#### $^{144}$ Sm( $^{14}$ N,p4n $\gamma$ ), $^{144}$ Sm( $^{12}$ C,3n $\gamma$ ) 2000Fo04

|                 |         | History           |                        |
|-----------------|---------|-------------------|------------------------|
| Туре            | Author  | Citation          | Literature Cutoff Date |
| Full Evaluation | N. Nica | NDS 170, 1 (2020) | 16-Aug-2020            |

1981Ho05: <sup>144</sup>Sm(<sup>12</sup>C,  $3n\gamma$ ) with E(<sup>12</sup>C)=65-95 MeV; measured I $\gamma$ (E,t), I $\gamma(\theta)$ ,  $\gamma\gamma$  coincidence. Also <sup>144</sup>Sm(<sup>11</sup>B,  $2n\gamma$ ) with  $E(^{11}B)=40-70$  MeV, and  $^{124}Te(^{32}S,3n\gamma)$  with  $E(^{32}S)=125-155$  MeV (1981Ho05).

1982Ca09: <sup>144</sup>Sm(<sup>12</sup>C,3n $\gamma$ ) with E(<sup>12</sup>C)=53-65 MeV; measured E $\gamma$ , I $\gamma$ , I $\gamma$ (t), I $\gamma(\theta)$ , and Ice. 1982Fo06: <sup>144</sup>Sm(<sup>12</sup>C,3n $\gamma$ ) with E(<sup>12</sup>C)=76 and 86 MeV; measured I $\gamma$ , I $\gamma$ (t), I $\gamma(\theta)$ , and  $\gamma\gamma$  coin.

2000Fo04: <sup>144</sup>Sm(<sup>14</sup>N,p4n $\gamma$ ) with E(<sup>14</sup>N)=95 MeV; measured E $\gamma$ ,  $\gamma\gamma$  coin.,  $\gamma$ ce coin. with array of 6 Ge Compton- suppressed

Ge detectors, an X-ray detector, and 6 BaF<sub>2</sub> detectors. Conversion electrons measured with an e- guide Si(Li) detector. Data from this paper were compiled for the XUNDL database by C. Malcolmson and B. Singh, McMaster University, May 2000.

Others: 1979Ha29, 1980Bo07, 1980Ho30 (see 1981Ho05), and 1980Ja16.

Level scheme is from 2000Fo04. This scheme is very similar to that in the previous evaluation (1998He06) and that of 1982Fo06, which has two authors in common with 2000Fo04. The less complete scheme of 1982Ca09 is very similar, but that of 1981Ho05 has many differences.

### <sup>153</sup>Er Levels

| E(level) <sup>†</sup>     | $J^{\pi \ddagger}$   | T <sub>1/2</sub> | Comments                                                                                                                                                                                                                                                                          |
|---------------------------|----------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0#                      | (7/2 <sup>-</sup> )  |                  | $J^{\pi}$ : v $f_{7/2}^3$ configuration suggested by 2000Fo04 for this band.                                                                                                                                                                                                      |
| 299.4 <sup>@</sup>        | (9/2 <sup>-</sup> )  |                  | $J^{\pi}$ : $v$ ( $f_{7/2}^{2}$ h <sub>9/2</sub> ) configuration suggested by 2000Fo04 for this band.                                                                                                                                                                             |
| 765.7 <mark>#</mark>      | $(11/2^{-})$         |                  | ·/-                                                                                                                                                                                                                                                                               |
| 970.6 <mark>&amp;</mark>  | $(13/2^+)$           |                  | $J^{\pi}$ : $v$ ( $f_{7/2}^2 i_{13/2}$ ) configuration suggested by 2000Fo04 for this band.                                                                                                                                                                                       |
| 1111.0 <sup>@</sup>       | $(13/2^{-})$         |                  |                                                                                                                                                                                                                                                                                   |
| 1497.6 <sup>#</sup>       | $(15/2^{-})$         |                  |                                                                                                                                                                                                                                                                                   |
| 1699.1 <sup>@</sup>       | $(17/2^{-})$         |                  |                                                                                                                                                                                                                                                                                   |
| 1725.1 <mark>&amp;</mark> | $(17/2^+)$           |                  |                                                                                                                                                                                                                                                                                   |
| 2039.4 <sup>@</sup>       | $(21/2^{-})$         |                  |                                                                                                                                                                                                                                                                                   |
| 2378.3 <mark>&amp;</mark> | $(21/2^+)$           |                  |                                                                                                                                                                                                                                                                                   |
| 2751.7                    | $(23/2^{-})$         | 272 0            |                                                                                                                                                                                                                                                                                   |
| 2798.2                    | (27/2)               | 373 ns 9         | $T_{1/2}$ : From 1982Ca09; others: 380 ns 30 (1981Ho05), 0.40 $\mu$ s 20 (1980Ja16), 0.30 $\mu$ s 70 (1980Bo07), and 0.5 $\mu$ s 3 (1979Ha29). This $T_{1/2}$ was assigned to 2751 level by 1982Ca09, but to this level, which had an energy of 2751+x, by 1981Ho05 and 1982Fo06. |
| 2908.8 <mark>&amp;</mark> | $(25/2^+)$           |                  |                                                                                                                                                                                                                                                                                   |
| 2949.1                    | (25/2 <sup>-</sup> ) |                  |                                                                                                                                                                                                                                                                                   |
| 2992.7                    | $(29/2^+)$           | ≈10 ns           | $J^{\pi}$ : $\nu$ (f <sub>7/2</sub> h <sub>9/2</sub> i <sub>13/2</sub> ) configuration suggested by 2000Fo04.<br>T <sub>1/2</sub> : From 1982Fo06.                                                                                                                                |
| 3312.1                    | $(27/2^{-})$         |                  |                                                                                                                                                                                                                                                                                   |
| 3378.0                    | $(29/2^{-})$         |                  |                                                                                                                                                                                                                                                                                   |
| 3651.7                    | (31/2)<br>$(31/2^+)$ |                  | $I^{\pi}$ . From 1982Fo06 and not given in 2000Fo04                                                                                                                                                                                                                               |
| 3939.5                    | $(33/2^+)$           | ≈10 ns           | $J^{\pi}$ : From 1982Fo06 and not given in 2000Fo04.                                                                                                                                                                                                                              |
|                           |                      |                  | T <sub>1/2</sub> : From 1982Fo06.                                                                                                                                                                                                                                                 |
| 4044.8                    | $(33/2^+)$           |                  |                                                                                                                                                                                                                                                                                   |
| 4124.4                    | $(33/2^{-})$         |                  |                                                                                                                                                                                                                                                                                   |
| 4249.2                    | (33/2)               |                  |                                                                                                                                                                                                                                                                                   |
| 4542.6                    | $(37/2^{-})$         |                  |                                                                                                                                                                                                                                                                                   |
| 4819.3                    | $(37/2^+)$           |                  |                                                                                                                                                                                                                                                                                   |
| 4827.1                    | (33/2,41/2)          |                  |                                                                                                                                                                                                                                                                                   |
| 4844.5                    | $(37/2^+)$           |                  |                                                                                                                                                                                                                                                                                   |
| 4891.8                    | $(31/2^{-})$         |                  |                                                                                                                                                                                                                                                                                   |

### $^{144}$ Sm( $^{14}$ N,p4n $\gamma$ ), $^{144}$ Sm( $^{12}$ C,3n $\gamma$ ) 2000Fo04 (continued)

## <sup>153</sup>Er Levels (continued)

| E(level) <sup>†</sup>                                            | $J^{\pi \ddagger}$   | T <sub>1/2</sub> | Comments                                                                                                                                                                                                   |
|------------------------------------------------------------------|----------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5248.1                                                           | (41/2 <sup>-</sup> ) | 248 ns 32        | $T_{1/2}$ : Weighted average of 270 ns 20 (1981Ho05) and 200 ns 30 (1980Ja16) with internal uncertainty of 17 and reduced- $\chi^2$ of 3.8; others: 1.0 $\mu$ s 5 (1980Bo07) and > 0.2 $\mu$ s (1979Ha29). |
| 5980.4<br>6676.3                                                 | (43/2)               |                  | $J^{\pi}$ : From 1982Fo06 and not given in 2000Fo04.                                                                                                                                                       |
| 6853.6<br>7253.6<br>7383.1<br>7441<br>8063.9<br>8275.1<br>8409.6 | (47/2)               |                  | J <sup><math>\pi</math></sup> : From 1982Fo06 and not given in 2000Fo04.                                                                                                                                   |

 $^{\dagger}$  From unweighted fit to  $\gamma$  energies.

<sup>‡</sup> From 2000Fo04 and based on measured I $\gamma$ (t), I $\gamma$ ( $\theta$ ) and comparison with systematics of nearby isotones, and shell-model predictions. <sup>#</sup> Seq.(A):  $\Delta J=2$  sequence based on 7/2<sup>-</sup> ground state. <sup>@</sup> Seq.(B):  $\Delta J=2$  sequence based on 9/2<sup>-</sup> level at 299 keV.

& Seq.(C):  $\Delta J=2$  sequence based on  $13/2^+$  level at 970 keV.

## $\gamma(^{153}{\rm Er})$

| $E_{\gamma}^{\dagger}$                | $I_{\gamma}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup> | Comments                                                |
|---------------------------------------|--------------|---------------|----------------------|-------------------------------------|--------------------|---------------------------------------------------------|
| 46.4                                  |              | 2798.2        | $(27/2^{-})$         | 2751.7 (23/2-                       | ·) [E2]            |                                                         |
| 65.9                                  |              | 3378.0        | $(29/2^{-})$         | 3312.1 (27/2-                       | )                  |                                                         |
| 83.9                                  |              | 2992.7        | $(29/2^+)$           | 2908.8 (25/2+                       | Ó                  |                                                         |
| 105.3                                 |              | 4044.8        | $(33/2^+)$           | 3939.5 (33/2+                       | -)                 |                                                         |
| 129.5                                 | 3            | 7383.1        |                      | 7253.6                              |                    |                                                         |
| 134.5                                 | 1            | 8409.6        |                      | 8275.1                              |                    |                                                         |
| 177.6                                 | 3            | 6853.6        | (47/2)               | 6676.3                              |                    |                                                         |
| 194.5 2                               | 23           | 2992.7        | $(29/2^+)$           | 2798.2 (27/2-                       | ) E1               | Mult.: From $\alpha$ (K)exp=0.06 <i>3</i> (1982Fo06).   |
| 201.6                                 | 4            | 1699.1        | $(17/2^{-})$         | 1497.6 (15/2-                       | .)                 |                                                         |
| 204.9                                 | ≤20          | 970.6         | $(13/2^+)$           | 765.7 (11/2-                        | ·) E1              | Mult.: From $\alpha$ (K)exp=0.07 5 (1982Fo06).          |
| <sup>x</sup> 207.9 <sup>&amp;</sup> 3 | 1            |               |                      |                                     |                    |                                                         |
| 211.2                                 | 7            | 8275.1        |                      | 8063.9                              |                    |                                                         |
| <sup>x</sup> 238.0 <sup>@</sup>       |              |               |                      |                                     |                    |                                                         |
| 284.5                                 | 10           | 4827.1        | (33/2,41/2)          | 4542.6 (37/2-                       | .)                 |                                                         |
| 287.8                                 | 7            | 3939.5        | $(33/2^+)$           | 3651.7 (31/2+                       | .)                 |                                                         |
| 293.2                                 | 5            | 4542.6        | $(37/2^{-})$         | 4249.2 (35/2-                       | .)                 |                                                         |
| 299.4                                 | 100          | 299.4         | $(9/2^{-})$          | $0.0 (7/2^{-})$                     | M1(+E2)            | Mult.: From $\alpha$ (K)exp=0.13 <i>3</i> (1982Fo06).   |
| <sup>x</sup> 305.5 <sup>&amp;</sup> 3 | 1            |               |                      |                                     |                    |                                                         |
| <sup>x</sup> 319.2 <sup>@</sup>       |              |               |                      |                                     |                    |                                                         |
| 340.3                                 | 95           | 2039.4        | $(21/2^{-})$         | 1699.1 (17/2-                       | ) E2               |                                                         |
| 345.3                                 | ≤17          | 1111.0        | $(13/2^{-})$         | 765.7 (11/2-                        | .)                 |                                                         |
| 349.1                                 | 15           | 4891.8        | $(37/2^+)$           | 4542.6 (37/2-                       | ) E1               | Mult.: From $\alpha$ (K)exp=0.016 <i>16</i> (1982Fo06). |
| 356.3                                 | ≤20          | 5248.1        | $(41/2^{-})$         | 4891.8 (37/2+                       | ) M2               | Mult.: From $\alpha$ (K)exp=0.20 8 (1982Fo06).          |
| 363.0                                 | ≤36          | 3312.1        | $(27/2^{-})$         | 2949.1 (25/2-                       | ) M1(+E2)          | Mult.: From $\alpha$ (K)exp=0.05 4 (1982Fo06).          |
| <sup>x</sup> 394.0 <sup>@</sup>       |              |               |                      |                                     |                    |                                                         |
| 400.0                                 | 16           | 7253.6        |                      | 6853.6 (47/2)                       |                    |                                                         |
| 403.7                                 | 12           | 5248.1        | $(41/2^{-})$         | 4844.5 (37/2+                       | ) M2               | Mult.: From $\alpha$ (K)exp=0.12 6 (1982Fo06).          |
|                                       |              |               |                      |                                     |                    |                                                         |

Continued on next page (footnotes at end of table)

|                                 |                                          |                        |                      | $^{144}$ Sm( $^{14}$ N,p4n $\gamma$ ), $^{144}$ Sm( $^{12}$ C,3n $\gamma$ ) 2000Fo04 (continued) |                                 |                |                        |                      |        |                        |
|---------------------------------|------------------------------------------|------------------------|----------------------|--------------------------------------------------------------------------------------------------|---------------------------------|----------------|------------------------|----------------------|--------|------------------------|
|                                 | $\gamma$ <sup>(153</sup> Er) (continued) |                        |                      |                                                                                                  |                                 |                |                        |                      |        |                        |
| $E_{\gamma}^{\dagger}$          | $I_{\gamma}^{\ddagger}$                  | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$                                                         | $E_{\gamma}^{\dagger}$          | $I_{\gamma}$ ‡ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | $\mathbf{J}_{f}^{\pi}$ |
| 418.1                           | 20                                       | 4542.6                 | $(37/2^{-})$         | 4124.4 (33/2-                                                                                    | $x702.5^{@}$                    |                |                        |                      |        |                        |
| 428.7                           | $\leq 8$                                 | 5248.1                 | $(41/2^{-})$         | 4819.3 (37/2+                                                                                    | ) 712.2                         | ≤61            | 2751.7                 | $(23/2^{-})$         | 2039.4 | $(21/2^{-})$           |
| 429.0                           | $\leq 8$                                 | 3378.0                 | $(29/2^{-})$         | 2949.1 (25/2-                                                                                    | ) 731.9                         | ≤23            | 1497.6                 | $(15/2^{-})$         | 765.7  | $(11/2^{-})$           |
| 482.0                           | 4                                        | 4819.3                 | $(37/2^+)$           | 4337.3                                                                                           | 732.3 3                         | ≤23            | 5980.4                 | (43/2)               | 5248.1 | $(41/2^{-})$           |
| 488.8                           | ≤7                                       | 4044.8                 | $(33/2^+)$           | 3556.1 (31/2-                                                                                    | ) 746.4                         | 25             | 4124.4                 | $(33/2^{-})$         | 3378.0 | $(29/2^{-})$           |
| 530.5                           | ≤13                                      | 2908.8                 | $(25/2^+)$           | 2378.3 (21/2+                                                                                    | ) 754.5                         | 18             | 1725.1                 | $(17/2^+)$           | 970.6  | $(13/2^+)$             |
| 568.3                           |                                          | 4124.4                 | $(33/2^{-})$         | 3556.1 (31/2-                                                                                    | ) 757.9                         | ≤25            | 3556.1                 | $(31/2^{-})$         | 2798.2 | $(27/2^{-})$           |
| 570                             |                                          | 4819.3                 | $(37/2^+)$           | 4249.2 (35/2-                                                                                    | ) 765                           |                | 7441                   |                      | 6676.3 |                        |
| 579.7                           | 11                                       | 3378.0                 | $(29/2^{-})$         | 2798.2 (27/2-                                                                                    | ) 765.7                         |                | 765.7                  | $(11/2^{-})$         | 0.0    | $(7/2^{-})$            |
| 588.1                           | 92                                       | 1699.1                 | $(17/2^{-})$         | 1111.0 (13/2-                                                                                    | ) 799.5                         | 10             | 4844.5                 | $(37/2^+)$           | 4044.8 | $(33/2^+)$             |
| 595.5                           |                                          | 4844.5                 | $(37/2^+)$           | 4249.2 (35/2-                                                                                    | ) 811.6                         | 99             | 1111.0                 | $(13/2^{-})$         | 299.4  | $(9/2^{-})$            |
| 653.2                           | ≤21                                      | 2378.3                 | $(21/2^+)$           | 1725.1 (17/2+                                                                                    | ) 847.2                         |                | 4891.8                 | $(37/2^+)$           | 4044.8 | $(33/2^+)$             |
| 659.0                           | $\leq 8$                                 | 3651.7                 | $(31/2^+)$           | 2992.7 (29/2+                                                                                    | ) 873.0                         | 11             | 6853.6                 | (47/2)               | 5980.4 | (43/2)                 |
| <sup>x</sup> 671.7 <sup>@</sup> |                                          |                        |                      |                                                                                                  | 909.8 2                         | 26             | 2949.1                 | $(25/2^{-})$         | 2039.4 | $(21/2^{-})$           |
| 680.8                           |                                          | 8063.9                 |                      | 7383.1                                                                                           | 946.7                           | 3              | 3939.5                 | $(33/2^+)$           | 2992.7 | $(29/2^+)$             |
| <sup>x</sup> 683.5 <sup>@</sup> |                                          |                        |                      |                                                                                                  | <sup>x</sup> 972.0 <sup>@</sup> |                |                        |                      |        |                        |
| <sup>x</sup> 687.5 <sup>@</sup> |                                          |                        |                      |                                                                                                  | 1052                            | 5              | 4044.8                 | $(33/2^+)$           | 2992.7 | $(29/2^+)$             |
| 693.0                           | 21                                       | 4249.2                 | $(35/2^{-})$         | 3556.1 (31/2-                                                                                    | ) 1344.6                        |                | 4337.3                 |                      | 2992.7 | $(29/2^+)$             |
| 696.1                           | 6                                        | 6676.3                 |                      | 5980.4 (43/2)                                                                                    |                                 |                |                        |                      |        |                        |

<sup>†</sup> From 2000Fo04, except as otherwise indicated.

<sup>±</sup> From 1982Fo06 and are for  $E(^{12}C)=75$  MeV at  $125^{\circ}$  and have uncertainties of 10-30%, depending on I $\gamma$ .

<sup>#</sup> From I(ceK) and I $\gamma$  normalized to  $\alpha_{\rm K}(340.3)=0.0358$  (theory value for assumed E2  $\gamma$ ) (1982Fo06).

<sup>(a)</sup> From 1981Ho05. <sup>(b)</sup> From 1982Fo06. <sup>x</sup>  $\gamma$  ray not placed in level scheme.

3







<sup>153</sup><sub>68</sub>Er<sub>85</sub>

# $^{144}$ Sm( $^{14}$ N,p4n $\gamma$ ), $^{144}$ Sm( $^{12}$ C,3n $\gamma$ ) 2000Fo04



 $^{153}_{68}{\rm Er}_{85}$