Adopted Levels, Gammas

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. J. Martin	NDS 114, 1497 (2013)	31-Aug-2013				

 $Q(\beta^{-})=-5.45\times10^{3}$ 14; $S(n)=9.02\times10^{3}$ 6; $S(p)=7.4\times10^{2}$ 6; $Q(\alpha)=3.85\times10^{3}$ 10 2017Wa10 $Q(\varepsilon)=8.78\times10^{3}$ 5; S(2n)=21372 6; $S(2p)=4.35\times10^{3}$ 6; $Q(\varepsilon p)=4.61\times10^{3}$ 5 2017Wa10 Additional information 1.

Calculations: suppression of β^+ decay: 1988Su04.

Using total absorption spectroscopy, 2003NaZY study the Gamow-Teller transition. For decay of the 2⁻ state, the Gamow-Teller strength is concentrated in a narrow prominent peak at about 4500 keV. For decay of the 9⁺ state, in addition to the peak at 4500,

a second peak is seen at about 6100 keV.

¹⁵²Tm Levels

Cross Reference (XREF) Flags

A 152 Tm IT decay (294 ns)

B 152 Yb ε decay

C 156 Lu α decay (494 ms)

D ¹⁵⁶Lu α decay (198 ms)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	(2)-	8.0 s 10	Bcd	$\%\varepsilon + \%\beta^+ = 100$
				J^{π} : J from syst for N=83 odd-odd nuclei and shell model. π from E1 γ 's from 1 ⁺ states.
				$T_{1/2}$: from 1982No13.
141.61 17	1+		В	J^{π} : log ft=5.05 from 0 ⁺ g.s.
458.36 <i>23</i>	1+		В	J^{π} : log <i>ft</i> =4.57 from 0 ⁺ .
482.32 9	$(1)^+$		В	J^{π} : log ft=3.52 from 0 ⁺ allows $J^{\pi}=1^+$ or 0 ⁺ . E1 γ to (2) ⁻ rules out J=0.
968.6 4	1+		В	J^{π} : log ft=5.55 from 0 ⁺ .
1090.74 24	1+		В	J^{π} : log ft=5.32 from 0 ⁺ .
0.0+x	(9) ^{+#}	5.2 s 6	A cd	$\%\varepsilon + \%\beta^+ = 100$
				E(level): x=440 320 from measured $Q(\varepsilon)$ for this decay.
				J ^{π} : log ft=4.5 to 8 ⁺ level in ¹⁵² Er establishes π .
				$T_{1/2}$: from 1980Li18.
114.34+x 9	$(8)^+$		Α	J^{π} : M1,E2 γ to (9) ⁺ level.
656.88+x 9	$(9)^+$		Α	
1018.21+x 8	(10^{+})		Α	
1169.64+x <i>11</i>	(11 ⁻)		A	J^{π} : E1 γ to (10 ⁺) level; octupole excitation on configuration=(π h _{11/2}) ⁺⁵ (ν f _{7/2}).
				$T_{1/2}$: less than a few ns (IT decay, 1986Mc14).
1405.25+x <i>13</i>	(12 ⁻)		Α	J^{π} : M1,E2 γ to (11 ⁻) level.
1450.06+x 15	$(11^+)^{\#}$		Α	
1934.79+x 16	(13-)		A	
2131.42+x 14	$(13^{+})^{\#}$		A	
2272.17+x 17	(15 ⁻)		A	
2345.1+x 3	(14 ⁻ ,15 ⁻ ,16 ⁻)		Α	J^{π} : fed by (E1) γ from (15 ⁺) level.
2451.55+x 17	(15 ⁺) [#]		Α	J^{π} : (E1) γ to (15 ⁻) level.
2555.05+x 19	$(17^{+})^{\#}$	294 ns 12	Α	%IT=100
2000.00 (1)	(1,)	291 110 12		$T_{1/2}$: from IT decay (1986Mc14). %IT: No other decay observed
≈6300		42 ns 5		%IT≤100

Adopted Levels, Gammas (continued)

¹⁵²Tm Levels (continued)

E(level)	J^{π}	7

 $T_{1/2}$ XREF

T_{1/2}: from 1986Mc14.

E(level): level populated in 94 Mo(60 Ni,pn γ) (1986Mc14). Decay scheme is not known. This isomer feeds the 294 ns (9⁺) isomer; the strongest γ 's in this decay are: 114.0, 128.1, 264.7, 287.5, 357.8, 411.4, 725.7, 777.2, 854.8, 1183.0, 1258.6, 1288.6. %IT: No other decay observed.

Comments

[†] From least squares fit to $E\gamma$.

[‡] For J≥8 the assignments are from ¹⁵²Tm IT decay. [#] Configuration= $(\pi h_{11/2})^{+5}(\nu f_{7/2})$.

γ ⁽¹⁵² Tm)								
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{\dagger}	Comments
141.61	1+	141.61 17		0.0	(2)-	E1	0.1329	$\alpha(K)=0.1109 \ 16; \ \alpha(L)=0.01717 \ 25; \\ \alpha(M)=0.00382 \ 6; \ \alpha(N+)=0.001004 \ 15 \\ \alpha(N)=0.000880 \ 13; \ \alpha(O)=0.0001190 \ 17; \\ \alpha(P)=5.19\times10^{-6} \ 8$
458.36	1+	316.75 <i>15</i>		141.61	1+	(M1)	0.1253	$\alpha(K)=0.1053 \ I5; \ \alpha(L)=0.01560 \ 22; \ \alpha(M)=0.00347 \ 5; \ \alpha(N+)=0.000935 \ I4 \ \alpha(N)=0.000812 \ I2; \ \alpha(O)=0.0001170 \ I7; \ \alpha(P)=6 \ 38 \times 10^{-6} \ 9$
482.32	(1)+	482.32 9		0.0	(2)-	E1	0.00630	$\alpha(K)=0.00534 \ 8; \ \alpha(L)=0.000755 \ 11; \\ \alpha(M)=0.0001669 \ 24; \\ \alpha(N+)=4.46\times10^{-5} \ 7 \\ \alpha(N)=3.88\times10^{-5} \ 6; \ \alpha(O)=5.49\times10^{-6} \ 8; \\ \alpha(P)=2.83\times10^{-7} \ 4$
968.6 1090.74	$1^+_{1^+}$	827.0 <i>3</i> 949 13 17		141.61 141.61	1+ 1+			
114.34+x	$(8)^+$	114.4 1		0.0+x	(9) ⁺	M1,E2	1.98 <i>14</i>	$\alpha(K)=1.3 5; \alpha(L)=0.6 3; \alpha(M)=0.13 8; \alpha(N+)=0.034 18 \alpha(N)=0.030 17; \alpha(O)=0.0037 18; \alpha(P)=7.E-5 4$ Mult.: $\alpha=2.1 3;$ theory: $\alpha(M1)=2.11, \alpha(E2)=1.85$
656.88+x	(9)+	542.6 <i>1</i> 656.9 2	100 <i>6</i> 24 <i>3</i>	114.34+x 0.0+x	$(8)^+$ $(9)^+$			<i>a</i> (<i>L</i> 2)-1.05.
1018.21+x	(10 ⁺)	361.4 <i>1</i> 1018 2 <i>1</i>	100 <i>4</i> 76 <i>4</i>	656.88+x 0 0+x	$(9)^+$ $(9)^+$			
1169.64+x	(11 ⁻)	151.5 1	100 8	1018.21+x	(10 ⁺)	E1	0.1111	$\alpha(K)=0.0929 \ 13; \ \alpha(L)=0.01428 \ 21; \ \alpha(M)=0.00317 \ 5; \ \alpha(N+)=0.000836 \ 12 \ \alpha(N)=0.000732 \ 11; \ \alpha(O)=9.94\times10^{-5} \ 14; \ \alpha(P)=4.39\times10^{-6} \ 7 \ Mult.: \ \alpha<0.24; \ theory: \ \alpha(M1)=0.951, \ \alpha(E2)=0.672$
		1169.6 3	12.5 14	0.0+x	(9)+	[M2,E3]	0.008 3	$\alpha(\text{L2})=0.075.$ $\alpha(\text{K})=0.0068\ 25;\ \alpha(\text{L})=0.0011\ 4;$ $\alpha(\text{M})=0.00024\ 7;\ \alpha(\text{N}+)=6.6\times10^{-5}\ 19$ $\alpha(\text{N})=5.7\times10^{-5}\ 16;\ \alpha(\text{O})=8.1\times10^{-6}\ 25;$ $\alpha(\text{P})=4.2\times10^{-7}\ 16;\ \alpha(\text{IPF})=6.29\times10^{-7}\ 11$
1405.25+x	(12 ⁻)	235.7 1	100	1169.64+x	(11 ⁻)	M1,E2	0.22 7	α(K)=0.17 7; α(L)=0.0366 18;

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{152}\text{Tm})$ (continued)

E _i (level)	J_i^π	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	${ m J}_f^\pi$	Mult.‡	α^{\dagger}	Comments
			_					$\begin{array}{l} \alpha(\mathrm{M}) = 0.0084 \ 7; \\ \alpha(\mathrm{N}+) = 0.00222 \ 14 \\ \alpha(\mathrm{N}) = 0.00195 \ 14; \\ \alpha(\mathrm{O}) = 0.000260 \ 4; \\ \alpha(\mathrm{P}) = 1.0 \times 10^{-5} \ 5 \\ \mathrm{Mult.:} \ \alpha = 0.20 \ 14; \ \mathrm{theory:} \\ \alpha(\mathrm{M}1) = 0.279, \ \alpha(\mathrm{E2}) = 0.152. \end{array}$
1450.06+x 1934.79+x	(11 ⁺) (13 ⁻)	1449.8 2 529.6 <i>1</i> 764.9 <i>3</i>	100 100 6 18 6	0.0+x 1405.25+x 1169.64+x	(9) ⁺ (12 ⁻) (11 ⁻)			
2131.42+x	(13 ⁺)	681.3 <i>1</i> 726 2 <i>1</i>	48 <i>3</i> 100 7	1450.06+x 1405.25+x	(11^+) (12^-)			
2272.17+x	(15 ⁻)	337.4 1	100	1934.79+x	(13 ⁻)	[E2]	0.0504	$\alpha(K)=0.0374 \ 6; \ \alpha(L)=0.01000$ 14; \(\alpha(M)=0.00234 \ 4; \\ \alpha(N)=0.000611 \ 9 \\ \alpha(N)=0.000539 \ 8; \\ \alpha(O)=6.94 \times 10^{-5} \ 10; \\ \alpha(P)=1.96 \times 10^{-6} \ 3 \\ \end{tabular}
2345.1+x	(14 ⁻ ,15 ⁻ ,16 ⁻)	(73.0)	100	2272.17+x	(15 ⁻)	[M1,E2]	9.2 15	$\alpha(K)=4.1\ 24;\ \alpha(L)=4\ 3;$ $\alpha(M)=0.9\ 8;\ \alpha(N+)=0.24\ 18$ $\alpha(N)=0.21\ 17;\ \alpha(O)=0.025\ 18;$ $\alpha(P)=0.00024\ 16$ I($\gamma+ce)=9$ from intensity balance at 2345 1+x level
2451.55+x	(15 ⁺)	106.5 2	71	2345.1+x	(14 ⁻ ,15 ⁻ ,16 ⁻)	(E1)	0.283	$\alpha(K)=0.234 4; \alpha(L)=0.0376 6; \alpha(M)=0.00838 13; \alpha(N+)=0.00219 4 \alpha(N)=0.00192 3; \alpha(O)=0.000256 4; \alpha(P)=1.054 \times 10^{-5} 16$
		179.5 2	13 <i>I</i>	2272.17+x	(15 ⁻)	(E1)	0.0712	$\alpha(\mathbf{K})=0.0596 \ 9; \ \alpha(\mathbf{L})=0.00902$ 13; \(\alpha(\mathbf{M})=0.00200 \ 3; \(\alpha(\mathbf{N}+)=0.000529 \ 8\) \(\alpha(\mathbf{N})=0.000463 \ 7; \(\alpha(\mathbf{O})=6.34\times10^{-5} \ 9; \(\alpha(\mathbf{C})=2.88\times10^{-6} \ 5\) \)
		320.1 <i>I</i>	100 5	2131.42+x	(13+)	[E2]	0.0588	$\alpha(\mathbf{K})=0.0432 \ 6; \ \alpha(\mathbf{L})=0.01206$ 17; \alpha(\mathbf{M})=0.00283 \ 4; \alpha(\mathbf{N}+)=0.000737 \ 11 $\alpha(\mathbf{N})=0.000652 \ 10; \alpha(\mathbf{O})=8.34\times10^{-5} \ 12; \alpha(\mathbf{P})=2.24\times10^{-6} \ 4$
2555.05+x	(17 ⁺)	103.5 <i>1</i>	100	2451.55+x	(15 ⁺)	(E2)	2.69	$\begin{aligned} &\alpha(\mathbf{K}) = 0.969 \ 14; \ \alpha(\mathbf{L}) = 1.320 \ 20; \\ &\alpha(\mathbf{M}) = 0.323 \ 5; \ \alpha(\mathbf{N}+) = 0.0820 \\ 12 \\ &\alpha(\mathbf{N}) = 0.0734 \ 11; \ \alpha(\mathbf{O}) = 0.00854 \\ &13; \ \alpha(\mathbf{P}) = 4.05 \times 10^{-5} \ 6 \\ &\mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}.) = 0.91 \ 4 \\ &\mathbf{Mult.:} \ \alpha = 2.9 \ 5 \ \text{from level} \\ &\text{scheme.} \end{aligned}$

[†] Additional information 2. [‡] From ¹⁵²Yb ε decay for γ 's from levels with known energy; from ¹⁵²Tm IT decay (294 ns) for γ 's from levels built on E=x level. # From ¹⁵²Tm IT decay.

 $^{152}_{69}\text{Tm}_{83}$

4