¹⁵²Lu ε decay (0.7 s) **1987To02**

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	M. J. Martin	NDS 114, 1497 (2013)	31-Aug-2013			

Parent: ¹⁵²Lu: E=0; J^{π}=(4⁻,5⁻,6⁻); T_{1/2}=0.7 s *I*; Q(ε)=12900 *SY*; % ε +% β ⁺ decay=100.0

¹⁵²Yb Levels

Production: 96 Ru(58 Ni,pn γ), E=354 MeV with mass separation. Measured: γ , $\gamma\gamma$, $\gamma\beta$ +.

E(level)	J^{π}
0.0	0^{+}
1531.4 5	2^{+}
1890.1 6	(3)-
2202.7 7	(5)-

[†] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(10697 <i>SY</i>)	2202.7	81 7	3.9 11	4.43 19	85 7	av E β =4230 400; ε K=0.038 11; ε L=0.0058 17; ε M+=0.0018 5 I(ε + β^+): The three observed cascading gammas have the same intensity, within the experimental uncertainties, and no transitions from higher levels are seen. The ε decay decay of ¹⁵² Lu is followed by proton decay, with branching of 15% 7 so I(γ +ce)(1531 γ) to g.s. can be set as 85% 7.

 † Absolute intensity per 100 decays.

$\gamma(^{152}\text{Yb})$

I γ normalization: $\Sigma(I(\gamma+ce) \text{ to g.s.})=85$ 7, (% $\beta^+p=15$ 7). The 347.9-keV γ from 2549 level was looked for but not found (I γ <15 relative to I γ (1531.4 γ)=100).

Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	α^{\dagger}	Comments
312.6 3	87 21	2202.7	(5)-	1890.1 (3)	- E2 [‡]	0.0653	$ \frac{\alpha(K)=0.0471 \ 7; \ \alpha(L)=0.01403 \ 21;}{\alpha(M)=0.00332 \ 5; \ \alpha(N+)=0.000866 \ 13} \\ \alpha(N)=0.000767 \ 11; \ \alpha(O)=9.68\times10^{-5} \ 14; \\ \alpha(P)=2.43\times10^{-6} \ 4 $
358.7 <i>3</i>	89 12	1890.1	(3)-	1531.4 2+	E1 [‡]	0.01295	$\alpha(K)=0.01091 \ 16; \ \alpha(L)=0.001589 \ 23; \\ \alpha(M)=0.000353 \ 5; \ \alpha(N+)=9.44\times10^{-5} \ 14 \\ \alpha(N)=8.23\times10^{-5} \ 12; \ \alpha(O)=1.147\times10^{-5} \ 17; \\ \alpha(P)=5.61\times10^{-7} \ 8 $
1531.4 5	100	1531.4	2+	0.0 0+	[E2]	1.69×10 ⁻³	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001360 \ 19; \ \alpha(\mathbf{L}) = 0.000197 \ 3; \\ &\alpha(\mathbf{M}) = 4.40 \times 10^{-5} \ 7; \ \alpha(\mathbf{N}+) = 9.32 \times 10^{-5} \ 14 \\ &\alpha(\mathbf{N}) = 1.029 \times 10^{-5} \ 15; \ \alpha(\mathbf{O}) = 1.463 \times 10^{-6} \ 21; \\ &\alpha(\mathbf{P}) = 7.65 \times 10^{-8} \ 11; \ \alpha(\mathbf{IPF}) = 8.14 \times 10^{-5} \ 12 \end{aligned}$

Continued on next page (footnotes at end of table)

¹⁵²Lu ε decay (0.7 s) 1987To02 (continued)

 $\gamma(^{152}$ Yb) (continued)

[†] Additional information 1.
[‡] From Adopted Gammas.
[#] For absolute intensity per 100 decays, multiply by 0.85 7.

¹⁵²Lu ε decay (0.7 s) 1987To02

Decay Scheme

 $^{152}_{70}{
m Yb}_{82}$