XREF: F(722).
				E(level): 2005Bu02 suggest that this level is likely to Be different from the 732.5, $(7/2^+)$ assigned to β -vibrational band based on 5/2[413], since a level of vibrational character is not expected to Be populated in single-particle transfer reactions. Note that the bandhead of 5/2[413]+Q ₂₀ at 617 is not seen in the single- proton-transfer reactions.
760.39 14			A f J	0
763.8? 6	(2/2 + 5/2 +)		A f	$0 = \mathbf{E}(\mathbf{a}_{1} _{1}) \mathbf{E}_{\mathbf{r}} = \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}$
185.24 10	(3/2,3/2)		EFG	E(level). From primary γ in (ii, γ) data. I^{π} : I = (2) from $(\alpha t)/({}^{3}\text{He d}) \sigma$ ratio
788.94 <i>10</i> 797.146 <i>24</i>	1/2+		J G	J^{π} : From γ to $(3/2^+)$ level; excitation probability in $(n,n'\gamma)$.
819 ^e 2	$(11/2^{-})$		EF	0 J^{π} : L=(5) from $(\alpha,t)/({}^{3}\text{He,d}) \sigma$ ratio.
825.39 ^{&} 14	(17/2 ⁻)	5.0 ps 4	C LM	(N J^{π} : From band structure, dipole γ to $(15/2^{-})$ level, and E2 to $(13/2^{-})$.
щ				$T_{1/2}$: From Coulomb excitation (1998Sm06, recoil-distance method).
827.42" 7	$(7/2^+)$		D J M	I J^{π} : L=(2) in (t,p) from 5/2 ⁺ target; γ 's to 5/2 ⁻ and 9/2 ⁺ levels.
840.58 10	$(3/2^+)$		EFG J	J^{*} : From L=2 in (³ He,d).
851.7 3	$(1'/2^+)$	5.96 ps 21	C LM	IN J ^{<i>n</i>} : From band structure and γ 's to $13/2^+$ and $15/2^-$ levels. T _{1/2} : From Coulomb excitation (1998Sm06, recoil-distance method).
855 3				0
876.67° 7 880 2	(9/2 ⁺) (⁺)		D M	 J^π: γ's to 5/2⁺ and 11/2⁺ levels. J^π: L=(2) in (t,p) from 5/2⁺ target. E(level): 2005Bu02 present detailed arguments that this level is different from the 876.67, (9/2⁺) level assigned to β-vibrational band based on 5/2[413], primarily, based on the fact that the bandhead of 5/2[413]+Q₂₀ configuration at 617 is not populated in the (t,p) reaction.
887.6 ^{<i>d</i>} 4	(7/2 ⁺)		EFG	 XREF: O(892). E(level): From primary γ in (n,γ) data. J^π: from relative population in (t,α) this level is suggested (by 2005Bu02) as the 7/2⁺ member of the 1/2[420] band.
891.3 ^{<i>a</i>} 4 897.52 <i>12</i>	(15/2+)		C M G	IN J^{π} : From band structure and γ' s to $(11/2^+)$ and $(13/2^+)$ levels.
924 2				0 N
948 2			D	N

Adopted Levels, Gammas (continued)

¹⁵³Eu Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF		Comments		
954.5 ^{&} 4	(19/2 ⁻)	4.6 ps 21	С	LMN	J ^{π} : From band structure, Q γ to (15/2 ⁻) level, and γ to (17/2 ⁺). T _{1/2} : From Coulomb excitation (1998Sm06, recoil-distance method)		
965 2				0	inculou).		
970.3 4			G				
986 3			6	0			
1012.2.3	$(^{+})$		DG	0	XREE: D(1020)O(1026)		
1023.10 10	()			Ū	J^{π} : L=(2) in (t,p) from 5/2 ⁺ target. E(level): From primary γ in (n, γ) data.		
1050 3			E				
1061.6 [@] 3	(19/2 ⁺)	5.5 ps 6	С	LMN	J^{π} : From band structure, E2 γ to $(15/2^+)$ level, and γ $(17/2^+)$. T _{1/2} : From Coulomb excitation (1998Sm06, recoil-distance method).		
1073 ^{<i>f</i>} 2	$(11/2^{-})$		EF	0	J ^{π} : L=(5) from $(\alpha,t)/(^{3}$ He,d) σ ratio.		
1114.1 ^{<i>a</i>} 5	$(17/2^+)$		C	М	J^{π} : From band structure and γ 's to (15/2 ⁻), (13/2 ⁺), and (15/2 ⁺) levels.		
1123 3			FF	0			
11372 1140.87 ± 21	5/2+		EF DE C	0	E(lowelly, Enormalized and the constant of t		
1149.07 21	5/2		DEG	0	J^{π} : From L=0 in (t,p) from $5/2^+$ target.		
1156.9 10			I				
1167 2	$(1/2^{-})$		Е		J ^{π} : L=(1,0) from (α ,t)/(³ He,d) σ ratio.		
1177.2 7	5/2		FI	0	XREF: $F(1180)O(1180)$.		
11885 2	(1/2)		E		J^{α} : L=(1,0) from $(\alpha,t)/({}^{3}\text{He,d}) \sigma$ ratio.		
1204 5 1225.3 ⁸ 3	$(5/2^{-})$		DEFG	0	XREF: E(1223).		
					E(level): From primary γ in (n,γ) data.		
1231 2	(5/2-,7/2-)		EF		J^{π} : From L=(3) in (³ He,d), possible band assignment. XREF: E(1236).		
					J^{π} : L(³ He,d)=L(α ,t)=(3).		
1244 2			F	0			
1262.7 ^{&} 4	(21/2 ⁻)	1.9 ps 4	С	LMN	J^{π} : From band structure, (E2) γ to $(17/2^{-})$ level, and γ to $(19/2^{+})$. T _{1/2} : From Coulomb excitation (1998Sm06, recoil-distance method).		
12/1 3				0			
1293.9 4	(21/2+)	2.34 ps 8	С	LN	J [*] : From band structure, E2 γ to (17/2 ⁺) level, and γ to (19/2 ⁻). T _{1/2} : From Coulomb excitation (1998Sm06, recoil-distance method).		
1308 3	1/2-,3/2-		EF	0	J^{π} : From L=1 in (³ He,d).		
1314.2 ^{<i>u</i>} 7	$(19/2^+)$		C		J^{π} : From band structure and γ' s to $(15/2^+)$ and $(17/2^-)$ levels.		
1332 ⁸ 2 1350.89 <i>16</i>	(9/2 ⁻)		EF D G	0	J ^{α} : L=(3,4) from (α ,t)/(³ He,d) σ ratio; possible band assignment. XREF: D(1352). E(level): From primary α in (n α) data		
1357 2 1396 03 9	5/2-,7/2-		EF D GH	0	J^{π} : L=3 in (³ He,d). XREF: H(1400)		
$1404.8^{\&}$ 5	$(23/2^{-})$		с С	L N	I^{π} : From hand structure $\Omega \gamma$ to $(19/2^{-})$ level and γ to $(21/2^{+})$		
1417.66 9	(20/2)		ĒG	0	XREF: E(1436)O(1435). $F(evel)$: From primary γ in (n γ) data		
1438 2	5/2+		DE	0	XREF: D(1442)E(1436)O(1435). J ^{π} : From L=0 in (t,p) from 5/2 ⁺ target.		
1477 [‡] 2	5/2+		DEF		J^{π} : From L=0 in (t,p) from $5/2^+$ target.		
1534.9 [@] 5	$(23/2^+)$	1.72 ps 10	С	LN	J^{π} : From band structure and γ 's to $(19/2^+)$ and $(21/2^-)$ levels.		

¹⁵³Eu Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	Х	REF		Comments
						$T_{1/2}$: From Coulomb excitation (1998Sm06, recoil-distance method).
1546 <i>3</i> 1558 <i>3</i>			Е		0	
1575.0 ^a 5 1583 3 1599 3	(21/2 ⁺)		C E E			J ^{π} : From band structure and γ 's to (17/2 ⁺) and (19/2 ⁻) levels.
1628 2 1661 3			E E		0	
1683 2 1720 <i>4</i>	(*)		D		0	J^{π} : L=(2) in (t,p) from 5/2 ⁺ target.
1720 4				н	0	
1771.0 ^h 4	(19/2-)	475 ns 10	С			T _{1/2} : From ¹⁵⁰ Nd(⁷ Li,4n γ). J ^{π} : From band structure, E1 γ to (17/2 ⁺) level, and γ to (21/2 ⁺).
1772.1 ^{&} 5 1779 4	$(25/2^{-})$		С	н		J^{π} : From band structure and γ 's to $(21/2^{-})$ and $(23/2^{-})$ levels.
1796.3 ^{<i>a</i>} 6	$(23/2^+)$		С		Ŭ	J ^{π} : From band structure and γ 's to (19/2 ⁺) and (21/2 ⁺) levels.
1798.4 [@] 6	(25/2+)	1.25 ps 10	С		L	J ^{π} : From band structure, Q γ to (21/2 ⁺) level, and γ to (23/2 ⁻). T _{1/2} : From Coulomb excitation (1998Sm06, recoil-distance method).
1843 1870 <i>4</i> 1915 <i>4</i>				H H H		
1925.9 ^{&} 6 1932 <i>3</i>	(27/2 ⁻)		С	Н	LN	J^{π} : From band structure, Q γ to (23/2 ⁻) level, and γ to (25/2 ⁻).
1961 3				H		
1971.1 ^{<i>n</i>} 5 1982 3 2028 3 2045 3	(21/2 ⁻)		С	H H H		J ^{π} : From band structure and γ to (19/2 ⁻) level.
2065.6 [@] 6	$(27/2^+)$		С	п	L	J ^{π} : From band structure, Q γ to (23/2 ⁺) level, and γ to (25/2 ⁺).
2082.5^{a} 2082.8^{a} 6 2099.4 2118.3	(25/2 ⁺)		C	Н		J^{π} : From band structure and $\gamma's$ to $(21/2^+)$ and $(23/2^+)$ levels.
2118 5 $2182.3^{h} 5$ 2218 3 2226 5	(23/2 ⁻)		С	н		J^{π} : From band structure and γ to (19/2 ⁻) and (21/2 ⁻) levels.
2236 5 2295.0 <i>10</i> 2324.0 <i>10</i>				H HI HI		
2337.8 ^{&} 6 2346.0_10	$(29/2^{-})$		С	т	L	J^{π} : From band structure and γ 's to (25/2 ⁻) and (27/2 ⁻) levels.
2355.4 [@] 6 2369.0 10	$(29/2^+)$		С	HI	L	J ^{π} : From band structure, Q γ to (25/2 ⁺) level, and γ to (27/2 ⁺).
2401.6 ^h 5 2408 2406 5	(25/2-)		C	H		J ^{π} : From band structure and γ to (21/2 ⁻) and (23/2 ⁻) levels.
2490.5 $2501.0^{\&} 7$ 2527.4 2561.0.10	(31/2 ⁻)		C	H I	L	J ^{π} : From band structure, Q γ to (27/2 ⁻) level, and γ to (29/2 ⁻).
2610 4 $2626.9^{h} 6$ 2630 0 10	(27/2 ⁻)		С	н		J^{π} : From band structure and γ to (23/2 ⁻) and (25/2 ⁻) levels.
2646.2 [@] 7 2648.0 10	(31/2 ⁺)		С	HI	L	J^{π} : From band structure, Q γ to (27/2 ⁺) level, and γ to (29/2 ⁺).

¹⁵³Eu Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	2	XREF	Comments
2697.0 <i>10</i> 2707 5 2724.0 ^{<i>a</i>} 9 2730.0 <i>10</i> 2761.2 7 2808	(29/2+)		С	I H I H	J^{π} : From band structure and γ 's to (25/2 ⁺) and (27/2 ⁻) levels.
2837.0 <i>10</i> 2859.0 ^{<i>h</i>} 6 2878.0 <i>10</i> 2891.0 <i>10</i>	(29/2 ⁻)		С	I I I	J ^{π} : From band structure and γ to (25/2 ⁻) and (27/2 ⁻) levels.
2930.1 ^{&} 7	$(33/2^{-})$		С	L	J ^{π} : From band structure and γ 's to (29/2 ⁻) and (31/2 ⁻) levels.
2957.3 [@] 7	$(33/2^+)$		С	L	J ^{π} : From band structure and γ 's to (29/2 ⁺) and (31/2 ⁺) levels.
3101.5 <mark>&</mark> 9	$(35/2^{-})$	8.6 ns 13	С	L	J ^{π} : From band structure and γ 's to (31/2 ⁻) and (33/2 ⁻) levels.
3267.5 [@] 8	$(35/2^+)$		С	L	J ^{π} : From band structure and γ 's to (31/2 ⁺) and (33/2 ⁻) levels.
3445.9 <mark>&</mark>	$(37/2^{-})$		С	L	J ^{π} : From band structure and γ to (33/2 ⁻) and (35/2 ⁻) levels.
3594.1 [@]	$(37/2^+)$		С	L	J ^{π} : From band structure and γ to (33/2 ⁺) level.
3665.8 ^{&} 3736.5 <i>12</i>	(39/2 ⁻) (39/2 ⁻)		C C		J^{π} : From band structure and γ to $(35/2^{-})$ level. J^{π} : From Q γ to $(35/2^{-})$ level.
3918.4 [@] 12	$(39/2^+)$		С		J ^{π} : From band structure and γ to (35/2 ⁺) level.
3979.6 <mark>&</mark>	$(41/2^{-})$		С		J ^{π} : From band structure and γ to (37/2 ⁻) level.
4234.4 <mark>&</mark>	$(43/2^{-})$		С		J ^{π} : From band structure and γ to (39/2 ⁻) level.
4251.9 [@] 4426.9 <i>16</i>	(41/2 ⁺) (43/2 ⁻)		C C		J^{π} : From band structure and γ to $(37/2^+)$ level. J^{π} : From band structure and γ to $(39/2^-)$ level.
4584.2 ^w	$(43/2^+)$		С		J ^{π} : From band structure and γ to (39/2 ⁺) level.
4599.2 ^{&}	$(45/2^{-})$		С		J ^{π} : From band structure and γ to (41/2 ⁻) level.
4928.6 [@]	$(45/2^+)$		С		J ^{π} : From band structure and γ to (41/2 ⁺) level.

[†] From least-squares fit to γ energies where the latter have uncertainties and including γ 's with questionable placements, or from the average of values from various reactions. The results of the primary γ 's from (n, γ) have been used only where noted.

^{\ddagger} Mixed 5/2⁺ state with complex configurations (2005Bu02) suggested by the population in both the (t,p) and in the single-particle transfer reactions.

[#] Earlier suggested (1998He06) configuration of 5/2[402] for this level is not given by 2005Bu02. According to the analysis of particle-transfer data and discussion by 2005Bu02, 5/2[402] strength is fragmented over many states and it is difficult to determine which level has the dominant 5/2[402] configuration.

- [@] Band(A): 5/2[413] band. A=11.48, B=+0.0174.
- [&] Band(B): 5/2[532] band. A=5.36, B=+0.097.
- ^a Band(C): 3/2[411] band. A=14.03, B=-0.0079.
- ^b Band(D): 7/2[404] band. A=15.79.
- ^{*c*} Band(E): $5/2[413]+Q_{20}$. A=16.5. Admixture of possible 5/2[402] configuration is determined (2005Bu02) as $\leq 1\%$ from analysis of transfer data for 617, $(5/2^+)$ level.

^d Band(F): 1/2[420] band (strongly mixed). A=11.55, a=+1.425. The 694, $5/2^+$ and 719, $3/2^+$ levels are strongly mixed according to the analysis by 2005Bu02, one small component being 5/2[402].

^{*e*} Band(G): 3/2[541] band (strongly mixed). A=9.084. Significant contribution from 1/2[550] configuration. Other orbitals that can mix are: 5/2[532] and 7/2[523].

^f Band(H): 7/2[523] band (strongly mixed). The assignment is from 2005Bu02.

^g Band(I): 1/2[541] band (?). Possible band assignment from 2005Bu02 based on systematics of neighboring nuclides and

¹⁵³Eu Levels (continued)

approximate L values from (\$\alpha\$,t)/(^3He,d) \$\sigma\$ ratio. \$^h\$ Band(J): Band based on (19/2^-) isomer.

						Adopted I	Levels, Gam	mas (continued)		
							γ (¹⁵³ E	u)		
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ ^{&}	α [@]	$I_{(\gamma+ce)}$	Comments
83.36728	7/2+	83.36717 21	100	0.0	5/2+	M1+E2	0.81 4	3.76 7		α(K)=2.33 4; α(L)=1.11 5; α(M)=0.257 12 α(N)=0.0573 25; α(O)=0.0080 4; α(P)=0.000230 5 B(M1)(W.u.)=0.00608 28; B(E2)(W.u.)=303 20 δ: From 0.82 4 (1961Ru01) and 0.75 13 (1962Su01) from αK(exp) and L subshell ratios. Others: 0.82 10 (1960Be16) from αK(exp) and L subshell ratios. (1961M007) from αK(exp) and L subshell ratios. (1961M007) from αK(exp) and L subshell ratios. (1961M007) from αK(exp) and L (1961M007) from αK(exp) and L (1961M007) (1961M007) from αK(exp) and L (1961M007) from αK(exp) and L (1961M007) from αK(exp) and L (1961M007) (1961M007) from αK(exp) and L (1961M007) (1961M007)
97.43098	5/2-	14.06383 20	0.12 2	83.36728	7/2+	E1		10.89		B(E1)(W.u.)= $3.9 \times 10^{-4} + 11 - 9$ α (L)= 8.54 12; α (M)= 1.90 3 α (N)= 0.405 6; α (O)= 0.0479 7; α (P)= 0.00189 3 E _{γ} : From level energies. I _{γ} : Calculated from I _{ce} and theoretical values of α _L and α _M .
		97.43100 21	100	0.0	5/2+	E1		0.305		B(E1)(W.u.)=9.8×10 ⁻⁴ +9-7 α (K)=0.256 4; α (L)=0.0382 6; α (M)=0.00823 12 α (N)=0.00185 3; α (O)=0.000278 4; α (P)=2.13×10 ⁻⁵ 3 Mult.: From α _K (exp) (1960Su08, 1962Su01, 1967Bo11 1969Sm04 1974Se08)
103.18017	3/2+	19.81296 <i>19</i>		83.36728	7/2+	E2		3.22×10 ³	1.0 3	ce(L)/(γ+ce)=0.775 8; ce(M)/(γ+ce)=0.180 4 ce(N)/(γ+ce)=0.0395 8; ce(O)/(γ+ce)=0.00520 <i>I1</i> ; ce(P)/(γ+ce)=2.11×10 ⁻⁶ 5 α (L)=2.49×10 ³ 4; α (M)=578 8 α (N)=127.1 <i>I8</i> ; α (O)=16.73 24; α (P)=0.00678 <i>10</i> B(E2)(W.u.)=1.1 4 E _γ : From level energies. Mult.: From L subshell ratios (1960Mo12,1961Mo07). I _(γ+ce) : Average of values relative to Iγ(103) from intensity balances at the 83 level in ¹⁵³ Sm b- and ¹⁵³ Gd ε decays, assuming no β- or ε feeding of the 83 level.
		103.18012 17	100 2	0.0	5/2+	M1+E2	0.119 3	1.694		α(K)=1.422 20; α(L)=0.213 3; α(M)=0.0462 7 α(N)=0.01057 15; α(O)=0.001662 24; $α(P)=0.0001568 22B(M1)(W.u.)=0.001890 45; B(E2)(W.u.)=1.33 10δ: Value is associated with a penetration parameter of λ=5.3 8; another analysis of α_K(exp) and L subshell ratio data gives$

					1	Adopted Lev	els, Gamma	<mark>s</mark> (continue	(bd)
						$\gamma(^{15}$	³ Eu) (contin	ued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ ^{&}	α [@]	Comments
									$ \delta=0.118 + 2-4 \text{ with } \lambda=5.7 + 12-10 (1971Pr15) \text{ and } \delta=0.120 2 $ with $\lambda=5.0 + 6-7 (1972Kr20)$. Others: 0.27 13 (1971Kr19) from $\gamma\gamma(\theta)$; 0.123 4 (1961Ru01) and 0.129 5 (1965Ba37 reanalysis of earlier data) from L subshell ratios; 0.148 10 (1961Mo07), 0.105 15 (1962Su01), 0.101 1 (1969Sm04) from $\alpha_{\rm K}(\exp)$ and L subshell ratios; and 1970Me26 and 1974Se08.
151.6239 7	/2-	54.1934 4	25 3	97.43098	5/2-	M1(+E2)		18.4 76	$\alpha(K)=6.3 \ 28; \ \alpha(L)=9.3 \ 80; \ \alpha(M)=2.2 \ 19$ $\alpha(N)=0.48 \ 42; \ \alpha(O)=0.065 \ 55; \ \alpha(P)=6.8\times10^{-4} \ 35$ B(M1)(W.u.)=0.008 $+21-8$ I _{γ} : From ¹⁵² Eu(n, γ) and (d,3n γ). Others: 12 3 from ¹⁵³ Sm β - decay.
		68.2557 5	21 2	83.36728	7/2+	E1		0.790	Mult.: From $\alpha_{\rm K}(\exp)$ (1974Se08). $\alpha({\rm K})=0.657 \ 10; \ \alpha({\rm L})=0.1042 \ 15; \ \alpha({\rm M})=0.0225 \ 4$ $\alpha({\rm N})=0.00503 \ 7; \ \alpha({\rm O})=0.000739 \ 11; \ \alpha({\rm P})=5.20\times10^{-5} \ 8$ B(E1)(W.u.)=7×10 ⁻⁵ +8-3 ${\rm I}_{\nu}$: From ¹⁵² Eu (n, γ). Other: 12 4 from ¹⁵³ Sm β - decay.
		151.6245 12	100 8	0.0	5/2+	E1		0.0920	Mult.: From $\alpha_{\rm K}(\exp)$ (1974Se08). $\alpha({\rm K})=0.0779 \ 11; \ \alpha({\rm L})=0.01112 \ 16; \ \alpha({\rm M})=0.00239 \ 4$ $\alpha({\rm N})=0.000541 \ 8; \ \alpha({\rm O})=8.26\times10^{-5} \ 12; \ \alpha({\rm P})=6.88\times10^{-6} \ 10$ B(E1)(W.u.)= $3.0\times10^{-5} \ +32-14$
172.85316 5	/2+	69.67300 <i>13</i>	100.0 <i>10</i>	103.18017	3/2+	M1+E2	0.136 4	5.31	Mult.: From $\alpha_{\rm K}(\exp)$ (19/4Se08). $\alpha({\rm K})=4.39$ 7; $\alpha({\rm L})=0.719$ 12; $\alpha({\rm M})=0.1572$ 25 $\alpha({\rm N})=0.0358$ 6; $\alpha({\rm O})=0.00555$ 9; $\alpha({\rm P})=0.000485$ 7 B(M1)(W.u.)=0.0700; B(E2)(W.u.)=141 δ : From 0.126 8 (1962Su01) from $\alpha_{\rm K}(\exp)$ and L subshell ratios, 0.137 1 (1965Ba37) from reanalysis of earlier L subshell ratio data, and 0.139 7 (1969Sm04) from L subshell ratio data. Others: +0.085 6 (1971Kr19) from $\gamma\gamma(\theta)$ and 1961Mo07, 1961Ru01, and 1970Me26; 1.55 +26-20 from
		75.42213 23	4.1 6	97.43098	5/2-	E1+M2	0.055 10	0.76 7	(n,γ). $\alpha(K)=0.62 5$; $\alpha(L)=0.112 13$; $\alpha(M)=0.025 3$ $\alpha(N)=0.0056 7$; $\alpha(O)=0.00083 11$; $\alpha(P)=6.3\times10^{-5} 9$ B(E1)(W.u.)=2.47×10 ⁻⁵ I _γ : From ¹⁵³ Sm β- decay. Others: 3.24 10 (¹⁵³ Gd ε decay) and 3.6 4 (¹⁵² Eu(n,γ)). δ: From 0.055 10 (1970Me26) from L ₁ /L ₂ ratio and 0.055 10 (1974Se08) from $\alpha_K(exp)$. B(M2)(W.u.)=60 overpasses RUL limit indicating that the M2 mixing could be overestimated.
		89.48595 22	3.3 3	83.36728	7/2+	M1+E2	0.25 10	2.60 7	α (K)=2.11 5; α (L)=0.38 7; α (M)=0.085 16 α (N)=0.019 4; α (O)=0.0029 5; α (P)=0.000230 7 B(M1)(W.u.)=0.00105; B(E2)(W.u.)=4.3

¹⁵³₆₃Eu₉₀-10

						Adopt	ted Levels, G	ammas (cont	tinued)	
							$\gamma(^{153}\text{Eu})$ ((continued)		
	E _i (level)	\mathbf{J}^{π}_i	E_{γ}^{\dagger}	I _γ ‡	\mathbf{E}_{f}	J_f^{π}	Mult. [#]	<i>δ</i> &	α [@]	Comments
	172.85316	5/2+	172.85307 <i>21</i>	1.56 4	0.0	5/2+	M1+E2	0.81 8	0.377	δ: From 0.35 5 (1974Se08) from $\alpha_{\rm K}(\exp)$ and 0.14 (value quoted in 1966B106) from L ₁ /L ₃ ratio. I _γ : From ¹⁵³ Sm β- decay. Others: 2.87 17 (¹⁵³ Gd ε decay) and 3.2 3 (¹⁵² Eu(n,γ)). $\alpha({\rm K})$ =0.296 7; $\alpha({\rm L})$ =0.0637 22; $\alpha({\rm M})$ =0.0142 6 $\alpha({\rm N})$ =0.00321 12; $\alpha({\rm O})$ =0.000477 15; $\alpha({\rm P})$ =3.00×10 ⁻⁵ 10 B(M1)(W.u.)=4.4×10 ⁻⁵ ; B(E2)(W.u.)=0.51 I _γ : From ¹⁵³ Sm β- decay. Others: 1.49 7 (¹⁵³ Gd ε
	193.0654	9/2+	109.6988 8	37.5 16	83.36728	7/2+	M1+E2	0.63 8	1.51 3	decay) and 1.7 3 (152 Eu(n, γ)). δ : From 0.77 (quoted in 1966B106) and 0.85 7 (1974Se08). α (K)=1.117 22; α (L)=0.303 25; α (M)=0.069 6 α (N)=0.0154 13; α (O)=0.00224 17; α (P)=0.000114 4 B(M1)(W.u.)=0.0115 +21-18; B(E2)(W.u.)=2.0×10 ² +6-5 I _{γ} : From (d,3n γ). Others: 34.7 26 (152 Eu(n, γ)), 39.7 25 (Coulomb excitation), and 35 7 (7 Li,4n γ). δ : From 0.69 6 (1960Be16) and 0.58 5 (1965As03) from
			193.063 <i>3</i>	100 <i>3</i>	0.0	5/2+	E2		0.242	$\alpha_{\rm K}(\text{exp}) \text{ and } 0.67 \ 10 \text{ (quoted in 1965As03).}$ B(E2)(W.u.)=112 10 $\alpha({\rm K})$ =0.1698 24; $\alpha({\rm L})$ =0.0563 8; $\alpha({\rm M})$ =0.01288 18 $\alpha({\rm N})$ =0.00288 4; $\alpha({\rm O})$ =0.000408 6; $\alpha({\rm P})$ =1.441×10 ⁻⁵ 21 Mult.: From K/L (1957Cl44).
	235.2805	(9/2 ⁻)	42.2147 ⁰ 25 83.6567 6	1.9 <i>15</i> 83 8	193.0654 151.6239	9/2 ⁺ 7/2 ⁻	M1		3.9 8	$\alpha(K)=2.2 \ 4; \ \alpha(L)=1.29 \ 92; \ \alpha(M)=0.30 \ 22 \ \alpha(N)=0.066 \ 48; \ \alpha(O)=0.0092 \ 63; \ \alpha(P)=2.11\times10^{-4} \ 78 \ Mult.: From \ \alpha(L1)exp \ in \ (n,\gamma) \ E=thermal.$
			137.8498 20 151.9135 12	7.8 <i>10</i> 100 8	97.43098 83.36728	5/2 ⁻ 7/2 ⁺	E1		0.0915	α (K)=0.0775 <i>11</i> ; α (L)=0.01106 <i>16</i> ; α (M)=0.00238 <i>4</i> α (N)=0.000538 <i>8</i> ; α (O)=8.22×10 ⁻⁵ <i>12</i> ; α (P)=6.84×10 ⁻⁶ <i>10</i>
	269.7361	(7/2 ⁺)	76.6703 <i>20</i> 96.8830 <i>7</i>	0.59 <i>13</i> 100 8	193.0654 172.85316	9/2 ⁺ 5/2 ⁺	E2(+M1)		2.4 4	E _γ : Only reported in ¹³² Eu(n,γ). α (K)=1.49 22; α (L)=0.68 44; α (M)=0.16 11 α (N)=0.035 23; α (O)=0.0049 30; α (P)=1.41×10 ⁻⁴ 48
			118.1123 <i>10</i> 166.5556 <i>15</i>	5.8 5 13.6 <i>10</i>	151.6239 103.18017	7/2 ⁻ 3/2 ⁺				I _γ : From ¹⁵² Eu(n,γ). Other: 2.4 4 (¹⁵³ Sm β- decay). I _γ : From ¹⁵² Eu(n,γ). Others: 8.4 8 (¹⁵³ Sm β- decay) and 8.3 (Coulomb excitation).
			172.3043 20	10.3 10	97.43098	5/2-	E1		0.0652	$\alpha(K)=0.0553 \ 8; \ \alpha(L)=0.00782 \ 11; \ \alpha(M)=0.001682 \ 24 \ \alpha(N)=0.000381 \ 6; \ \alpha(O)=5.84\times10^{-5} \ 9; \ \alpha(P)=4.96\times10^{-6} \ 7 \ I_{\gamma}: \ From \ ^{152}Eu(n,\gamma). \ Others: 5.6 \ (^{153}Sm \ \beta-decay) \ and \ 60 \ (Coulomb \ availation)$
:	321.8589	(11/2)-	86.5783 6	100 3	235.2805	(9/2-)	M1(+E2)	0.6 +9-6	3.5 7	$\alpha(K)=2.0.4; \alpha(L)=1.11$ 77; $\alpha(M)=0.26$ 19 $\alpha(N)=0.057$ 41; $\alpha(O)=0.0079$ 53; $\alpha(P)=1.93\times10^{-4}$ 69
			128.7936 9	53 4	193.0654	9/2+	E1		0.1430	$\alpha(K)=0.1208 \ 17; \ \alpha(L)=0.01750 \ 25; \ \alpha(M)=0.00376 \ 6$

						Adopte	ed Levels, Ga	ammas (continu	ied)	
							$\gamma(^{153}\text{Eu})$ (continued)		
E _i ((level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡	E_f	\mathbf{J}_f^π	Mult. [#]	<i>δ</i> &	α [@]	Comments
321	.8589	(11/2)-	170.2344 25	29.5 27	151.6239	7/2-	(E2)		0.371	$\begin{aligned} \alpha(N) = 0.000850 \ 12; \ \alpha(O) = 0.0001290 \ 18; \\ \alpha(P) = 1.044 \times 10^{-5} \ 15 \\ I_{\gamma}: \ From \ ^{152}Eu(n,\gamma). \\ \alpha(K) = 0.249 \ 4; \ \alpha(L) = 0.0945 \ 14; \ \alpha(M) = 0.0217 \ 3 \\ \alpha(N) = 0.00485 \ 7; \ \alpha(O) = 0.000681 \ 10; \ \alpha(P) = 2.05 \times 10^{-5} \ 3 \\ I_{\gamma}: \ Average \ of \ values \ from \ ^{152}Eu(n,\gamma) \ and \ (d,3n\gamma). \\ Other: \ 184 \ (^{150}Nd(^7Li,4n\gamma)). \end{aligned}$
325	.0661	11/2+	89.7863 <i>15</i> 132.0008 <i>10</i>	12.0 <i>18</i> 13.8 <i>14</i>	235.2805 193.0654	(9/2 ⁻) 9/2 ⁺	M1		0.837	Mult.: from (n,γ) E=thermal. I_{γ} : From ¹⁵² Eu (n,γ) . Other: 5.2 2 (¹⁵⁰ Nd(⁷ Li,4n γ)). $\alpha(K)=0.709 \ 10; \ \alpha(L)=0.1010 \ 15; \ \alpha(M)=0.0218 \ 3$ $\alpha(N)=0.00500 \ 7; \ \alpha(O)=0.000793 \ 11; \ \alpha(P)=7.83\times10^{-5}$
			241.6974 25	100 7	83.36728	7/2+	E2		0.1154	$ \begin{array}{l} & & & \\ B(M1)(W.u.)=0.0171 + 39 - 33 \\ & & \alpha(K)=0.0856 \ 12; \ \alpha(L)=0.0232 \ 4; \ \alpha(M)=0.00525 \ 8 \\ & & \alpha(N)=0.001178 \ 17; \ \alpha(O)=0.0001700 \ 24; \\ & & \alpha(P)=7.64 \times 10^{-6} \ 11 \\ B(F2)(Wu)=182 + 21 - 19 \\ \end{array} $
396	.4028	(9/2+)	74.5451 ^{ab} 12 126.6664 10	≤2.1 ^{<i>a</i>} 100 8	321.8589 269.7361	$(11/2)^{-}$ $(7/2^{+})$	M1(+E2)	0.3 +13-3	0.99 5	$\alpha(K)=0.70 \ 10; \ \alpha(L)=0.22 \ 12; \ \alpha(M)=0.051 \ 27 \ \alpha(N)=0.0115 \ 59; \ \alpha(O)=0.00164 \ 75; \ \alpha(P)=6.7\times10^{-5} \ 21$
			161.128 <i>12</i> 223.545 <i>3</i>	3.8 <i>21</i> 47 <i>4</i>	235.2805 172.85316	(9/2 ⁻) 5/2 ⁺	E2		0.1489	$\alpha(K) = 0.1085 \ 16; \ \alpha(L) = 0.0314 \ 5; \ \alpha(M) = 0.00714 \ 10 \ \alpha(N) = 0.001598 \ 23; \ \alpha(O) = 0.000229 \ 4; \ \alpha(P) = 9.52 \times 10^{-6}$
			244.777 4	45 3	151.6239	7/2-	E1		0.0258	14 $\alpha(K)=0.0219 \ 3; \ \alpha(L)=0.00304 \ 5; \ \alpha(M)=0.000652 \ 10$ $\alpha(N)=0.0001481 \ 21; \ \alpha(O)=2.29\times10^{-5} \ 4;$ $\alpha(D)=2.04\times10^{-6} \ 2$
403 442	.289? .622?	(*)	305.87 ^b 4 39.3324 ^b 25	100 100 <i>16</i>	97.43098 403.289?	5/2-				$\alpha(P) = 2.04 \times 10^{-6} \text{ S}$
			172.887 ^b 5	18 4	269.7361	$(7/2^+)$	M1		0.393	α (K)=0.333 5; α (L)=0.0472 7; α (M)=0.01020 15 α (N)=0.00234 4; α (O)=0.000371 6; α (P)=3.68×10 ⁻⁵ 6
448	.1384?		$249.558^{b} 5$ $123.0724^{b} 9$ $255.103^{b} 20$	94 <i>10</i> 100 <i>19</i> 16 <i>3</i>	193.0654 325.0661 193.0654	9/2 ⁺ 11/2 ⁺ 9/2 ⁺				
477	.9272	(13/2 ⁻)	152.862 <i>4</i> 156.0674 <i>12</i> 242.645 <i>4</i>	17 5 100 9 69 10	325.0661 321.8589 235.2805	$11/2^+$ (11/2) ⁻ (9/2 ⁻)	D(+Q) (E2)	+0.18 6	0.1140	Mult., δ : From (d,3n γ). α (K)=0.0846 <i>12</i> ; α (L)=0.0228 <i>4</i> ; α (M)=0.00517 <i>8</i> α (N)=0.001160 <i>17</i> ; α (O)=0.0001675 <i>24</i> ; α (P)=7.55 \times 10 ⁻⁶ <i>11</i>
481	.0512	13/2+	155.9849 20	9.2 9	325.0661	11/2+				Mult.: From ¹⁵² Eu(n, γ). I _{γ} : From ¹⁵² Eu(n, γ). Other: 17.5 4 (¹⁵⁰ Nd(⁷ Li,4n γ)).

Т

$\gamma(^{153}\text{Eu})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α [@]	Comments
481.0512	13/2+	159.1908 20 287.993 5	15.3 <i>15</i> 100 8	321.8589 193.0654	(11/2) ⁻ 9/2 ⁺	D E2	0.0661	$\alpha(K)=0.0507\ 7;\ \alpha(L)=0.01201\ 17;\ \alpha(M)=0.00270\ 4$ $\alpha(N)=0.000608\ 9;\ \alpha(O)=8.89\times10^{-5}\ 13;\ \alpha(P)=4.68\times10^{-6}\ 7$ B(E2)(W.u.)=226\ 14
537.9413	(11/2+)	141.5381 10	100 8	396.4028	(9/2+)	M1	0.688	Mult.: From $({}^{7}\text{Li},4n\gamma)$ and ${}^{152}\text{Eu}(n,\gamma)$. $\alpha(\text{K})=0.582 \ 9; \ \alpha(\text{L})=0.0829 \ 12; \ \alpha(\text{M})=0.0179 \ 3$ $\alpha(\text{N})=0.00410 \ 6; \ \alpha(\text{O})=0.000651 \ 10; \ \alpha(\text{P})=6.43\times10^{-5} \ 9$
		216.086 5 268.205 5	15 4 100 7	321.8589 269.7361	(11/2) $(7/2^+)$	E2	0.0827	$\alpha(K)=0.0626 \ 9; \ \alpha(L)=0.01562 \ 22; \ \alpha(M)=0.00353 \ 5 \ \alpha(N)=0.000792 \ 11; \ \alpha(O)=0.0001152 \ 17; \ \alpha(P)=5.70\times10^{-6} \ 8$
552.4727?		302.660 <i>6</i> 74.5451 <i>ab 12</i> 104.3352 ^{<i>b</i>} <i>15</i> 250.437 ^{<i>b</i>} <i>15</i>	93 8 ≤17 ^{<i>a</i>} 9.0 24	235.2805 477.9272 448.1384?	(9/2 ⁻) (13/2 ⁻)			
559.7390		111.6004^{b} 12	59 <i>9</i>	193.0654 448.1384?	9/2			
569.31	(7/2 ⁺)	237.889 ⁰ 12 472.2 5 485.8 2	100 <i>33</i> 37 <i>5</i> 26 8	321.8589 97.43098 83.36728	(11/2) ⁻ 5/2 ⁻ 7/2 ⁺			I _{γ} : Only reported in (d,3n γ). I _{γ} : From Coulomb excitation. Others: 39 <i>13</i> (d,3n γ) and 21.9 <i>9</i> (n n' γ)
585.02		569.4 2 412.05 20 487.75 23	100 100 17	0.0 172.85316 97.43098	5/2 ⁺ 5/2 ⁺ 5/2 ⁻			(II,II <i>Y</i>).
589.34	(15/2 ⁻)	108.3 7	5.2 10	481.0512	13/2+			E_{γ} : The γ 's of 186.2 and 319.7 assigned in $^{152}Eu(n,\gamma)$ from this level have not been adopted.
(17.10	(5/2+)	111.44 <i>12</i> 267.5 7	33.4 7 100 <i>I</i>	477.9272 321.8589	$(13/2^{-})$ $(11/2)^{-}$			I_{γ} : From (⁷ Li,4nγ). Other: 8.6 29 (d,3nγ). I_{γ} : From (⁷ Li,4nγ). Other: 55.7 23 (d,3nγ).
617.18	$(5/2^+)$ $(1/2^+)$	533.6 4 617.3 <i>3</i> 462.0 <i>3</i>	100 5 75.0 <i>13</i> 2.9 5	83.36728 0.0 172.85316	5/2 ⁺ 5/2 ⁺ 5/2 ⁺			I _{γ} : From (n,n' γ). Other: 143 25 (Coul. ex.).
()(51(2/0-	531.40 <i>6</i> 634.8 <i>3</i>	100 2 0.96 <i>11</i>	103.18017 0.0	3/2 ⁺ 5/2 ⁺			
636.516	3/2	463.64 5	45.4 19	1/2.85316	3/2+			I_{γ} : From ¹⁵⁵ Sm β - decay. Others: 22.4 <i>10</i> (¹⁵⁵ Eu(n,n' γ)) and 34 / (¹⁵² Eu(n, γ)).
(41.507		539.04 <i>3</i> 636.4 <i>2</i>	70.5 <i>19</i> 6.4 <i>4</i>	97.43098 0.0	5/2 ⁻ 5/2 ⁺			I _{γ} : From ¹⁵³ Sm β - decay. Other: 12.8 20 (¹⁵³ Eu(n,n' γ)).
641.587		81.8476°25 198.967 ^b 4	35 5 100 20	559.7390 442.622?	(*)			
654.700	(15/2+)	173.640 <i>10</i> 176.7 <i>6</i>	43 <i>4</i> 34 <i>4</i>	481.0512 477.9272	13/2 ⁺ (13/2 ⁻)			I _{γ} : From (⁷ Li,4n γ). Other: 5.7 <i>14</i> ¹⁵² Eu(n, γ). I _{γ} : Only reported in (⁷ Li,4n γ).

13

					Adop	oted Levels	, Gammas	(continued)				
	$\gamma(^{153}\text{Eu})$ (continued)											
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ} ‡	E_f	\mathbf{J}_f^{π}	Mult. [#]	α [@]	Comments				
654.700	(15/2+)	329.652 15	100 3	325.0661	11/2+	E2	0.0436	α (K)=0.0342 5; α (L)=0.00741 11; α (M)=0.001658 24 α (N)=0.000374 6; α (O)=5.52×10 ⁻⁵ 8; α (P)=3.23×10 ⁻⁶ 5 B(E2)(W.u.)=164 +14-12 Mult.: From (⁷ Li,4n γ) and (d,3n γ).				
657.68?		$485.0^{b} 2$ $574.1^{b} 3$ $657 55^{ab} 25$	100 8 41 <i>13</i> <110 ^a	172.85316 83.36728	5/2+ 7/2+ 5/2+							
681.90	(5/2 ⁻)	412.05 20 509.02 12 578.67 9 584.59 10	58.6 <i>15</i> 61 <i>5</i> 100 <i>3</i> 32 2 8	269.7361 172.85316 103.18017 97.43098	$(7/2^+)$ $5/2^+$ $3/2^+$ $5/2^-$			L : From 153 Sm θ decay Other: 54 3 (153 Fu(n n/a))				
		598.3 ^{<i>a</i>} 3	$\leq 62^a$	83.36728	$\frac{3}{2}$ $\frac{7}{2}^{+}$			I_{γ} . From Sin <i>p</i> -decay. Other, 54.5 (Eu(i,i, γ)).				
694.185	5/2+	682.0 6 424.51 <i>11</i> 521.37 <i>3</i>	4 4 17.3 5 63.1 24	0.0 269.7361 172.85316	5/2 ⁺ (7/2 ⁺) 5/2 ⁺			I_{γ} : From ¹⁵⁵ Sm β - decay. Other: 52 5 (¹⁵⁵ Eu(n,n' γ)).				
		542.0 6	29 8	151.6239	7/2-			E_{γ} : Values are discrepant; 542.7 2 (¹⁵³ Sm β- decay) and 541.42 24 (n,n' γ).				
		590.96 <i>20</i> 596.61 <i>10</i> 694.1 <i>3</i>	10.8 5 100 3 0.19 5	103.18017 97.43098 0.0	3/2+ 5/2- 5/2+			I_{γ} : From (Sin <i>p</i> - decay. Other: 40.8 (T Eu(ii,ii γ)).				
701.39		598.3^{ab} 3	≤46 ^{<i>a</i>}	103.18017	3/2+			1. 1. 1. 1. 1530 0 1				
		603.6° 4 617.9 3 701.8 4	100 3 16 3 0.65 13	97.43098 83.36728 0.0	5/2 7/2 ⁺ 5/2 ⁺			I_{γ} : May be a multiplet in 155 Sm β - decay.				
706.629	5/2+	437.13 <i>10</i> 554.92 <i>10</i>	10.2 <i>10</i> 37.2 7	269.7361 151.6239	(7/2 ⁺) 7/2 ⁻			I _γ : From ¹⁵³ Sm β- decay. Other: 14.0 <i>10</i> (¹⁵³ Eu(n,n'γ)). I _γ : From ¹⁵³ Sm β- decay. Others: 38.9 <i>16</i> (¹⁵³ Eu(n,n'γ)) and 85 <i>17</i> (¹⁵² Eu(n,γ)).				
		603.31 10	35.1 9	103.18017	3/2+			I _γ : From ¹⁵³ Sm β- decay. Others: 16.9 15 (153 Eu(n,n'γ)) and 36 9 (152 Eu(n,γ)).				
		609.15 7 706.8 5	100 <i>8</i> 0.12 <i>1</i>	97.43098 0.0	$5/2^{-}$ $5/2^{+}$			I_{γ} : May be a multiplet in ¹⁵³ Sm β - decay.				
711.1	(9/2+)	518.3 <i>10</i> 628.1 7 710.2 ^b <i>10</i>	61 <i>4</i> 100 <i>4</i>	193.0654 83.36728 0.0	9/2 ⁺ 7/2 ⁺ 5/2 ⁺			I _{γ} : From (n,n' γ). Other: 108 25 (Coul. ex.),				
713.11	(3/2 ⁺)	443.2 5 609.5 3 615.8 ^a 4 630.5 4	$0.69 \ 11$ $100 \ 6$ $\leq 5.5^{a}$ $0.78 \ 11$	269.7361 103.18017 97.43098 83.36728	$(7/2^+)$ $3/2^+$ $5/2^-$ $7/2^+$			I _{γ} : May be a multiplet in ¹⁵³ Sm β - decay.				
716.173	(13/2 ⁺)	178.229 7	65 12	537.9413	(11/2+)			I _{γ} : From (d,3n γ). Others: 50 <i>17</i> in ¹⁵² Eu(n, γ) and 140 <i>41</i> in (⁷ Li,4n γ).				

						γ (¹⁵³ E	u) (continu	ed)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult. [#]	δ ^{&}	α [@]	Comments
716.173	$(13/2^+)$	319.784 14	100 22	396.4028	(9/2+)				
718 69	$(3/2^{+})$	394.1 <i>4</i> 545 75 <i>15</i>	81 <i>15</i> 100 <i>4</i>	321.8589	$(11/2)^{-}$ 5/2 ⁺				I _{γ} : From (d,3n γ). Other: 33 8 from (¹ Li,4n γ).
/10.0/	(3/2)	615.8 4	67 5	103.18017	$3/2^+$				I_{γ} : From (n,n' γ); doublet in β - decay.
737 57	$(7/2^{+})$	719.0 4	3.3 7	0.0	$5/2^+$				
132.32	(7/2)	649.24 <i>24</i>	15 3	83.36728	$\frac{9}{2}$ $\frac{7}{2^+}$				
-		732.60 11	64 <i>3</i>	0.0	5/2+				
/60.39		124.9 <i>4</i> 587.60 25	100 5.6.6	634.62 172.85316	$(1/2^+)$ $5/2^+$				
		657.55 ^{<i>ab</i>} 25	≤4.6 ^{<i>a</i>}	103.18017	$3/2^+$				
		662.4 6	0.23 6	97.43098	5/2-				
		677.03 760.54	0.48 16	83.36/28	$\frac{1}{2}^{+}$ 5/2 ⁺				
763.8?		763.8 ^b 6	100	0.0	$5/2^+$				
788.94	$1/2^{+}$	685.76 10	100	103.18017	3/2+				
797.146		90.5152^{b} 15	100 12	706.629	5/2+				
825 39	$(17/2^{-})$	102.9576° 17	65 <i>15</i> 7 0 <i>4</i>	694.185 654 700	$5/2^+$ (15/2 ⁺)	(D)			L: From $(^{7}$ L i $(4ny)$
023.37	(17/2)	236.07 12	100 7	589.34	$(15/2^{-})$ $(15/2^{-})$	D(+Q)	+0.18 8		Mult., δ : From (d, $3n\gamma$).
		347.7 3	82 7	477.9272	$(13/2^{-})$	E2		0.0372	$\alpha(K)=0.02935; \alpha(L)=0.006169; \alpha(M)=0.00137520$
									α (N)=0.000310 5; α (O)=4.60×10 5 /; α (P)=2.79×10 5 4 B(E2)(W.u.)=196 +36-31
									I_{γ} : From (d,3n γ). Other: 117 3 (⁷ Li,4n γ).
907 40	(7/2+)	557 72 10	07 /	260 7261	$(7/2^+)$				Mult.: From $(^{7}\text{Li}, 4n\gamma)$ and $(d, 3n\gamma)$.
827.42	$(1/2^{+})$	634.62 18	874 456	209.7301 193.0654	$(1/2^+)$ 9/2 ⁺				
		729.82 10	100 4	97.43098	5/2-				
840 58	$(3/2^+)$	827.6 2 667.65.12	77 5	0.0	5/2+ 5/2+				
010.50	(3/2)	737.42 22	33 4	103.18017	$3/2^+$				
951 7	$(17/2^{+})$	757.4 2	48 5	83.36728	$7/2^+$				
031.7	(17/2)	263.2 7	≤1.3	589.34	$(15/2^{-})$ $(15/2^{-})$				
		370.6 4	100 7	481.0512	13/2+	E2		0.0308	$\alpha(K)=0.0245$ 4; $\alpha(L)=0.00496$ 8; $\alpha(M)=0.001104$ 16
									α (N)=0.000249 4; α (O)=3.71×10 ⁻³ 6; α (P)=2.35×10 ⁻⁶ 4 B(E2)(Wu)=245 15
									Mult.: From $(^{7}\text{Li},4n\gamma)$ and $(d,3n\gamma)$.
876.67	$(9/2^+)$	551.32 17	30 4	325.0661	$11/2^+$				
		683.94 <i>10</i> 793.1 <i>J</i>	31 6 100 6	193.0654 83.36728	9/2 ' 7/2+				
		876.4 3	13 4	0.0	$5/2^+$				

From ENSDF

 $^{153}_{63}\mathrm{Eu}_{90}$ -15

Т

$\gamma(^{153}\text{Eu})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult.#	α [@]	Comments
891.3	(15/2+)	175.6 6 353.2 7 413.1 7	46 <i>3</i> 100 <i>3</i> 94 <i>26</i>	716.173 537.9413 477.9272	$(13/2^+) (11/2^+) (13/2^-) (15/2^-)$			
942.6 954.5	(19/2 ⁻)	555.5 102.6 7 129.5 7 264.0 7	1.06 <i>13</i> 13.8 <i>5</i>	589.34 851.7 825.39 580.34	(15/2) $(17/2^+)$ $(17/2^-)$ $(15/2^-)$	0		
1061.6	$(19/2^+)$	209.6 7	12.5.23	851.7	$(13/2^{+})$ $(17/2^{+})$	Q		L.: From $(^{7}\text{Li} 4n\gamma)$. Other: 3.4 10 (Coul.ex.).
	(236.8 6	18.5 6	825.39	$(17/2^{-})$	[E1]		B(E1)(W.u.)= $4.5 \times 10^{-4} + 11 - 8$ I_{v} : From (⁷ Li,4ny). Other: 13.5 17 (Coul.ex.).
		406.4 7	100 6	654.700	(15/2 ⁺)	E2	0.0236	α (K)=0.0190 3; α (L)=0.00365 6; α (M)=0.000811 13 α (N)=0.000183 3; α (O)=2.75×10 ⁻⁵ 5; α (P)=1.85×10 ⁻⁶ 3 B(E2)(W.u.)=143 +25-20
1114.1	(17/2 ⁺)	222.5 397.5 7 524.8		891.3 716.173 589.34	(15/2 ⁺) (13/2 ⁺) (15/2 ⁻)			
1156.9		1156 <i>1</i>	100	0.0	5/2+			
1177.2	5/2	1094 <i>1</i> 1177 <i>1</i>	33 <i>4</i> 100	83.36728 0.0	7/2+ 5/2+			
1262.7	$(21/2^{-})$	200.9 6	3.8 7	1061.6	$(19/2^+)$	[E1]		$B(E1)(W.u.) = 3.5 \times 10^{-4} + 20 - 13$
		309.2 7 436.8 7	62 5 100 2	954.5 825.39	$(19/2^{-})$ $(17/2^{-})$	(E2)	0.0193	I_{γ} : From (⁷ Li,4n γ). Other: 33 <i>11</i> (d,3n γ). $\alpha(K)=0.01559\ 23;\ \alpha(L)=0.00290\ 5;\ \alpha(M)=0.000642\ 10$ $\alpha(N)=0.0001452\ 22;\ \alpha(O)=2.19\times10^{-5}\ 4;\ \alpha(P)=1.532\times10^{-6}\ 23$ $P(F_2)(W_R)=2.3\times10^2$ + 8.5
1293.9	$(21/2^{+})$	23236	94	1061.6	$(19/2^+)$			$L: From (^7L i 4nv)$ Other: 3.8.8 (Coull ex.)
12/3./	(21/2)	339.0 7	45 7	954.5	$(19/2^{-})$ $(19/2^{-})$	[E1]		B(E1)(W.u.)= $7.5 \times 10^{-4} + 15 - 14$ Ly: From (⁷ Li 4ny). Other: 11.2 (Coul. ex.).
		442.1 7	100 2	851.7	(17/2 ⁺)	E2	0.0187	$\alpha(K)=0.01510\ 22;\ \alpha(L)=0.00279\ 5;\ \alpha(M)=0.000618\ 10$ $\alpha(N)=0.0001398\ 21;\ \alpha(O)=2.11\times10^{-5}\ 4;\ \alpha(P)=1.485\times10^{-6}\ 22$ B(E2)(W.u.)=189 +25-21
1314.2	(19/2+)	200.0 423.7 489.7	100 <i>18</i> 82 <i>14</i> 47 6	1114.1 891.3 825.39	$(17/2^+)$ $(15/2^+)$ $(17/2^-)$			
1404.8	(23/2 ⁻)	110. 142.0 7	42 7	1293.9 1262.7	$(21/2^+)$ $(21/2^+)$ $(21/2^-)$	D		
	(22)(2)	450.2 7	100.0 15	954.5	$(19/2^{-})$	Q		
1534.9	$(23/2^+)$	241.3 271.9 7	5.1 9	1293.9 1262.7	$(21/2^+)$ $(21/2^-)$	D		
1575 0	$(21/2^{+})$	473.2 7	100 7	1061.6	$(19/2^+)$	Q		
1575.0	(21/2 ')	261.6 7 460.4 7 619 8 9	54 10 100 12 49 12	1314.2 1114.1 954 5	$(19/2^+)$ $(17/2^+)$ $(19/2^-)$			
1771.0	(19/2 ⁻)	477.0 4	T/ 12	1293.9	$(1)/2^{+})$ $(21/2^{+})$			

16

						Adopt	ed Levels, Ga	mmas (continued)
							γ ⁽¹⁵³ Eu) (6	continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	E_f	${ m J}_f^\pi$	Mult.#	α [@]	Comments
1771.0	(19/2 ⁻)	709.4 <i>4</i> 919.4 <i>4</i>		1061.6 851.7	$(19/2^+)$ $(17/2^+)$	E1	1.27×10^{-3}	α (K)=0.001090 <i>16</i> ; α (L)=0.0001416 <i>20</i> ; α (M)=3.03×10 ⁻⁵ <i>5</i> α (N)=6.91×10 ⁻⁶ <i>10</i> ; α (O)=1.094×10 ⁻⁶ <i>16</i> ; α (P)=1.088×10 ⁻⁷ <i>16</i>
1772.1	(25/2 ⁻)	237.3 367.2 7 509.6 8	13.0 7	1534.9 1404.8 1262 7	$(23/2^+)$ $(23/2^-)$ $(21/2^-)$	D		
1796.3	(23/2 ⁺)	222.2 481.9 8	100 12	1575.0 1314.2	$(21/2^+)$ $(21/2^+)$ $(19/2^+)$	Q		
1798.4	(25/2+)	534.8 9 263.2 7 393.9	$81 \ 12$ ≤ 5.1 ≤ 16.8	1262.7 1534.9 1404.8	$\begin{array}{c} (21/2^{-}) \\ (23/2^{+}) \\ (23/2^{-}) \end{array}$			
1925.9	(27/2 ⁻)	504.9 127.4 154.1 7	100 <i>14</i> 19.8 <i>24</i>	1293.9 1798.4 1772.1	$\begin{array}{c} (21/2^+) \\ (25/2^+) \\ (25/2^-) \end{array}$	Q		
1971.1	$(21/2^{-})$ $(27/2^{+})$	520.8 8 200.1 4 267 8	100 <i>4</i> 100	1404.8 1771.0 1798.4	$(23/2^{-})$ $(19/2^{-})$ $(25/2^{+})$	Q		
2003.0	(27/2)	293.2 7 530.9 8	43 <i>13</i> 100 9	1772.1 1534.9	$(25/2^{-})$ $(25/2^{-})$ $(23/2^{+})$	Q		
2082.8	(25/2+)	287.6 7 507.2 8 677.		1796.3 1575.0 1404.8	$(23/2^+)$ $(21/2^+)$ $(23/2^-)$			
2182.3	(23/2 ⁻)	211.2 <i>4</i> 411.3 <i>4</i>	100	1971.1 1771.0	$(21/2^{-})$ $(19/2^{-})$ $5/2^{+}$			
2324.0 2337.8	(29/2 ⁻)	2295 1 2324 <i>1</i> 271.7 7	100 100 24 <i>4</i>	0.0 0.0 2065.6	$5/2^+$ $(27/2^+)$			
2346.0		412.3 7 565.6 8 2346 1	77 23 100 23 100	1925.9 1772.1 0.0	$(27/2^{-})$ $(25/2^{-})$ $5/2^{+}$			
2355.4	(29/2+)	290.8 7 429.3 7	12 6 47 2	2065.6 1925.9	$(27/2^+)$ $(27/2^-)$ $(25/2^+)$	D		
2369.0 2401.6	(25/2 ⁻)	2369 <i>1</i> 219.3 <i>4</i>	100 4	0.0 2182.3	$(25/2^+)$ $5/2^+$ $(23/2^-)$	Ų		
2501.0	(31/2 ⁻)	430.5 <i>4</i> 146.5 7 162.9 6	2.6 <i>4</i> 5.2 <i>4</i>	1971.1 2355.4 2337.8	$\begin{array}{c} (21/2^{-}) \\ (29/2^{+}) \\ (29/2^{-}) \end{array}$			
2561.0	$(27/2^{-})$	574.9 8 2561 <i>1</i> 225 2 4	100 <i>10</i> 100	1925.9 0.0 2401.6	$(27/2^{-})$ $5/2^{+}$ $(25/2^{-})$	Q		
2630.0	(27/2)	444.5 <i>4</i> 2630 <i>1</i>	100	2182.3 0.0	$(23/2^{-})$ $(23/2^{-})$ $5/2^{+}$			

From ENSDF

 $^{153}_{63}\mathrm{Eu}_{90}$ -17

γ (¹⁵³Eu) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^{π}	Mult. [#]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f} .	\mathbf{J}_{f}^{π}	Mult. [#]
2646.2	$(31/2^+)$	291.0		2355.4	$(29/2^+)$		2957.3	$(33/2^+)$	601.2 9	100 31	2355.4 (29	$\frac{9}{2^+}$	0
		308.7		2337.8	$(29/2^{-})$		3101.5	$(35/2^{-})$	145.4		2957.3 (33	$3/2^{+})$	
		580.2 8		2065.6	$(27/2^+)$	Q			170.9		2930.1 (33	$3/2^{-1}$	
2648.0		2648 1	100	0.0	5/2+				600.1 9		2501.0 (31	$1/2^{-1}$	
2697.0		2697 1	100	0.0	$5/2^{+}$		3267.5	$(35/2^+)$	309.6 7	12 3	2957.3 (33	$3/2^+)$	
2724.0	$(29/2^+)$	641.3 9		2082.8	$(25/2^+)$				338.2		2930.1 (33	$3/2^{-})$	
		797.9		1925.9	$(27/2^{-})$				621.6 9	100 15	2646.2 (31	$1/2^{+}$	Q
2730.0		2730 1	100	0.0	$5/2^{+}$		3445.9	$(37/2^{-})$	344.7		3101.5 (35	$5/2^{-})$	
2761.2		2664 1	102 22	97.43098	5/2-				515.5		2930.1 (33	$3/2^{-})$	
		2761 <i>I</i>	100	0.0	$5/2^{+}$		3594.1	$(37/2^+)$	636.8	100	2957.3 (33	$3/2^{+})$	
2837.0		2837 1	100	0.0	5/2+		3665.8	$(39/2^{-})$	564.3	100	3101.5 (35	$5/2^{-})$	
2859.0	$(29/2^{-})$	232.0 4		2626.9	$(27/2^{-})$		3736.5	$(39/2^{-})$	635.0 9	100	3101.5 (35	5/2-)	Q
		457.6 <i>4</i>		2401.6	$(25/2^{-})$		3918.4	$(39/2^+)$	650.9 9	100	3267.5 (35	5/2+)	
2878.0		2878 1	100	0.0	$5/2^{+}$		3979.6	$(41/2^{-})$	533.7	100	3445.9 (37	7/2-)	
2891.0		2891 <i>1</i>	100	0.0	$5/2^{+}$		4234.4	$(43/2^{-})$	568.6	100	3665.8 (39	9/2-)	
2930.1	$(33/2^{-})$	284.1		2646.2	$(31/2^+)$		4251.9	$(41/2^+)$	657.8	100	3594.1 (37	7/2+)	
		429.3 7	43 2	2501.0	$(31/2^{-})$	D	4426.9	$(43/2^{-})$	690.3 10	100	3736.5 (39	$\theta/2^{-})$	
		592.1 9	100 30	2337.8	$(29/2^{-})$		4584.2	$(43/2^+)$	665.8	100	3918.4 (39	$\theta/2^{+})$	
2957.3	$(33/2^+)$	310.8 7	73	2646.2	$(31/2^+)$		4599.2	$(45/2^{-})$	619.6	100	3979.6 (41	$1/2^{-})$	
		456.9 7	15.2 17	2501.0	$(31/2^{-})$	D	4928.6	$(45/2^+)$	676.7	100	4251.9 (41	$1/2^{+})$	

[†] From all available sources; precise values are from curved-crystal measurements for ¹⁵³Sm β - and ¹⁵³Gd ε decay and ¹⁵²Eu(n, γ) which have been adjusted to the scale on which the main γ from ¹⁹⁸Au has an energy of 411.80205 *17* keV.

[‡] From all available data; significant differences between different production modes are noted.

[#] From (⁷Li, $4n\gamma$) unless otherwise stated.

^(a) Additional information 1. ^(a) If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^{*a*} Multiply placed with undivided intensity.

^b Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

 $^{153}_{63}\rm{Eu}_{90}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁵³₆₃Eu₉₀

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁵³₆₃Eu₉₀

Legend

¹⁵³₆₃Eu₉₀

Legend

Adopted Levels, Gammas

¹⁵³₆₃Eu₉₀

Band(A):	5/2[413]	band										
(45/2+)		4928.6										
			D 1/7									
			Band(B	5): 5/2[532]	band							
(43/2+)	677	4584.2	(45/2-)		4599.2							
	0//											
$(41/2^+)$ 666-		4251.9	(43/2-)	620	4234.4							
			(41/2-)		3979.6							
(39/2+)		3918.4	56	9								
(37/2+)		2504 1	(39/2-)	534	3665.8							
(5/12) 651-		3394.1										
			(37/2 ⁻)	•	3445.9							
(35/2+)		3267.5	56	4								
			(25/2-)	345 516								
-	310		(35/2)	+	3101.5							
$\frac{(33/2^+)}{622}$	<u>+ +</u>	2957.3	(33/2-)	171	2930.1	Band	C): 3/2[4]	1] band				
		$\langle \rangle$		0		Dunu(0). 0, -[i jounu				
(31/2+)	511	7646 7	00	429		(29/2 ⁺)		2724.0				
(31/2)	601_	2040.2	\	592								
2	291	\setminus	(31/2 ⁻)	+	2501.0							
(29/2 ⁺) 580-	• •	2355.4	(29/2-)	163	2337.8	64	41					
		$\langle \rangle$	/	-								
(27/2+)	291	2065.6	5/	412		(25/2+)	,	2082.8				
	557	2005.0	(27/2-)	566	1000							
(05/0+)	268		(2112)	.	1925.9		288					
$\frac{(25/2^+)}{531}$	<u>+ +</u>	1798.4	(25/2-)	154	1772.1	$(23/2^{+})_{50}$)7 🔻	1796.3				
2	263	\setminus	52	1		(21/2+)	222	1555.0				
(23/2+)	5 05_	1534.9		367 510			48	2 15/5.0				
	241	\setminus	(23/2 ⁻)		1404.8		262					
$\frac{(21/2^+)}{473}$	¥ ¥	1293.9	(21/2 ⁻)	142	1262.7	$(19/2^+)_{46}$	50 🔻 🔻	1314.2				
	232		45	0		(17/2+)	200	1114 1				
(19/2 ⁺)	442_	1061.6		309 437			42	4			Band(E): 5/2	2[413]+Q ₂₀
(17/2+)	210		(19/2 ⁻)		954.5	(15/2 ⁺) 30	222	891.3	Band(D): 7	/2[404] band	(9/2 ⁺)	876 67
$\frac{(172^{+})}{406}$	* *	851.7	(17/2 ⁻)	130	825.39		176			-[]	(7/2+)	
(15/2+)	196	654.700 🗡	36	5 236		(13/2+)	35	3 716.173	(9/2 ⁺)	711.1	$\frac{(1/2^+)}{(5/2^+)}$	732.52
	174		(15/2 ⁻)	348	589.34	(11/2+)	178	537.9413	(7/2+)	569.31	(5/2)	617.18
<u>13/2+</u> 330_	<u>↓ ↓ 4</u>	81.0512	$(13/2^{-})$ 26	8	177.9272	(9/2+) 32	142	396 4028				
11/2+	156 288 <u>3</u>	25.0661	$(11/2)^{-}$	156 243	321.8589	(7/2+)	26 127	260 7261				
<u>9/2</u> ⁺ 242	132 1	93.0654 之	7/2-17	0 87	255.2805 151.6239 🗸	5/2+ 22	24 <u>97</u>	172.85316				
7/2+	110 193 8	3.36728	5/2-	54	7.43098	3/2+	70	103.18017				
5/2+	83	0.0	•									

¹⁵³₆₃Eu₉₀

Band(H): 7/2[523] band (strongly mixed)

 $(11/2^{-})$ 1073

Band(F): 1 (strong	/2[420] band ly mixed)						
(7/2+)	887.6	Band(G): 3/2[541] band (strongly mixed)					
		(11/2 ⁻)	819				
(3/2+)	718.69						
5/2+	694.185	(5/2-)	681.90				
(1/2+)	634.62	3/2-	636.516				

3/2-

634.62

¹⁵³₆₃Eu₉₀