¹⁵³Tm ε decay (1.48 s) 1989Ko02,1988ScZV

		History	
Type Author		Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 170, 1 (2020)	16-Aug-2020

Parent: ¹⁵³Tm: E=0.0; $J^{\pi}=(11/2^{-})$; $T_{1/2}=1.48 \text{ s } l$; $Q(\varepsilon)=6495 \ l3$; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=9 3 ¹⁵³Tm- $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay: From ¹⁵³Tm Adopted Levels and from 1989Ko02.

Source produced in 92 Mo(64 Zn,n2p) 153 Yb(ε) and (64 Zn,3p) followed by mass separation. Measured event-mode coincidence of particles, γ rays, x rays and β +'s tagged with time.

¹⁵³Er Levels

Since the decay energy is over 6 MeV, this decay scheme with only a few γ rays is certainly not complete.

E(level)	Jπ†	Comments
0.0	$(7/2^{-})$	From log <i>ft</i> systematics (1998Si17), for $\Delta J=2$, no feeding log $ft > 10.6$, so $I(\varepsilon + \beta^+) < 6x 10^{-5} \%$.
299.3 1	$(9/2^{-})$	
765.8 2	$(11/2^{-})$	
971.0 <i>3</i>	$(13/2^+)$	
1011.9 4		
1110.5 4	$(13/2^{-})$	
1132.7 5		
1731.1 4		

[†] From Adopted Levels.

ε, β^+ radiations

Values given are calculated from the intensity balances at each level. However, this decay scheme is very incomplete, so it should be expected that the actual $I(\varepsilon + \beta^+)$ are less than those given here, and that the actual log*ft* values are larger.

E(decay)	E(level)	$I\beta^+$ [†]	$I\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(4764 13)	1731.1	5.9	3.3	5.1	9.2	av Eβ=1699.4 61; εK=0.2967 20; εL=0.0452 3; εM+=0.01339 9
(5362 13)	1132.7	1.57	0.561	6.0	2.13	av Eβ=1977.9 61; εK=0.2201 15; εL=0.03343 22; εM+=0.00991 7
(5385 13)	1110.5	4.7	1.7	5.5	6.4	av Eβ=1988.3 61; εK=0.2177 14; εL=0.03306 22; εM+=0.00980 7
(5483 13)	1011.9	3.5	1.1	5.7	4.6	av Eβ=2034.4 61; εK=0.2075 14; εL=0.03150 21; εM+=0.00934 6
(5524 13)	971.0	5.4	1.7	5.5	7.1	av E β =2053.5 61; ε K=0.2034 13; ε L=0.03087 20; ε M+=0.00915 6
(5729 13)	765.8	4.0	1.1	5.8	5.1	av Eβ=2149.7 61; εK=0.1842 12; εL=0.02795 18; εM+=0.00828 6
(6196 13)	299.3	53	12	4.8	65	av E β =2369.2 62; ε K=0.1481 9; ε L=0.02244 14; ε M+=0.00665 4

^{\dagger} For absolute intensity per 100 decays, multiply by 0.09 3.

 $\gamma(^{153}\text{Er})$

I γ normalization: Calculated by assuming zero g.s. $\varepsilon + \beta^+$ branching (1989Ko02).

$$\frac{E_{\gamma}^{\dagger}}{205.2\ 2} \quad \frac{I_{\gamma}^{\dagger\#}}{9.6\ 9} \quad \frac{E_{i}(\text{level})}{971.0} \quad \frac{J_{i}^{\pi}}{(13/2^{+})} \quad \frac{E_{f}}{765.8} \quad \frac{J_{f}^{\pi}}{(11/2^{-})} \quad \frac{\text{Mult.}}{[\text{E1}]} \quad \frac{\alpha^{\ddagger}}{0.0486} \quad \frac{\alpha^{\ddagger}}{\% I_{\gamma} = 0.62\ 21} \\ \alpha(\text{K}) = 0.00605\ 9;\ \alpha(\text{M}) = 0.001337\ 19$$

¹⁵³Tm ε decay (1.48 s) 1989Ko02,1988ScZV (continued)

$\gamma(^{153}\text{Er})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α^{\ddagger}	Comments
299.3 1	100.01 <i>1</i>	299.3	(9/2-)	0.0 (7/2 ⁻)	[M1,E2]	0.102 33	$\alpha(N)=0.000308 5; \alpha(O)=4.27\times10^{-5} 6; \alpha(P)=2.03\times10^{-6} 3 \%I\gamma=6.4 21 \alpha(K)=0.082 31; \alpha(L)=0.0155 12; \alpha(M)=0.00352 16$
712.6 <i>3</i> 765.8 2	6.5 8 30 <i>3</i>	1011.9 765.8	(11/2 ⁻)	299.3 (9/2 ⁻) 0.0 (7/2 ⁻)	[E2]	0.00594	$\alpha(N)=0.00081 5; \alpha(O)=0.000112 13;\alpha(P)=4.8\times10^{-6} 22$ %I γ =0.42 15 %I γ =1.9 7 $\alpha(K)=0.00490 7; \alpha(L)=0.000809 12;\alpha(M)=0.000181 3$
811.2 3	8.9 <i>10</i>	1110.5	(13/2 ⁻)	299.3 (9/2 ⁻)	[E2]	0.00523	$\alpha(N) = 4.20 \times 10^{-5} 6; \ \alpha(O) = 5.88 \times 10^{-6} 9; \alpha(P) = 2.78 \times 10^{-7} 4 \% I\gamma = 0.57 20 \alpha(K) = 0.00433 6; \ \alpha(L) = 0.000702 10; \alpha(M) = 0.0001571 22 \ \alpha(M) = 0.0001571 22 \\ \ \alpha(M) = 0.0001$
833.4 <i>4</i> 965.3 <i>3</i>	≈3 12.9 <i>15</i>	1132.7 1731.1		299.3 (9/2 ⁻) 765.8 (11/2 ⁻)			$\alpha(N)=3.64\times10^{-3} 6; \ \alpha(O)=5.11\times10^{-6} 8; \\ \alpha(P)=2.46\times10^{-7} 4 \\ \%I\gamma\approx0.192 \\ \%I\gamma=0.83 29$

[†] From 1989Ko02.
[‡] Additional information 1.
[#] For absolute intensity per 100 decays, multiply by 0.064 22.

¹⁵³Tm ε decay (1.48 s) 1989Ko02,1988ScZV

Decay Scheme

¹⁵³₆₈Er₈₅