¹⁵²Yb ε decay **1987To02,1988BaZS**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. J. Martin	NDS 114, 1497 (2013)	31-Aug-2013				

Parent: ¹⁵²Yb: E=0; J^{π}=0⁺; T_{1/2}=3.03 s 6; Q(ϵ)=5.45×10³ 14; % ϵ +% β ⁺ decay=100.0

Other: 2011Es03 deduced $\varepsilon + \beta^+$ feedings using total absorption spectroscopy. From coincidences with x-rays and β^+ the authors can deduce the ε and β^+ fractions separately. These results are given in comments.

¹⁵²Tm Levels

Measured: γ , γ^{\pm} , $\gamma\gamma$, $\gamma\beta$ + (1987To02), γ , $\gamma\gamma$ (1982No13), γ , γ^{\pm} , K x ray (1984HaZD); γ , ce (1988BaZS,1989KlZX). Calculation of Gamow-Teller β^+ decay (1988Ku20,1988Su04,1989KlZX).

 $\underbrace{ \begin{array}{c} E(\text{level}) \\ 0.0 \\ 141.7 \\ 458.6 \\ 1^{+} \\ 482.4 \\ 968 \\ 1^{+} \\ 1090.9 \\ 1^{+} \end{array}} \underbrace{ \begin{array}{c} J^{\pi \dagger} \\ (2)^{-} \\ (2)^{-} \\ (1)^{+} \\ 968 \\ 1^{+} \\ 1090.9 \\ 1^{+} \end{array}}$

[†] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log <i>ft</i>	$\mathrm{I}(\varepsilon\!+\!\beta^+)^\dagger$	Comments
$(4.36 \times 10^3 \ 14)$	1090.9	0.4 2	0.4 1	5.32 19	0.8 3	av $E\beta$ =1521 93; ε K=0.38 4; ε L=0.058 6; ε M+=0.0173 18 L ε I(ε + β^+): I(ε)=0.9.2 and I(ε + β^+)=2.0.3 (2011Es03)
$(4.48 \times 10^3 \ 14)$	968	0.30 6	0.22 5	5.56 12	0.52 9	av $E\beta$ =1577 93; ε K=0.35 4; ε L=0.054 6; ε M+=0.0163 17 I ε ,I(ε + β^+): I(ε)=0.4 2 and I(ε + β^+)=0.9 5 (2011Es03).
(4.97×10 ³ <i>14</i>)	482.4	58 <i>3</i>	29 <i>3</i>	3.52 8	87.2 5	av $E\beta$ =1802 93; ϵ K=0.28 3; ϵ L=0.043 5; ϵ M+=0.0128 14 E(decay): other: $E\beta$ +≈4.0 MeV from (β^+)(482 γ) (1987T002); $E(\epsilon)$ =4570 +180-150 from ϵ/β^+ (1984HaZD). I ϵ ,I($\epsilon + \beta^+$): I(ϵ)=30 3 and I($\epsilon + \beta^+$)=89 2 (2011Es03) for the 459 and 482 levels.
$(4.99 \times 10^3 \ 14)$	458.6	5.4 5	2.6 4	4.57 9	8.0 6	av Eβ=1813 93; εK=0.28 3; εL=0.042 5; εM+=0.0127 14
$(5.31 \times 10^3 \ 14)$	141.7	2.5 7	1.0 3	5.05 14	3.5 9	av E β =1961 94; ε K=0.237 24; ε L=0.036 4; ε M+=0.0109 12

[†] Absolute intensity per 100 decays.

$\gamma(^{152}{\rm Tm})$

I γ normalization: $\Sigma I(\gamma+ce)$ (to g.s.)=100. From log $f^{1u}t>8.5$ one gets $I(\varepsilon+\beta^+)<0.08\%$ for the branch to the g.s. K x ray/I(482 γ)=0.30 3 (1987To02).

				152 Yb ε de	cay 19	87To02,198	8BaZS (continued)		
$\gamma(^{152}\text{Tm})$ (continued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α [@]	Comments		
141.61 <i>17</i>	13.0 5	141.7	1+	0.0 (2)	E1	0.1329	$\alpha(K)=0.1109 \ 16; \ \alpha(L)=0.01717 \ 25; \ \alpha(M)=0.00382 \ 6; \ \alpha(N+)=0.001004 \ 15 \ \alpha(N)=0.000880 \ 13; \ \alpha(O)=0.0001190 \ 17; \ \alpha(P)=5.19\times10^{-6} \ 8 \ Mult.: \ \alpha(K)exp=0.071 \ 45 \ (1988BaZS); \ theory:$		
316.75 <i>15</i>	8.2 6	458.6	1+	141.7 1+	(M1)	0.1253	$\alpha(K)=0.112.$ $\alpha(K)=0.1053 \ 15; \ \alpha(L)=0.01560 \ 22; \ \alpha(M)=0.00347 \ 5; \ \alpha(N+)=0.000935 \ 14 \ \alpha(N)=0.000812 \ 12; \ \alpha(O)=0.0001170 \ 17; \ \alpha(P)=6.38\times10^{-6} \ 9 \ Mult.: \ \alpha(K)exp=0.130 \ 35 \ (1988BaZS); \ theory:$		
482.32 9	100	482.4	(1)+	0.0 (2)	E1	0.00630	$\alpha(K)=0.108.$ $\alpha(K)=0.00534 \ 8; \ \alpha(L)=0.000755 \ 11;$ $\alpha(M)=0.0001669 \ 24; \ \alpha(N+)=4.46\times10^{-5} \ 7$ $\alpha(N)=3.88\times10^{-5} \ 6; \ \alpha(O)=5.49\times10^{-6} \ 8;$ $\alpha(P)=2.83\times10^{-7} \ 4$ Mult.: $\alpha(K)$ exp=0.0066 \ 25 (1988BaZS); theory: $\alpha(K)=0.00534.$		
827.0 [‡] 3	0.6^{\ddagger} 1	968	1^{+}	141.7 1^+			a(11)-0.0005 ii		
949.13 17	0.9 3	1090.9	1+	141./ 1+					

 † Weighted average of measurements from 1988BaZS and 1987To02.

[‡] From 1988BaZS.
[#] For absolute intensity per 100 decays, multiply by 0.867 5.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁵²Yb ε decay 1987To02,1988BaZS

Decay Scheme

¹⁵²₆₉Tm₈₃