¹⁵²Eu ε decay (13.517 y)

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin	NDS 114, 1497 (2013)	31-Aug-2013

Parent: ¹⁵²Eu: E=0.0; $J^{\pi}=3^-$; $T_{1/2}=13.517$ y 14; $Q(\varepsilon)=1874.6$ 7; $\%\varepsilon+\%\beta^+$ decay=72.08 13

¹⁵²Eu-%ε+%β⁺ decay: The absolute intensity of the 1408γ has been evaluated to be 20.85% 9 (2007BeZP). Normalization of the photon intensities to Iγ(344γ in Gd)=100 gives Iγ(1408γ)=78.41 *10* and Σ I(γ+ce)(to Gd g.s.)=105.02 *18*. From these data one gets branching (β-)=27.92 13 and thus branching (ε)=72.08 13.

ce: 1991Go22, 1990Ka35, 1988KaZF, 1987BaYQ, 1985Co08, 1983KaZJ, 1982TrZV, 1981Ka40, 1979De22, 1978Ar24, 1970SpZW, 1968Bo38, 1967Ma29, 1966He02; other: 1990Ka43, 1983Ha34.

γγ: 1981Is12, 1980Sh15, 1972Bb05, 1971Ba54, 1971Ba63, 1971Ha06, 1970Ka43, 1970Ri19.

γγ(t): 1993Se08 (centroid shift), 1988Ka21, 1972El20, 1968Ku03, 1966Mc07, 1963Fo02, 1962Ba38, 1955Su64.

 $\gamma\gamma(\theta)$: 1982La26 (evaluation of E0+M1+E2 measurements to 1980); others: 1973Ka05, 1971Ba54, 1971Ho08, 1971La11,

1971Ru05, 1970Ba32, 1970He29, 1970RaZF, 1970Ru09, 1969Aq01.

 $\gamma\gamma(\theta,\mathrm{H})$: 1971Do
17, 1962Ba38.

 $\gamma(\theta,H,T)$: 1985KrZU, 1975Ba69; other: 1983B107.

 $\gamma\gamma(\theta,H,t)$: 1992De29.

 β^+ : 1977MiZV, 1972Sv02; others: 1962Pe05, 1959An31, 1958Al99.

ε: 1976ScZS, 1975Da13.

Monoenergetic e+: 1972Sv02; others: 1965Pe12, 1964Sh15, 1962Pe05, 1960Va21.

¹⁵²Sm Levels

Additional possible levels have been proposed at 1436.65 and 1681.36 keV (1990St02,1993Ka30). However, 1992Ya12 have searched for the γ 's reported as depopulating these levels and set an upper limit for their intensity which is considerably lower than the intensity reported by 1990St02 and 1993Ka30. EXCEPT FOR the 1315 γ proposed from the 1681 level, these transitions have also not been seen by 2007Ku20. The 1681 level, deexcited by α 1315 γ is adopted here.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}	stable	
121.7818 <i>3</i>	2+	1.396 ns 8	T _{1/2} : from 1988Ka21. Others: 1.40 ns 2 (1992De29), 1.35 ns 5 (1972El20), 1.41 ns 4 (1968Ku03), 1.36 ns 6 (1966Mc07), 1.37 ns 4 (1963Fo02), 1,42 ns 4 (1962Ba38), 1.40 ns <i>10</i> (1955Su64). g-factor: 0.40 3 (1992De29), Others: 0.30 3 (1971Do17), 0.35 3 (1962Ba38).
366.4795 9	4+	60 ps 5	$T_{1/2}$: from 1993Se08. Other: 42 ps 18 (1972E120).
		1	J^{π} : $\gamma\gamma(\theta)$ data (1970He29,1973Ka05) are consistent with J=4 but not with J=0,1,3; possible J=2 is ruled out by ce data.
684.69 <i>6</i>	0^{+}		
706.91 4	6+		
810.453 4	2+	7 ps 5	$T_{1/2}$: from 1993Se08.
963.363 <i>3</i>	1-	19.9 fs 7	T _{1/2} : From 2000Jo10.
1022.969 5	4+		
1041.1217 23	3-	<5 ps	$T_{1/2}$: from 1993Se08.
1082.816 24	0^{+}		
1085.8408 21	2^{+}	<4 ps	T _{1/2} : from 1993Se08.
1221.67 4	5-		
1233.8626 17	3+	<6 ps	T _{1/2} : from 1993Se08.
1292.753 8	2+		
1371.721 14	4+		
1529.8019 17	2-		$T_{1/2}$: From the intensity of the K-positon line to that of the 1408 γ , 1972Sv02 deduce $T_{1/2}=27$ fs. For data and calculations see authors' paper. this value of $T_{1/2}$ gives

$^{152}\mathrm{Eu}~\varepsilon$ decay (13.517 y) (continued)

¹⁵²Sm Levels (continued)

E(level) [†]	Jπ‡	Comments
		B(M2)(W.u.) \approx 10 for the 1408 γ and \approx 900 for the 444 γ , both much larger than the RUL limit of <1. $\delta(1408\gamma)$ is an average from eight authors, so the discrepancy May lie with the value of T _{1/2} . This value of T _{1/2} is not ADOPTED.
1579.427 8	3-	
1612.88 4	4+	
1649.833 6	2^{-}	J^{π} : $\gamma\gamma(\theta)$ data are consistent with J=3, not with J=0 or 1.
1682.07 12	4^{-}	
1730.207 24	3-	
1757.001 14	4+	
1769.130 23	2+	
1776.56 5	2^{+}	
1779.119 25	3-	
1822.03 22	4-	
÷		

 † From a least-squares fit to the $E\gamma$ data.

[‡] From Adopted Levels.

 ε, β^+ radiations

 $(\varepsilon K(exp)/\varepsilon)av=0.80 \ 3 \ (1976ScZS).$ I(K $\alpha x ray)/decay=0.591 \ 12$, I(K $\beta x ray)/decay=0.149 \ 3 \ (1979De36).$

E(decay)	E(level)	Iβ ⁺ ‡#	Ιε ^{‡#}	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(52.6 7)	1822.03		0.0049 12	10.37 11	0.0049 12	εK=0.078 17: εL=0.674 12: εM+=0.248 6
(95.5 7)	1779.119		0.0124 4	10.93 2	0.0124 4	εK=0.622 4; εL=0.2849 23; εM+=0.0932 9
(98.0 7)	1776.56		0.0086 6	11.12 4	0.0086 6	εK=0.633 3; εL=0.2770 21; εM+=0.0903 8
(105.5 7)	1769.130		0.0816 21	10.25 2	0.0816 21	εK=0.6590 23; εL=0.2577 17; εM+=0.0833 6
(117.6 7)	1757.001		0.054 3	10.57 <i>3</i>	0.054 3	εK=0.6908 16; εL=0.2344 12; εM+=0.0748 5
(144.4 7)	1730.207		0.0538 24	10.82 2	0.0538 24	εK=0.7339 9; εL=0.2027 7; εM+=0.06334 22
(192.5 7)	1682.07		0.00364 16	12.32 2	0.00364 16	εK=0.7718 4; εL=0.1748 3; εM+=0.05342 10
(224.8 7)	1649.833		0.928 9	10.078 6	0.928 9	εK=0.7857 3; εL=0.16452 19; εM+=0.04982 7
(261.7 7)	1612.88		0.0205 6	11.89 2	0.0205 6	εK=0.7964 2; εL=0.1566 2; εM+=0.04705 5
(295.2 7)	1579.427		2.082 12	10.007 4	2.082 12	εK=0.8033 2; εL=0.1515 1; εM+=0.04526 4
(344.8 7)	1529.8019		24.78 11	9.086 <i>3</i>	24.78 11	εK=0.81064 9; εL=0.14600 7; εM+=0.04337 3
						Iε: εK/ε=0.79 2 (1962Lu02), 0.76 9 (1975Da13).
(502.97)	1371.721		0.853 17	10.912 9	0.853 17	εK=0.8233; εL=0.13659 3; εM+=0.04012 1
(581.87)	1292.753		0.625 8	11.184 6	0.625 8	εK=0.8268; εL=0.13399 2; εM+=0.039227 7
(640.7 7)	1233.8626		17.09 8	9.837 <i>3</i>	17.09 8	εK=0.8288; εL=0.13250 2; εM+=0.038718 6
						Iε: εK/ε=0.88 10 (1975Da13).
(788.87)	1085.8408		21.50 11	9.928 <i>3</i>	21.50 11	εK=0.8324; εL=0.1298; εM+=0.03780
						ε-branch 38 9 % L=1 (1975Ba69).
(791.87)	1082.816		0.0038 24	13.7 <i>3</i>	0.0038 24	εK=0.8324; εL=0.1298; εM+=0.03778
(833.5 7)	1041.1217		0.067 7	12.49 5	0.067 7	εK=0.8332; εL=0.1292; εM+=0.03759
(851.67)	1022.969		0.233 4	11.963 8	0.233 4	εK=0.8335; εL=0.1290; εM+=0.03751
(1064.1 7)	810.453		1.175 15	11.463 6	1.175 15	εK=0.8363; εL=0.1269; εM+=0.03681
(1508.1 7)	366.4795	0.0026 1	0.85 4	11.92 2	0.85 4	av Eβ=230.84 <i>31</i> ; εK=0.8369; εL=0.1242; εM+=0.03589
						E(decay): $E\beta$ +=483 6 (1977MiZV), 479 10 (1972Sv02).
						$I\beta^+$, I ε : from $I\beta^+$ (to 121 level)/ $I\beta^+$ (to 366
						(1972Sv02).

Continued on next page (footnotes at end of table)

$^{152}\text{Eu}\ \varepsilon$ decay (13.517 y) (continued)

 ϵ, β^+ radiations (continued)

E(decay)	E(level)	Iβ ⁺ ‡#	$\mathrm{I}\varepsilon^{\ddagger \#}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(1752.8 7)	121.7818	0.023 7	1.6 5	11.8 2	1.6 5	av $E\beta$ =338.25 31; ε K=0.8282; ε L=0.1220; ε M+=0.03521 E(decay): $E\beta$ +=729.0 15 (1977MiZV), 727 3 (1972Sv02). I β ⁺ ,I ε : from I β ⁺ =0.011 % 2 per parent decay (1972Sv02) based on I β ⁺ /I(ce(K) 1408 γ)=1.08 20.

[†] From intensity balance in decay scheme, unless otherwise noted. [‡] From $I\varepsilon + I\beta^+$ and theoretical ε/β^+ ratios, unless otherwise noted. [#] Absolute intensity per 100 decays.

$\gamma(^{152}\text{Sm})$

I γ normalization: The absolute intensity of the 1408 γ has been evaluated to be 20.85% 9 (2007BeZP). Normalization of the photon intensities to I γ (344 γ in

Gd)=100 gives $I\gamma(1408\gamma)=78.41 \ 10$ and $\Sigma I(\gamma+ce)$ (to Gd g.s.)=105.02 18. From these data one gets branching (β -)=27.92 13 and thus branching (ε)=72.08 13. All unplaced γ 's from 13-y ¹⁵²Eu decay are listed in this dataset. some of these May belong in Gd following decay of the β^- branch. α (K)exp have been calculated by the evaluator from I(ce(K)) (weighted average of references given) and the adopted I γ . The I(ce(K)) have been normalized to

the 344.2780 γ in ¹⁵²Gd, α (K)(344 γ ,E2)=0.03103. The experimental α ratios given are also weighted averages of the references cited. K α x ray=224 34, K β x ray=51.6 20 (relative to I(344 γ , ¹⁵²Gd)=100) (1993Ka30).

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger m}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ #	α^{n}	Comments
118.97 ^{<i>l</i>} 15	0.0020 ^l 4	1082.816	0+	963.363	1-				E_{γ} : Poor fit. Not included in the least-squares adjustment. The
121.7817 ^C 3	107.3 4	121.7818	2+	0.0	0^+	E2		1.155	$\alpha(K)=0.678 \ 10; \ \alpha(L)=0.370 \ 6; \ \alpha(M)=0.0853 \ 12; \ \alpha(N+)=0.0212$
									α(N)=0.0187 3; α(O)=0.00239 4; α(P)=3.00×10 ⁻⁵ 5 I _γ : Value of 1969Va09 is excluded. Mult.: α(K)exp=0.661 10 (1981Ka40, 1979De22, 1978Ar24, 1967Ma29). K/L=1.73 3 (1981Ka40, 1979De22, 1978Ar24, 1957Ke08). L2/L1=2.58 12 (1981Ka40), 2.43 24 (1978Ar24), 2.30 26 (1967Ma29), 2.297 13 (1970SpZW), 2.22 4 (1957Ke08). L3/L1=2.66 13 (1981Ka40), 2.45 24 (1978Ar24), 2.260 15 (1970SpZW), 2.27 26 (1967Ma29), 2.16 5 (1957Ke08). The E2 theory values are 2.439 and 2.415 for L2/L1 and L3/L1, respectively, so the values of 1970SpZW and 1957Ke08 are 9.0% 17 and 5.9% 6 low for L2/L1, and 6.4% 6 and 10.0% 21 low for L3/L1, respectively. The experimental L2/L3 values agree well with theory, 1.016 5 for 1970SpZW and 1.028 24 for 1957Ke08 compared with 1.010 for E2 theory. L/M=4.34 7 (1960Mu05, 1957Ke08). M2/M1=2.72 5 (1970SpZW), 3.4 1 (1957Ke08). M3/M1=2.76 10 (1970SpZW), 3.3 2 (1957Ke08). The E2 theory values are 2.72 and 2.76, respectively.
125.68 ^{<i>t</i>} 10	0.0193 ¹ 7	810.453	2+	684.69	0^{+}	[E2]		1.033	$\alpha(K)=0.618 \; 9; \; \alpha(L)=0.322 \; 5; \; \alpha(M)=0.0742 \; 11; \; \alpha(N+)=0.0184 \; 3$ $\alpha(N)=0.01631 \; 24; \; \alpha(O)=0.00209 \; 3; \; \alpha(P)=2.75\times10^{-5} \; 4$
137.56 ¹ 22	0.0028 ¹ 5	1371.721	4+	1233.8626	3+				
148.00 5	0.077 4	1233.8626	3+	1085.8408	2+	M1+E2	+1.0 6	0.569 16	$\begin{aligned} &\alpha(\mathbf{K}) = 0.42 \ 5; \ \alpha(\mathbf{L}) = 0.11 \ 5; \ \alpha(\mathbf{M}) = 0.025 \ 11; \ \alpha(\mathbf{N}+) = 0.006 \ 3\\ &\alpha(\mathbf{N}) = 0.0056 \ 24; \ \alpha(\mathbf{O}) = 0.0008 \ 3; \ \alpha(\mathbf{P}) = 2.4 \times 10^{-5} \ 7\\ &I_{\gamma}: \ From \ 2007 Ku 20. \ Others: \ 0.18 \ 2 \ (1993 Ka 30), \ 0.15 \ 3\\ &(1990 Me 15), \ 0.17 \ 2 \ (1990 St 02), \ 0.12 \ 1 \ (1980 Sh 15), \approx 0.04\\ &(1975 LeZ H), \ \leq 0.02 \ (1972 Bb 05), \ 0.06 \ 2 \ (1971 Ba 63). \end{aligned}$

						¹⁵² Eu ε	decay (13.	517 y) (continued)
						2	γ(¹⁵² Sm) (continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger m}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	α ⁿ	Comments
					_			Mult.: The adopted $T_{1/2}=0.76$ ps <i>14</i> for the 1234 level, and $\delta(Q/D)=1.0$ 6 rule out mult=E1+M2. δ : From linear polarization (2002Za07).
$150.13^{i} 8$ $x166.91^{d} 25$ $x175.18^{d}$	$0.0034^{i} 3$ $0.008^{d} 3$	1371.721	4+	1221.67	5-			
^x 202.74 <i>13</i>	0.015 4							E_{γ} , I_{γ} : Weighted average from 1990Me15 and 1990St02. 1992Ya12 report I_{γ} <0.005.
207.03 ¹ 23	0.0043 ¹ 9	1292.753	2^{+}	1085.8408	2^{+}			
207.64 11	0.0276 10	1579.427	3-	1371.721	4+	[E1]	0.0382	$\alpha(K)=0.0325 5; \alpha(L)=0.00450 7; \alpha(M)=0.000961 14; \alpha(N+)=0.000249 4$ $\alpha(N)=0.000216 3; \alpha(O)=3.14\times10^{-5} 5; \alpha(P)=1.729\times10^{-6} 25$ I_{α} : Values of 1990Me15, 1980Sh15, and 1971Ba63 are excluded.
209.97 <i>3</i>	0.0162 26	1292.753	2+	1082.816	0+			\dot{E}_{γ} : Weighted average from 2007Ku20 and 2004Ca04. I_{γ} : The 209 γ is a triplet with I_{γ} =0.0209 20. 2004Ca04 determine I_{γ} =0.0045 15 for placement from the 1643 level in Gd, and 0.0162 26 for placement from the 1293 level in Sm. A third placement is from the 1318 level in Gd, whose intensity from branching in Tb ε decay is 0.0099 4. The sum of these components is 0.0213 30, consistent with the value measured for the triplet.
210 95 ¹ 14	0.0143^{l} 6	1233 8626	3+	1022 969	4+			r_{γ} : Unweighted average of 0.0241 10 (2007Ku20) and 0.0102 20 (2004Ca04). the transition is a doublet and is not resolved in the other works.
212.43 11	0.0780 20	1022.969	4 ⁺	810.453	2+	E2	0.1706	α (K)=0.1246 <i>18</i> ; α (L)=0.0359 <i>5</i> ; α (M)=0.00811 <i>12</i> ; α (N+)=0.00204 <i>3</i> α (N)=0.00179 <i>3</i> ; α (O)=0.000239 <i>4</i> ; α (P)=6.26×10 ⁻⁶ <i>9</i> E _{γ} : Weighted average from 2007Ku20 and 1990St02. The value of 212.569 <i>15</i> reported by 1990Me15 is not consistent with the level energy difference of 212.516 <i>6</i> .
237.10 ^{<i>i</i>} 3 239.33 ⁰	0.0238 ^{<i>i</i>} 7 <0.02	1529.8019 1769.130	$2^{-}_{2^{+}}$	1292.753 1529.8019	2^+ 2^-	[E1]	0.0263	α (K)=0.0224 4; α (L)=0.00308 5; α (M)=0.000657 10; α (N+)=0.0001704 24 α (N)=0.0001476 21; α (O)=2.16×10 ⁻⁵ 3; α (P)=1.208×10 ⁻⁶ 17
								E_{γ} , I_{γ} : E is from the level energy difference and I_{γ} is the limit from 1971Ba63. 2007Ku20 report $I_{\gamma} < 0.09$. 1990St02 report $E_{\gamma} = 239.47$ 33 with $I_{\gamma} = 0.04$ 1, 1972Bb05 report $E_{\gamma} = 238.8$ 10 with $I_{\gamma} = 0.25$ 12, from $\gamma\gamma$.
241 ⁰	< 0.0014	1612.88	4+	1371.721	4+			E_{γ}, I_{γ} : Transition not seen. E_{γ} is a rounded-off value from the E(level) difference and I_{γ} is the limit determined by 2007Ku20.
244.6974 ^{<i>c</i>} 8	28.39 10	366.4795	4+	121.7818	2+	E2	0.1073	$\alpha(K)=0.0808\ 12;\ \alpha(L)=0.0207\ 3;\ \alpha(M)=0.00465\ 7;\ \alpha(N+)=0.001176\ 17$ $\alpha(N)=0.001032\ 15;\ \alpha(O)=0.0001394\ 20;\ \alpha(P)=4.18\times10^{-6}\ 6$ $I_{\gamma}:$ Values of 1993Ka30, 1990St02, and 1970No06 are excluded. Mult.: $\alpha(K)\exp=0.0809\ 16,\ K/L=3.91\ 9\ (1985Co08,\ 1981Ka40,\ 1979De22,\ 1978Ar24,\ 1967Ma29).\ \alpha(L)\exp=0.0210\ 9\ (1991Go22).$ $\alpha(M)\exp=0.00466\ 14\ (1983KaZJ).\ L2/L1=0.78\ 3\ (1985Co08,\ 1981Ka40,\ 1967Ma29).\ L3/L1=0.61\ 3\ (1985Co08,\ 1981Ka40).\ Other:\ L3/L1=0.39\ 4\ of$

S

							152 Eu ε d	ecay (13.517 y)	(continued	<u>)</u>
							γ	(¹⁵² Sm) (contir	ued)	
	${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\ddagger m}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\#}$	α ⁿ	Comments
										1967Ma29 is discrepant. E2 theory values are α (K)=0.0808, K/L=3.90, α (L)=0.0207, α (M)=0.00465, L2/L1=0.772, L3/L1=0.603. δ: From $\gamma\gamma(\theta)$, 1985KrZU report δ (M3/E2)=-0.01 3.
	251.633 ^h 9	0.252 7	1292.753	2+	1041.1217	3-	E1+M2	0.24 +4-6	0.055 14	$\alpha(K)=0.046 \ I2; \ \alpha(L)=0.0074 \ 21; \ \alpha(M)=0.0016 \ 5; \ \alpha(N+)=0.00043 \ I2 \ \alpha(N)=0.00037 \ I1; \ \alpha(O)=5.4\times10^{-5} \ I5; \ \alpha(P)=3.1\times10^{-6} \ 9 \ I_{\gamma}: The value of 1975LeZH is excluded. Mult., \delta: \ \alpha(K)exp=0.045 \ I0 \ (1991Go22). \ \alpha(K)(theory)=0.0197 \ (E1), \ 0.0742 \ (E2), \ 0.500 \ (M2). This gives mult=E1+M2 \ with \ \delta=0.24 \ 4.6$
	269.84 6	0.0295 <i>19</i>	1292.753	2+	1022.969	4+	[E2]		0.0784	with $\theta = 0.24 + 4 - 6$. $\alpha(K) = 0.0601 \ 9; \ \alpha(L) = 0.01432 \ 20; \ \alpha(M) = 0.00321 \ 5; \ \alpha(N+) = 0.000812 \ 12 \ \alpha(N) = 0.000712 \ 10; \ \alpha(O) = 9.71 \times 10^{-5} \ 14; \ \alpha(P) = 3.17 \times 10^{-6} \ 5 \ I_{\gamma}$: The value of 1972Bb05 is excluded.
r	272.41 ^{<i>i</i>} 9 275.42 <i>4</i>	0.0024 ^{<i>i</i>} 6 0.130 <i>3</i>	1082.816 1085.8408	0+ 2+	810.453 810.453	2+ 2+	M1		0.1015	$\alpha(K)=0.0863 \ 12; \ \alpha(L)=0.01198 \ 17; \ \alpha(M)=0.00257 \ 4; \ \alpha(N+)=0.000676 \ 10 \ \alpha(N)=0.000583 \ 9; \ \alpha(O)=8.75\times10^{-5} \ 13; \ \alpha(P)=5.46\times10^{-6} \ 8 \ I_{\gamma}: The values of 1993Ka30 and 1977Ge12 are excluded. Mult.: \ \alpha(K)exp=0.106 \ 19 \ (1991Go22). \ \alpha(K)(theory)=0.0862 \ (M1)$
	285.98 ^g 18	0.037 ^g 6	1371.721	4+	1085.8408	2+	[E2]		0.0653	$\alpha(\mathbf{K})=0.0505 \ 8; \ \alpha(\mathbf{L})=0.01156 \ 17; \ \alpha(\mathbf{M})=0.00258 \ 4; \ \alpha(\mathbf{N}+)=0.000656 \ 10 \ \alpha(\mathbf{N})=0.000574 \ 9; \ \alpha(\mathbf{O})=7.87\times10^{-5} \ 12; \ \alpha(\mathbf{P})=2.69\times10^{-6} \ 4$
	286.50 ^g 11 295.9387 ^c 17	0.0052 ⁸ 11 1.656 15	1579.427 1529.8019	3 ⁻ 2 ⁻	1292.753 1233.8626	2+ 3+	E1		0.01523	$\alpha(K)=0.01299 \ 19; \ \alpha(L)=0.001765 \ 25; \ \alpha(M)=0.000377 \ 6; \alpha(N+)=9.79\times10^{-5} \ 14 \alpha(N)=8.48\times10^{-5} \ 12; \ \alpha(O)=1.244\times10^{-5} \ 18; \ \alpha(P)=7.13\times10^{-7} \ 10 I_{\gamma}: The value of 0.72 \ 5 given in 1990St02 is probably a misprint. the evaluator assumes that the value should be 1.72 \ 5 and includes it in the weighted average. Mult.: \ \alpha(K)exp=0.0108 \ 8 \ (1991Go22, \ 1982TrZV, \ 1967Ma29). Note that the reported values are all smaller than the E1 theory value of 0.0130.$
	316.13 ^{<i>j</i>} <i>13</i>	0.0378 19	1022.969	4+	706.91	6+	(E2)		0.0478	δ: -0.00 3 (1985 krZU). α(K)=0.0375 6; α(L)=0.00806 12; α(M)=0.00179 3; α(N+)=0.000457 7 $ α(\text{N})=0.000399 6; α(\text{O})=5.52 \times 10^{-5} 8; α(\text{P})=2.03 \times 10^{-6} 3 $
	320.10 ^{<i>i</i>} 5	0.0077 ⁱ 4	1612.88	4+	1292.753	2+				I_{γ} : Exclude 1990Me15. E_{γ} : Weighted average from 2007Ku20, 2004Ca04, and 1990Me15.

From ENSDF

 $^{152}_{62}\mathrm{Sm}_{90}$ -6

							¹⁵² Eu ε de	cay (13.517 y)	(continued)
							$\gamma(1)$	⁵² Sm) (continu	ued)
	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\ddagger m}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α ⁿ	Comments
	329.41 5	0.456 9	1292.753	2^{+}	963.363	1-	[E1]	0.01163	$\alpha(K)=0.00993 \ 14; \ \alpha(L)=0.001342 \ 19; \ \alpha(M)=0.000286 \ 4;$
	330.58 8	0.035 4	1371.721	4+	1041.1217	3-	[E1]	0.01154	$\alpha(N+)=7.45\times10^{-5} 11$ $\alpha(N)=6.45\times10^{-5} 9; \ \alpha(O)=9.49\times10^{-6} 14; \ \alpha(P)=5.50\times10^{-7} 8$ I _y : Weighted average of 2007Ku20, 1990Me15, and 1972Bb05. The other works May include the 330.58 γ from the 1372 level. $\alpha(K)=0.00985 14; \ \alpha(L)=0.001331 19; \ \alpha(M)=0.000284 4; \alpha(N+)=7.39\times10^{-5} 11$ $\alpha(N)=6.39\times10^{-5} 9; \ \alpha(O)=9.41\times10^{-6} 14; \ \alpha(P)=5.45\times10^{-7} 8$ I _y : Weighted average of 2007Ku20, 1990Me15, and 1972Bb05. The value of 0.28 4 given in 1990Me15 is assumed by the evaluator to be
		0.400.0		<i>c</i> .±		.+			α mistake and is taken as 0.028 4.
	340.46 10	0.100 3	706.91	6+	366.4795	4+	E2	0.0382	$\alpha(K)=0.03025; \alpha(L)=0.006229; \alpha(M)=0.00137920; \alpha(N+)=0.0003525$
	345.54 <i>3</i>	0.0369 18	1579.427	3-	1233.8626	3+			$\alpha(N)=0.000308 5; \alpha(O)=4.28\times10^{-5} 6; \alpha(P)=1.660\times10^{-6} 24$ I _y : The values of 1993Ka30 and 1977Ge12 are excluded. I _y : Weighted average of 2007Ku20 and 2004Ca04. The transition is not
									fully resolved in the other works from the 344γ in Gd.
1	348.752 ¹ 15 357.26 5	0.0064 ¹ 6 0.0229 16	1371.721 1649.833	4+ 2-	1022.969 1292.753	4+ 2+	[E1]	0.00953 14	α =0.00953 <i>14</i> ; α (K)=0.00814 <i>12</i> ; α (L)=0.001095 <i>16</i> ; α (M)=0.000234 <i>4</i> ; α (N+)=6.09×10 ⁻⁵ <i>9</i>
	358.48 ⁱ 7	0.0062^{i} 5	1730.207	3-	1371.721	4+			$\alpha(N)=5.26\times10^{-5} 8; \alpha(O)=7.76\times10^{-6} 11; \alpha(P)=4.53\times10^{-7} 7$
	378.15 ¹ 24	$0.00089^l 21$	1612.88	4 ⁺	1233.8626	3+			E_{γ} : Poor fit. Not included in the least-squares adjustment. The adjustment gives $E\gamma$ =379.02.
	^x 379.36 ^e 18 385.61 21	0.0031 ^e 8 0.0209 9	1757.001	4+	1371.721	4+	[M1,E2]	0.034 8	$\alpha(K)=0.028 \ 8; \ \alpha(L)=0.0045 \ 5; \ \alpha(M)=0.00097 \ 8; \ \alpha(N+)=0.000253 \ 23$
	^x 389.07 11	0.013 5							$\alpha(N)=0.000220$ <i>I</i> 9; $\alpha(O)=3.2\times10^{-9}$ <i>4</i> ; $\alpha(P)=1.7\times10^{-9}$ <i>6</i> I _{γ} : 1990St02 report I γ =0.21 2. This May be a misprint. E _{γ} ,I _{γ} : From 1990St02. 1993Ka30 report I γ =0.014 4. Not seen by 1992Ya12, I γ <0.005.
	391.19 7 ^x 395.75 <i>19</i>	0.00530 <i>16</i> 0.03 <i>1</i>	1612.88	4+	1221.67	5-			E_{γ}, I_{γ} : From 1990St02. 1993Ka30 report $I_{\gamma}=0.02$ <i>1</i> . Not seen by
	397.75 ¹ 26	0.00140^{l} 22	1769.130	2+	1371.721	4+			19921112, 17<0.005.
	401.29 ^{<i>i</i>} 9	0.00240^{i} 16	1085.8408	2+	684.69	0^+			
	^x 406.74 ^e 15 416.02 3	0.0031 ^e 8 0.409 7	1649.833	2-	1233.8626	3+	[E1]	0.00660 10	α =0.00660 <i>10</i> ; α (K)=0.00565 <i>8</i> ; α (L)=0.000755 <i>11</i> ; α (M)=0.0001609 <i>23</i> ; α (N+)=4.20×10 ⁻⁵ <i>6</i>
	423.45 ^{<i>l</i>} 4	0.0112 ¹ 8	1233.8626	3+	810.453	2+	[M1,E2]	0.027 7	$\alpha(N)=3.63\times10^{-5} 5; \ \alpha(O)=5.36\times10^{-6} 8; \ \alpha(P)=3.17\times10^{-7} 5$ $\alpha(K)=0.022 \ 6; \ \alpha(L)=0.0034 \ 5; \ \alpha(M)=0.00074 \ 8; \ \alpha(N+)=0.000193 \ 24$
	^x 441.00 ^d	d							$\alpha(N)=0.000167\ 20;\ \alpha(O)=2.4\times10^{-5}\ 4;\ \alpha(P)=1.3\times10^{-6}\ 5$

1							Eu & decay	(13.517 y) (co	ntinued)	
							$\gamma(^{152}St$	m) (continued)	<u>)</u>	
	${\rm E_{\gamma}}^{\dagger}$	$\mathrm{I}_{\gamma}^{\ddagger m}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α ⁿ	Comments
	443.9606 ^{&} 16	10.63 ^{&} 3	1529.8019	2-	1085.8408	2+	E1+M2 ^{&}	+0.058 12	0.00598 17	α =0.00598 <i>17</i> ; α (K)=0.00511 <i>14</i> ; α (L)=0.000688 <i>22</i> ; α (M)=0.000147 <i>5</i> ; α (N+)=3.83×10 ⁻⁵ <i>13</i> α (N)=3.31×10 ⁻⁵ <i>11</i> ; α (O)=4.91×10 ⁻⁶ <i>16</i> ; α (P)=2.92×10 ⁻⁷ <i>10</i> δ ; from 1985KrZU, Other: +0.03 8 (1973Ka05).
	444.01 ^{&} <i>17</i>	1.12 ^{&} 4	810.453	2+	366.4795	4+	E2 ^{&}		0.01772	$\alpha(K)=0.01441 \ 21; \ \alpha(L)=0.00259 \ 4; \ \alpha(M)=0.000569 \\ 8; \ \alpha(N+)=0.0001463 \ 21 \\ \alpha(N)=0.0001274 \ 18; \ \alpha(O)=1.81\times10^{-5} \ 3; \\ \alpha(P)=8.19\times10^{-7} \ 12 $
	464.28 ¹ 14	0.0017 ^l 7	1757.001	4+	1292.753	2^+				
	476.42 ^{<i>i</i>} 9	0.0064^{i} 12	1769.130	2^+	1292.753	2^+			0.0(0.10	
0	482.33 5	0.09 <i>3 3</i>	1292.753	2-	1041 1217	3-	E0+M1+E2	+565	0.062 12	$\alpha(K)=0.054$ 12; $\alpha(L)=0.0077$ 17 E_{γ},I_{γ} : The 482 γ is placed from the 1293 level in Sm and from the 1606 level in Gd. 2007Ku20 resolve the Sm component which constitutes 92% of the total intensity. The evaluator assumes that the measured energy can be assigned to this placement. Mult.: $\alpha(K)exp=0.054$ 12 (1991Go22, 1990Ka35, 1982TrZV). The value for 1991Go22 is deduced by the evaluator from the authors' unresolved ce intensity for Ice(K)(482 γ)+Ice(L)(444 γ doublet). $\alpha(K)$ (theory)=0.0201 for mult=M1 and 0.0116 for E2 give Ice(K)(E0)/Ice(K)(E2)=3.6 10 for mult=E0+E2, and Ice(K)(E0)/Ice(K)(M1)=1.7 6 for mult=E0+M1. $\alpha(K)=0.01143$ 17: $\alpha(L)=0.00195$ 3: $\alpha(M)=0.000427$
				_						6; α (N+)=0.0001101 <i>16</i> α (N)=9.57×10 ⁻⁵ <i>14</i> ; α (O)=1.371×10 ⁻⁵ <i>20</i> ; α (P)=6.59×10 ⁻⁷ <i>10</i> Mult.: α (K)exp=0.0118 <i>9</i> (1991Go22,1967Ma29). α (K)(theory)=0.0194 (M1), 0.0112 (E2). δ: from 1970Ba32. Other: +4.5 + <i>18</i> - <i>11</i> (1985KrZU).
	493.54 4	0.114 5	1579.427	3-	1085.8408	2+	[E1]		0.00444 7	$\alpha = 0.00444 \ 7; \ \alpha(K) = 0.00380 \ 6; \ \alpha(L) = 0.000504 \ 7; \alpha(M) = 0.0001074 \ 15; \ \alpha(N+) = 2.80 \times 10^{-5} \ 4 \alpha(N) = 2.42 \times 10^{-5} \ 4; \ \alpha(O) = 3.59 \times 10^{-6} \ 5; \alpha(P) = 2.16 \times 10^{-7} \ 3 E_{\gamma}, I_{\gamma}: From 2007Ku20. The transition is also placed in Gd and is unresolved in the other works. The placement in Sm is dominant and the evaluator assumes that the measured energy can be assigned to this placement.$
	496.56 ¹ 24	0.022 ^{<i>l</i>} 8	1730.207	3-	1233.8626	3+	[E1]		0.00438 7	α =0.00438 7; α (K)=0.00375 6; α (L)=0.000497 7;

 ∞

From ENSDF

Т

						¹⁵² Eu ε c	lecay (13.517	y) (continued	<u>1)</u>
						<u> </u>	/(¹⁵² Sm) (con	ntinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger m}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\#}$	α^{n}	Comments
			_						α (M)=0.0001059 <i>15</i> ; α (N+)=2.77×10 ⁻⁵ <i>4</i>
514 701 6	0.001 (1) 2	1001 67	<i>5</i> –	706.01	ϵ^+				$\alpha(N)=2.39\times10^{-5}$ 4; $\alpha(O)=3.55\times10^{-6}$ 5; $\alpha(P)=2.13\times10^{-7}$ 3
523.13 5	0.0016 3	1221.67 1757.001	5 4 ⁺	1233.8626	0 3 ⁺	[M1,E2]		0.015 4	$\alpha(K)=0.013$ 4; $\alpha(L)=0.0019$ 4; $\alpha(M)=0.00041$ 7;
						. / .			α(N+)=0.000107 19
									$\alpha(N)=9.3\times10^{-5}$ 16; $\alpha(O)=1.4\times10^{-5}$ 3; $\alpha(P)=7.8\times10^{-7}$ 25 I _{γ} : The value of 0.0056 4 given in 1990Me15 is probably a misprint. the evaluator assumes that the value should be 0.056 4 and includes it in the weighted average.
527.1 ⁰	< 0.0007	1612.88	4+	1085.8408	2+				E_{γ} , I_{γ} : Transition not seen. $E\gamma$ is a rounded-off value from the E(level) difference and $I\gamma$ is the limit determined by 2007Ku20.
535.44 ⁱ 12	0.0065 ⁱ 5	1769.130	2^{+}	1233.8626	3+				
x536.23 ^d	<i>d</i>		a -		-			0.014.4	
538.29 6	0.0163 11	15/9.427	3-	1041.1217	3-	[M1,E2]		0.014 4	$\alpha(K)=0.012$ 4; $\alpha(L)=0.0018$ 4; $\alpha(M)=0.00038$ 7; $\alpha(N+1)=0.9\times10^{-5}$ 18
									$\alpha(N)=8.6\times10^{-5}$ 15; $\alpha(O)=1.27\times10^{-5}$ 25; $\alpha(P)=7.3\times10^{-7}$ 23
556.48 10	0.0666 23	1579.427	3-	1022.969	4+	[E1]		0.00340 5	$\alpha = 0.00340 \ 5; \ \alpha(K) = 0.00291 \ 4; \ \alpha(L) = 0.000384 \ 6; \ \alpha(M) = 8.17 \times 10^{-5} \ 12: \ \alpha(N+) = 2.14 \times 10^{-5} \ 3$
									$\alpha(N)=0.17\times10^{-5}$ 3; $\alpha(O)=2.74\times10^{-6}$ 4; $\alpha(P)=1.659\times10^{-7}$ 24
									E_{γ} : Weighted average from 2007Ku20 and 1990St02. The value of 556.562 27 reported by 1990Me15 is not consistent with the level energy difference of 556.458 <i>12</i> . The value
561 06 17	0.0052.0	1271 701	4+	910 452	$^{+}$	[[2]]		0.00040.14	May be a misprint. $0.000285 \ H_{1} = (1) \ 0.001285 \ H_{2}$
301.20 17	0.0053 9	13/1./21	4	810.455	Ζ.	[E2]		0.00949 14	$\alpha = 0.00949 \ 14$; $\alpha(\mathbf{N}) = 0.00783 \ 17$; $\alpha(\mathbf{L}) = 0.001285 \ 18$; $\alpha(\mathbf{M}) = 0.000280 \ 4$; $\alpha(\mathbf{N}+) = 7.24 \times 10^{-5} \ 11$
									$\alpha(N)=6.29\times10^{-5}$ 9; $\alpha(O)=9.07\times10^{-6}$ 13; $\alpha(P)=4.56\times10^{-7}$ 7
562.98 ¹ 14	0.076 ^l 7	684.69	0^{+}	121.7818	2^{+}	E2		0.00941 14	α=0.00941 14; α(K)=0.00779 11; α(L)=0.001274 18;
									$\alpha(M)=0.000278 \ 4; \ \alpha(N+)=7.18\times10^{-5} \ 10$
scappef s	1.056.16	1640.022	0-	1005 0400	2+	(51)		0.00000.5	$\alpha(N) = 6.24 \times 10^{-5} \ 9; \ \alpha(O) = 9.00 \times 10^{-6} \ 13; \ \alpha(P) = 4.52 \times 10^{-7} \ 7$
563.986 5	1.856 16	1649.833	2	1085.8408	21	(EI)		0.00330 5	α =0.00330 5; α (K)=0.00283 4; α (L)=0.000372 6; α (M)=7.93×10 ⁻⁵ 11; α (N+)=2.07×10 ⁻⁵ 3
									$\alpha(N)=1.79\times10^{-5}$ 3; $\alpha(O)=2.66\times10^{-6}$ 4; $\alpha(P)=1.612\times10^{-7}$ 23 Mult.: $\alpha(K)\exp=0.0070$ 4 (1981Ka40) and 0.0036 17 (1967Ma29) do not agree. $\alpha(K)$ (theory)=0.00283 (E1), 0.00775 (E2). Placement in the decay scheme requires $\Delta \pi = ves$
									δ : +0.07 +11-9 (1985KrZU).
566.438 ^f 6	0.493 12	1529.8019	2-	963.363	1-	M1+E2	-0.74 35	0.0134 15	$\alpha(K)=0.0114 \ 13; \ \alpha(L)=0.00162 \ 13; \ \alpha(M)=0.00035 \ 3;$
									$\alpha(N=7.9\times10^{-5} 6; \alpha(O)=1.17\times10^{-5} 10; \alpha(P)=7.0\times10^{-7} 9$

 $^{152}_{62}\mathrm{Sm}_{90}$ -9

					continued)			
						$\gamma(^{152}$	² Sm) (continue	<u>d)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger m}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α ^{<i>n</i>}	Comments
								Mult.: <i>α</i> (K)exp=0.010 5 (1967Ma29). <i>α</i> (K)(theory)=0.0134 (M1), 0.00767 (E2). δ: from 1985KrZU.
571.83 ¹ 8	0.0167 ¹ 6	1612.88	4+	1041.1217	3-			
588.6 ¹ 3	0.009^{l} 4	1822.03	4-	1233.8626	3+			
589.83 ⁱ 17	0.0049 ⁱ 3	1612.88	4+	1022.969	4+			
^x 595.61 12	0.12 4							E_{γ} , I_{γ} : From 1990St02. 1993Ka30 report I_{γ} =0.012 6. Not seen by 1992Ya12, I_{γ} <0.006.
608.06 ¹ 15	0.0010 ¹ 3	1292.753	2^{+}	684.69	0^+			
609.23 ¹ 22	0.0046 ¹ 6	1649.833	2-	1041.1217	3-			
616.05 5	0.0345 20	1579.427	3-	963.363	1-	[E2]	0.00750 11	α =0.00750 <i>11</i> ; α (K)=0.00624 <i>9</i> ; α (L)=0.000991 <i>14</i> ; α (M)=0.000215 <i>3</i> ; α (N+)=5.58×10 ⁻⁵ 8
								α (N)=4.84×10 ⁻⁵ 7; α (O)=7.02×10 ⁻⁶ 10; α (P)=3.65×10 ⁻⁷ 6
644.39 6	0.0248 18	1730.207	3-	1085.8408	2+	[E1]	0.00248 4	$ \substack{\alpha = 0.00248 \ 4; \ \alpha(K) = 0.00212 \ 3; \ \alpha(L) = 0.000278 \ 4; \ \alpha(M) = 5.92 \times 10^{-5} \ 9; \\ \alpha(N+) = 1.548 \times 10^{-5} \ 22 } $
								α (N)=1.336×10 ⁻⁵ <i>19</i> ; α (O)=1.99×10 ⁻⁶ <i>3</i> ; α (P)=1.216×10 ⁻⁷ <i>17</i> I _{γ} : The values of 1990St02 and 1971Ba63 are excluded.
656.489 ^h 5	0.542 8	1022.969	4^{+}	366.4795	4^+	E0+M1+E2	0.0568 20	$\alpha(K)=0.0491 \ 15; \ \alpha(L)=0.0070 \ 2$
								I_{γ} : Exclude 1970Ri19.
								Mult., δ : α (K)exp=0.0491 15 (1991 γ 022, 1990Ka35, 1985Co08, 1082TrZV, 1070De22, 1067Me20). The value for 1001Ge22 is
								deduced by the evaluator from the authors' unresolved ce intensity for
								$ce(K)(656\gamma) + ce(L)(615 \text{ E0 in Gd})$. K/L=4.5 +29–15 (1967Ma29).
								α (K)(theory)=0.00931 (M1) and 0.00536 (E2), and from the
								evaluation of 1982La26 one has $\delta = +2.1 \ 3$, which gives $\alpha(K)(M1+E2)$
								theory)=0.00611 18. From these data one gets $L_{CO}(K)(E0)/L_{CO}(K)(M1+E2)=7.0.3$
664.77.5	0.0373 19	1371.721	4^{+}	706.91	6+	[E2]	0.00623.9	$\alpha = 0.00623 \ 9: \ \alpha(K) = 0.00520 \ 8: \ \alpha(L) = 0.000807 \ 12: \ \alpha(M) = 0.0001749$
0011770	010070 12	10,11,21		100171	0	[]	0100020 2	$25; \alpha(N+)=4.54\times10^{-5} 7$
								$\alpha(N)=3.94\times10^{-5}$ 6; $\alpha(O)=5.73\times10^{-6}$ 8; $\alpha(P)=3.05\times10^{-7}$ 5
								I_{γ} : Values of 1990Me15 and 1972Bb05 are excluded.
671.155 14	0.092 16	1757.001	4+	1085.8408	2+			Mult.: See comment in $(\alpha, 2n\gamma)$.
674.64 ^k 14	0.636 ^k 12	1041.1217	3-	366.4795	4+	E1	0.00225 4	α =0.00225 4; α (K)=0.00193 3; α (L)=0.000252 4; α (M)=5.36×10 ⁻⁵ 8; α (N+)=1.403×10 ⁻⁵ 20
l								$\alpha(N)=1.211\times10^{-5} \ 17; \ \alpha(O)=1.81\times10^{-6} \ 3; \ \alpha(P)=1.107\times10^{-7} \ 16$ $\delta: \ \delta(M2/E1)=-0.03 \ 6 \ (1971Ba54).$
683.25 9	0.0178 10	1769.130	2^{+}	1085.8408	2^{+}			I_{γ} : Weighted average from 2007Ku20 and 2004Ca04.
								E_{γ} : Weighted average from 2007Ku20 and 1990Me15. The value of
								0.5.70 y from 2004 Ca04 appears to be discrepant. Ey=085.29 3 is expected from Adopted Levels
686 60 ¹ 5	0.0762 25	1649 833	2-	963 363	1-	[M1 E2]	0.0078.20	$\alpha = 0.0078 \ 20^{\circ} \alpha(K) = 0.0066 \ 18^{\circ} \alpha(L) = 0.00093 \ 20^{\circ} \alpha(M) = 0.00020 \ 4^{\circ}$
000.00 5	0.0702 23	1077.033	2	705.505	I	[1911,12]	0.0070 20	$\alpha(N+)=5.2\times10^{-5}$ 11

						¹⁵² Eu ε decay (13.517 y) (continued)					
						$\gamma(^{152}S)$	Sm) (continued)				
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger m}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{n}	Comments			
688.670 ^c 5	3.221 19	810.453	2+	121.7818	2+	E0+M1+E2	0.0409 <i>13</i>	$\begin{aligned} &\alpha(\text{N})=4.5\times10^{-5}\ 10;\ \alpha(\text{O})=6.7\times10^{-6}\ 15;\ \alpha(\text{P})=4.0\times10^{-7}\ 12\\ &\text{I}_{\gamma}:\ \text{From 2007Ku20. 2004VaZW report 0.075}\ 7.\\ &\alpha(\text{K})=0.0356\ 11;\ \alpha(\text{L})=0.0051\ 2\\ &\text{Mult.,}\delta:\ \alpha(\text{K})\text{exp}=0.0357\ 11\ (1990\text{Ka35},\ 1981\text{Ka40},\ 1991\text{Go22},\\ &1967\text{Ma29}).\ \alpha(\text{K})(\text{E2 theory})=0.00479,\ \text{and from the evaluation of}\\ &1982\text{La26 one has}\ \delta(\text{E2}/\text{M1})=19\ +5-4,\ \text{which gives}\\ &\alpha(\text{K})(\text{theory})=0.00480.\ \text{from these data one gets}\end{aligned}$			
*696.87 19	0.06 <i>3</i>							Ice(K)(E0)/Ice(K)(E2)=6.4 3. α (M)exp=0.0019 4 (1983KaZJ). K/L=7.0 8 (1991Go22), other: 7.2 13 (1967Ma29). The value of 4.0 4 reported by 1981Ka40 is discrepant. L/M=3.3 5 (1991Go22), other: 3.3 14 (1967Ma29). I(ce(K))(E0)/I(ce(K))(E2)=6.1 15, ρ =0.23 2 (1990Ka35); δ : δ (E2/M1)=+19 +5-4 (adopted gammas (1982La26), includes 1973Ka05,1971Ru05,1970RaZF). Other: +31 +[-17 (1985KrZU). From (ce(K))(γ)(θ) 1973Ka05 deduce penetration parameter -365 $\leq \lambda \leq$ +290 and δ (E0/E2)=2.47 31. E _{γ} ,I _{γ} : From 1990St02. 1993Ka30 report I γ =0.011 4. Not seen by			
707 16 ⁱ 7	0.00535 ⁱ 21	1730 207	3-	1022.969	4^{+}			1992 Ya12, $1\gamma < 0.007$.			
719.346 ^b 7	0.94^{b} 3	1085.8408	2 ⁺	366.4795	4 ⁺	(E2) ^b	0.00517 8	α =0.00517 8; α (K)=0.00433 6; α (L)=0.000657 10; α (M)=0.0001420 20; α (N+)=3.69×10 ⁻⁵ 6 α (N)=3.20×10 ⁻⁵ 5; α (Q)=4.68×10 ⁻⁶ 7; α (P)=2.55×10 ⁻⁷ 4			
719.36 ^b 14	0.357 ^b 12	1529.8019	2-	810.453	2+	(E1) ^b	0.00197 3	$\alpha(1)=5.26\times10^{-5}, \alpha(0)=4.66\times10^{-7}, \alpha(1)=2.55\times10^{-7}, \alpha(1)=2.00197, \alpha(1)=2.001689, 24; \alpha(1)=0.000220, 3; \alpha(1)=4.68\times10^{-5}, 7; \alpha(1)=1.226\times10^{-5}, 18$			
728.04 4	0.0418 14	1769.130	2+	1041.1217	3-	[E1]	0.00192 3	$\alpha(N)=1.058\times10^{-5}$ 1; $\alpha(O)=1.578\times10^{-5}$ 2; $\alpha(P)=9.71\times10^{-5}$ 14 $\alpha=0.00192$ 3; $\alpha(K)=0.001648$ 23; $\alpha(L)=0.000215$ 3; $\alpha(M)=4.57\times10^{-5}$ 7; $\alpha(N+)=1.195\times10^{-5}$ 17 $\alpha(N)=1.032\times10^{-5}$ 15; $\alpha(O)=1.539\times10^{-6}$ 22; $\alpha(P)=9.48\times10^{-8}$ 14 E_{γ} : Weighted average from 2007Ku20 and 1990Me15. The value of 727.42 16 reported by 1990St02 appears to be discrepant. I_{γ} : From 2007Ku20.			
734.14 ⁱ 12 735.43 8 756.16 3	0.0034 ⁱ 5 0.0166 7 0.0167 <i>16</i>	1757.001 1776.56 1779.119	4+ 2+ 3-	1022.969 1041.1217 1022.969	4+ 3- 4+			·			
766.38 ¹ 18	0.0026^{l} 3	1730.207	3-	963.363	1-			E_{γ} : Poor fit. Not included in the least-squares adjustment. The			
768.96 <i>4</i>	0.308 16	1579.427	3-	810.453	2+	[E1]	0.001719 24	adjustment gives $E\gamma = 766.842\ 24.$ $\alpha = 0.001719\ 24;\ \alpha(K) = 0.001475\ 21;\ \alpha(L) = 0.000192\ 3;$ $\alpha(M) = 4.08 \times 10^{-5}\ 6;\ \alpha(N+) = 1.068 \times 10^{-5}\ 1$ $\alpha(N) = 9.22 \times 10^{-6}\ 13;\ \alpha(O) = 1.376 \times 10^{-6}\ 20;\ \alpha(P) = 8.50 \times 10^{-8}\ 12$ I_{γ} : The value of 2007Ku20 (0.433\ 14) is excluded.			
802.0 ^l 5 805.71 9	0.00155 ^l 18 0.0571 22	1612.88 1769.130	4+ 2+	810.453 963.363	$2^+_{1^-}$	[E1]	0.001565 22	α =0.001565 22; α (K)=0.001344 19; α (L)=0.0001743 25;			

From ENSDF

 $^{152}_{62}\mathrm{Sm}_{90}$ -11

Т

¹⁵² Eu ε decay (13.517 y) (continued)											
						(continued)					
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger m}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ [#]	α^{n}	Comments		
810.451 ^c 5	1.193 10	810.453	2+	0.0	0+	E2		0.00393 6	$\begin{aligned} \alpha(M) &= 3.71 \times 10^{-5} \ 6; \ \alpha(N+) &= 9.71 \times 10^{-6} \\ \alpha(N) &= 8.38 \times 10^{-6} \ 12; \ \alpha(O) &= 1.251 \times 10^{-6} \ 18; \ \alpha(P) &= 7.75 \times 10^{-8} \ 11 \\ \alpha &= 0.00393 \ 6; \ \alpha(K) &= 0.00331 \ 5; \ \alpha(L) &= 0.000487 \ 7; \\ \alpha(M) &= 0.0001051 \ 15; \ \alpha(N+) &= 2.74 \times 10^{-5} \ 4 \\ \alpha(N) &= 2.37 \times 10^{-5} \ 4; \ \alpha(O) &= 3.48 \times 10^{-6} \ 5; \ \alpha(P) &= 1.96 \times 10^{-7} \ 3 \\ \text{Mult.:} \ \alpha(K) &= 0.0037 \ 5 \ (1991\text{Go22}, \ 1983\text{KaZJ}, \ 1967\text{Ma29}). \\ \alpha(K) (\text{theory}) &= 0.00557 \ (M1), \ 0.00331 \ (E2) \ \text{which give } \delta &> 1.2. \\ \text{Placement to } 0^{+} \ \text{requires pure mult.} \end{aligned}$		
813 21 ¹ 6	0.0162^{i} 16	1776 56	2^+	063 363	1-				I_{γ} : The value of 1970R119 is excluded.		
839.36 <i>4</i>	0.0666 19	1649.833	2-	810.453	2^{+}	[E1]		0.001444 21	$ \begin{array}{l} \alpha = 0.001444 \ 21; \ \alpha(\mathrm{K}) = 0.001240 \ 18; \ \alpha(\mathrm{L}) = 0.0001605 \ 23; \\ \alpha(\mathrm{M}) = 3.41 \times 10^{-5} \ 5; \ \alpha(\mathrm{N}+) = 8.94 \times 10^{-6} \\ \alpha(\mathrm{N}) = 7.72 \times 10^{-6} \ 11; \ \alpha(\mathrm{O}) = 1.153 \times 10^{-6} \ 17; \ \alpha(\mathrm{P}) = 7.16 \times 10^{-8} \ 10 \\ \end{array} $		
841.574 ^c 5	0.630 11	963.363	1-	121.7818	2+	E1		0.001436 21	I_{γ} : The value of 19908t02 is excluded. $\alpha = 0.001436 \ 21; \ \alpha(K) = 0.001234 \ 18; \ \alpha(L) = 0.0001597 \ 23;$ $\alpha(M) = 3.39 \times 10^{-5} \ 5; \ \alpha(N+) = 8.89 \times 10^{-6}$ $\alpha(N) = 7.68 \times 10^{-6} \ 11; \ \alpha(O) = 1.147 \times 10^{-6} \ 16; \ \alpha(P) = 7.12 \times 10^{-8} \ 10$		
855.21 ^{<i>i</i>} 7 867.380 ^{<i>c</i>} 3	0.0074 ^{<i>i</i>} 5 15.90 9	1221.67 1233.8626	5- 3+	366.4795 366.4795	4+ 4+	M1+E2	-6.2 5	0.00343 5	$\alpha = 0.00343 \ 5; \ \alpha(K) = 0.00290 \ 4; \ \alpha(L) = 0.000419 \ 6; \alpha(M) = 9.01 \times 10^{-5} \ 13; \ \alpha(N+) = 2.35 \times 10^{-5} \ 4 \alpha(N) = 2.03 \times 10^{-5} \ 3; \ \alpha(O) = 3.00 \times 10^{-6} \ 5; \ \alpha(P) = 1.719 \times 10^{-7} \ 25 Mult.: \ \alpha(K) exp = 0.00302 \ 20 \ (1985Co08, 1979De22, 1967Ma29). Other: the value of 0.00441 \ 25 \ from 1981Ka40 \ seems discrepant. \ \alpha(L) exp = 0.040 \ 3 \ (1991Go22, 1982TrZV, 1967Ma29). \alpha(K) (theory) = 0.00473 \ (M1), 0.00285 \ (E2) \ and \alpha(L) (theory) = 0.000632 \ (M1), 0.000414 \ (E2). \ From \ \alpha(K) exp and \ \alpha(L) exp \ one \ gets \ \delta > 2.0 \ and > 3.6, \ respectively. \delta: \ Unweighted \ average \ of \ -6.5 \ 3 \ (1982La26), \ -6.9 \ +7-8 \ (1985KrZU) \ -5.3 \ 4 \ (2008ZaZY). \delta: \ from \ 1982La26. \ Other: \ -6.9 \ +7-8 \ (1985KrZU). E_{\nu}: \ from \ 1990St02$		
070.37 7	0.232 0								I_{γ} : weighted average of 1990St02 and 1993Ka30.		
901.19 5	0.321 9	1022.969	4+	121.7818	2+	E2		0.00311 5	$\alpha = 0.00311 \ 5; \ \alpha(K) = 0.00263 \ 4; \ \alpha(L) = 0.000378 \ 6; \\ \alpha(M) = 8.13 \times 10^{-5} \ 12; \ \alpha(N+) = 2.12 \times 10^{-5} \ 3 \\ \alpha(N) = 1.83 \times 10^{-5} \ 3; \ \alpha(O) = 2.71 \times 10^{-6} \ 4; \ \alpha(P) = 1.558 \times 10^{-7} \ 22$		
906.06 10	0.0345 15	1612.88	4+	706.91	6+				I_{γ} : From 2007Ku20. Others: 0.068 6 (1993Ka30), 0.056 5 (1990Me15). the high values are inconsistent with data in Coulomb excitation		
919.337 ^c 4	1.574 ^a 16	1041.1217	3-	121.7818	2+	E1		0.001210 17	$\alpha = 0.001210 \ 17; \ \alpha(\text{K}) = 0.001040 \ 15; \ \alpha(\text{L}) = 0.0001341 \ 19; \\ \alpha(\text{M}) = 2.85 \times 10^{-5} \ 4; \ \alpha(\text{N}+) = 7.47 \times 10^{-6} \\ \alpha(\text{N}) = 6.44 \times 10^{-6} \ 9; \ \alpha(\text{O}) = 9.64 \times 10^{-7} \ 14; \ \alpha(\text{P}) = 6.01 \times 10^{-8} \ 9$		

н

152 Eu ε decay (13.517 y) (continued)													
$\gamma(^{152}\text{Sm})$ (continued)													
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger m}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α ⁿ	Comments				
010 74 4	0.0244 14	1720 207	2-	910 452	2+				Mult.: α (K)exp=0.00127 <i>19</i> (1991Go22). α (K)(theory)=0.00104 (E1), 0.0104 (M2). δ : δ (M2/E1)=-0.09 <i>12</i> (1985KrZU), 0.16 +5- <i>10</i> from α (K)exp, <0.07 from RUL (B(M2)(W.u.)<1).				
919.74° 4 926.31 5	0.0244° <i>14</i> 1.024 <i>12</i>	1730.207 1292.753	3 2 ⁺	810.453 366.4795	2* 4+	[E2]		0.00293 4	$\begin{aligned} &\alpha = 0.00293 \ 4; \ \alpha(\text{K}) = 0.00248 \ 4; \ \alpha(\text{L}) = 0.000354 \ 5; \\ &\alpha(\text{M}) = 7.62 \times 10^{-5} \ 11; \ \alpha(\text{N}+) = 1.99 \times 10^{-5} \ 3 \\ &\alpha(\text{N}) = 1.720 \times 10^{-5} \ 24; \ \alpha(\text{O}) = 2.54 \times 10^{-6} \ 4; \\ &\alpha(\text{P}) = 1.470 \times 10^{-7} \ 21 \end{aligned}$				
947.15 ¹ 14	0.0041 ¹ 7	1757.001	4+	810.453	2+				E_{γ} : Poor fit. Not included in the least-squares adjustment. The adjustment gives $E_{\gamma}=946.544.14$				
958.63 5	0.074 4	1769.130	2+	810.453	2+	[M1,E2]		0.0035 9	$\begin{aligned} &\alpha = 0.0035 \ 9; \ \alpha(\text{K}) = 0.0030 \ 8; \ \alpha(\text{L}) = 0.00041 \ 9; \\ &\alpha(\text{M}) = 8.8 \times 10^{-5} \ 18; \ \alpha(\text{N}+) = 2.3 \times 10^{-5} \ 5 \\ &\alpha(\text{N}) = 2.0 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 3.0 \times 10^{-6} \ 7; \ \alpha(\text{P}) = 1.8 \times 10^{-7} \ 5 \end{aligned}$				
961.08^{i} 4	$0.030^{i} 8$	1082.816	0^{+}	121.7818	2+								
963.367 7	0.528 23	963.363	1-	0.0	0+	[E1]		0.001107 16	$\begin{aligned} &\alpha = 0.001107 \ 16; \ \alpha(\text{K}) = 0.000951 \ 14; \ \alpha(\text{L}) = 0.0001225 \ 18; \\ &\alpha(\text{M}) = 2.60 \times 10^{-5} \ 4; \ \alpha(\text{N}+) = 6.82 \times 10^{-6} \\ &\alpha(\text{N}) = 5.88 \times 10^{-6} \ 9; \ \alpha(\text{O}) = 8.81 \times 10^{-7} \ 13; \\ &\alpha(\text{P}) = 5.50 \times 10^{-8} \ 8 \end{aligned}$				
964.057 [@] 5	54.57 [@] 13	1085.8408	2+	121.7818	2+	M1+E2 [@]	-9.3 6	0.00271 4	$\alpha = 0.00271 \ 4; \ \alpha(K) = 0.00229 \ 4; \ \alpha(L) = 0.000325 \ 5; \alpha(M) = 6.98 \times 10^{-5} \ 10; \ \alpha(N+) = 1.82 \times 10^{-5} \ 3 \alpha(N) = 1.577 \times 10^{-5} \ 23; \ \alpha(O) = 2.33 \times 10^{-6} \ 4; \alpha(P) = 1.362 \times 10^{-7} \ 20 \delta: weighted average of -8.0 \ 6 \ (1985KrZU) \ and -9.6 \ 3 (1982La26). Other: -7.5 + 5-25 \ (1992De29).$				
968.65 ^{<i>i</i>} 4 ^{<i>x</i>} 1001.1 3	0.0298 ⁱ 8 0.017 <i>3</i>	1779.119	3-	810.453	2+				E_{γ} : From 1990Me15\$.				
1005.27 5	2.48 4	1371.721	4+	366.4795	4+	M1+E2	-3.1 +2-3	0.00259 5					
$1050.1^{l} 6$	0.0027^{l} 11 0.92^{e} 3	1757.001	4+	706.91	6+								
1084.38 ^{<i>i</i>} 11 1085.837 ^{<i>c</i>} 10	0.040 ^{<i>i</i>} 3 38.04 <i>10</i>	1769.130 1085.8408	2+ 2+	684.69 0.0	$0^+ \\ 0^+$	E2		0.00209 3	α =0.00209 3; α (K)=0.001779 25; α (L)=0.000247 4; α (M)=5.30×10 ⁻⁵ 8; α (N+)=1.387×10 ⁻⁵ 20 α (N)=1.199×10 ⁻⁵ 17; α (O)=1.780×10 ⁻⁶ 25;				

$^{152}_{62}\mathrm{Sm}_{90}$ -13

From ENSDF

					ed)						
γ ⁽¹⁵² Sm) (continued)											
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger m}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ #	α^{n}	Comments		
1112.076 ^c 3	51.40 23	1233.8626	3+	121.7818	2+	M1+E2	-8.7 6	0.00201 <i>3</i>	α(P)=1.058×10-7 15 Mult.: α(K)exp=0.00202 5 91985co08, 1981Ka40, 1979De22, 1967Ma29). α(L+)exp=0.000281 17 (1991Go22). α(K)(theory)=0.00277 (M1), 0.00178 (E2). α(L)+(theory)=0.000467 (M1), 0.000315 (E2). from α(K)exp, δ=2.1 +6-3, and from α(L+)exp, no M1 component is required. placement in the decay scheme is to the 0 ⁺ g.s., so pure mult is required. Note that 1991Go22 report α(K)exp=0.00180 8, consistent with mult=E2; however, 1981Ka40 report α(K)exp=0.00212 8. α=0.00201 3; α(K)=0.001707 24; α(L)=0.000236 4; α(M)=5.06×10 ⁻⁵ 8; α(N+)=1.375×10 ⁻⁵ 20 α(N)=1.144×10 ⁻⁵ 16; α(O)=1.701×10 ⁻⁶ 24; α(P)=1.017×10 ⁻⁷ 15; α(IPF)=5.03×10 ⁻⁷ 7 I _γ : The value of 1998Hw07 is excluded. Mult.: α(K)exp=0.00184 12 (1985Co08, 1981Ka40, 1979De22, 1967Ma29). α(L)exp=0.000226 12 (1991Go22). Other: 0.00035 5 (1982TrZV). α(K)(theory)=0.00262 (M1), 0.00170 (E2) and α(L)(theory)=0.000348 (M1), 0.000235 (E2). α(K)exp gives δ>1.6 and α(L)exp gives δ>6.0. δ: from 1982La26. Others: -34 +6-8 (1992De29), -8.1 +6-7		
^x 1139 <i>1</i>	0.0047 3								(1985KrZU). E _y : From 1990Me15\$.		
1170.97 9	0.140 6	1292.753	2+	121.7818	2+	[M1,E2]		0.0023 5			
1212.948 ^{<i>c</i>} 11	5.320 21	1579.427	3-	366.4795	4+	E1		0.000756 11	$\begin{aligned} &\alpha(\text{IPF})=3.14\times10^{-6}\ 11\\ &\alpha=0.000756\ 11;\ \alpha(\text{K})=0.000624\ 9;\ \alpha(\text{L})=7.96\times10^{-5}\ 12;\\ &\alpha(\text{M})=1.689\times10^{-5}\ 24;\ \alpha(\text{N}+)=3.61\times10^{-5}\ 5\\ &\alpha(\text{N})=3.82\times10^{-6}\ 6;\ \alpha(\text{O})=5.73\times10^{-7}\ 8;\ \alpha(\text{P})=3.62\times10^{-8}\ 5;\\ &\alpha(\text{IPF})=3.17\times10^{-5}\ 5\\ &\text{Mult.:}\ \alpha(\text{K})\text{exp}=0.00059\ 5\ (1991\text{Go22},\ 1967\text{La13}).\\ &\alpha(\text{K})(\text{theory})=0.000624\ (\text{E1}).\ \text{other: the value of } 0.00024\ 7\\ &\text{from } 1967\text{Ma29}\ \text{is discrepant.}\\ &\delta:\ 0.00\ 2\ (\text{combined results of } 1973\text{Ka05},\ 1970\text{He29},\\ &1971\text{Ba54},\ 1970\text{Ba32},\ 1969\text{Aq01}).\ \text{Others: } +0.04\ 2\\ &(1985\text{KrZU}),\ -0.007\ 17\ (2008\text{ZaZY}).\end{aligned}$		
1246.34° <i>16</i> 1249.94 <i>5</i>	0.0035 ^{<i>i</i>} 5 0.703 9	1612.88 1371.721	4+ 4+	366.4795 121.7818	4^+ 2 ⁺	E2		0.001586 23	$ \begin{array}{l} \alpha = 0.001586 \ 23; \ \alpha(\mathrm{K}) = 0.001341 \ 19; \ \alpha(\mathrm{L}) = 0.000183 \ 3; \\ \alpha(\mathrm{M}) = 3.91 \times 10^{-5} \ 6; \ \alpha(\mathrm{N}+) = 2.25 \times 10^{-5} \ 4 \\ \alpha(\mathrm{N}) = 8.84 \times 10^{-6} \ 13; \ \alpha(\mathrm{O}) = 1.318 \times 10^{-6} \ 19; \ \alpha(\mathrm{P}) = 7.99 \times 10^{-8} \\ 12; \ \alpha(\mathrm{IPF}) = 1.222 \times 10^{-5} \ 18 \end{array} $		

¹⁵² Eu ε decay (13.517 y) (continued)											
						γ	(¹⁵² Sm) (con	tinued)			
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger m}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [#]	$\delta^{\#}$	α^{n}	Comments		
1292.78 5	0.378 10	1292.753	2+	0.0	0+	[E2]		0.001491 21	Mult.: $\alpha(K)\exp=0.0017 \ 6 \ (1967La13)$. δ : +0.04 9 (1985KrZU). $\alpha=0.001491 \ 21$; $\alpha(K)=0.001255 \ 18$; $\alpha(L)=0.0001703 \ 24$; $\alpha(M)=3.64\times10^{-5} \ 5$; $\alpha(N+)=2.87\times10^{-5}$ $\alpha(N)=8.24\times10^{-6} \ 12$; $\alpha(O)=1.229\times10^{-6} \ 18$; $\alpha(P)=7.48\times10^{-8} \ 11$; $\alpha(IPF)=1.92\times10^{-5} \ 3$		
1315.58 ¹ 16 1363.78 5	0.0137 ^{<i>l</i>} 6 0.0972 22	1682.07 1730.207	4- 3-	366.4795 366.4795	4+ 4+	(E1)			Mult.: Mult=d(+Q) with δ =-0.05 <i>12</i> (1971Ba54). Placement in the decay scheme requires $\Delta \pi$ =yes. δ : -0.05 <i>12</i> (1971Ba54).		
1390.50 <i>12</i> 1408.013 ^{<i>c</i>} 3	0.0160 6 78.48 <i>13</i>	1757.001	2-	366.4795	4 ¹ 2 ⁺	E1+M2	+0.043 3	0.000707 10	α=0.000707 10; α(K)=0.000486 7; α(L)=6.18×10-5 9;		
1455.1 ^{<i>l</i>} 3 1457.643 ^{<i>c</i>} 11	0.0094 ^{<i>l</i>} 18 1.869 14	1822.03 1579.427	4 ⁻ 3 ⁻	366.4795 121.7818	4 ⁺ 2 ⁺	E1		0.000703 10	α =0.000703 <i>10</i> ; α (K)=0.000453 <i>7</i> ; α (L)=5.75×10 ⁻⁵ <i>8</i> ; α (M)=1.219×10 ⁻⁵ <i>17</i> ; α (N+)=0.000181 <i>3</i> α (N)=2.76×10 ⁻⁶ <i>4</i> ; α (O)=4.15×10 ⁻⁷ <i>6</i> ; α (P)=2.63×10 ⁻⁸ <i>4</i> ; α (IPF)=0.0001775 <i>25</i> I _{\gamma} : The values of 1993Ka30 and 1977Ge12 are excluded. Mult.: α (K)exp=0.00050 <i>8</i> (1967La13). α (L)(theory)=0.000453 (E1). δ : 0.00 <i>3</i> (1985KrZU), 0.00 <i>6</i> (combined results of $\gamma\gamma(\theta)$ (1970Ba32 1970He29 1969Ag01)		
^x 1485.9 <i>3</i>	0.021 9								$E_{\gamma}I_{\gamma}$: From 1990St02. 1993Ka30 report I γ =0.011 4. Not seen by 1992Ya12. I γ <0.005.		
1491.4 ^{<i>l</i>} 8	0.0022 ^{<i>l</i>} 10	1612.88	4+	121.7818	2+				······		
1528.10 4	1.051 12	1649.833	2-	121.7818	2+	E1		0.000715 10	$ \begin{array}{l} \alpha = 0.000715 \ 10; \ \alpha(\text{K}) = 0.000418 \ 6; \ \alpha(\text{L}) = 5.30 \times 10^{-5} \ 8; \\ \alpha(\text{M}) = 1.124 \times 10^{-5} \ 16; \ \alpha(\text{N}+) = 0.000232 \ 4 \\ \alpha(\text{N}) = 2.54 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 3.82 \times 10^{-7} \ 6; \ \alpha(\text{P}) = 2.43 \times 10^{-8} \ 4; \\ \alpha(\text{IPF}) = 0.000229 \ 4 \end{array} $		

152 Eu ε decay (13.517 y) (continued)												
γ ⁽¹⁵² Sm) (continued)												
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger m}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ #	α ⁿ	Comments			
1608.36 7	0.0203 8	1730.207	3-	121.7818	2+	E1		0.000735 11	I _γ : The value of 1970Ri19 is excluded. Mult.: $\alpha(K)exp=0.00040 \ 3 \ (1967La13). \ \alpha(K)(theory)=0.000418$ (E1). $\delta: -0.01 \ 3 \ (1985KrZU), -0.01 \ 6 \ (1970Ba32).$ $\alpha=0.000735 \ 11; \ \alpha(K)=0.000384 \ 6; \ \alpha(L)=4.86\times10^{-5} \ 7; \ \alpha(M)=1.030\times10^{-5} \ 15; \ \alpha(N+)=0.000292 \ 4$ $\alpha(N)=2.33\times10^{-6} \ 4; \ \alpha(O)=3.51\times10^{-7} \ 5; \ \alpha(P)=2.23\times10^{-8} \ 4; \ \alpha(IPF)=0.000289 \ 4$ I _γ : The value of 0.0030 \ 6 given in 1993Ka30 is probably a misprint. the evaluator assumes that the value should be 0.030 \ 6 and includes it in the weighted average.			
1635.38 20 1647.44 12	$0.00061 \ 16$ $0.0273 \ 13$	1757.001 1769.130	4+ 2+	121.7818 121.7818	2+ 2+	E2(+M1)	>0.6	0.00117 <i>13</i>	Mult.: Ice(K)(1608 γ in Sm + 1606 γ in Gd) from 1967La13 is consistent only with mult=E1 for one transition and mult=E2 for the other. placement of the 1604 γ in Gd, from 2 ⁺ to 0 ⁺ requires mult=E2. this then establishes mult(1608 γ)=E1. E $_{\gamma}$: Flag=Z. α =0.00117 13; α (K)=0.00089 10; α (L)=0.000117 13; α (M)=2.5×10 ⁻⁵ 3; α (N+)=0.000142 6 α (N)=5.7×10 ⁻⁶ 7; α (O)=8.5×10 ⁻⁷ 10; α (P)=5.4×10 ⁻⁸ 7; α (IPF)=0.000135 6 Mult.: α (K)exp=0.00088 11 (1967La13). α (K)(theory)=0.00106 (M1), 0.000790 (E2).			
^x 1698.1 4 1769.09 4	0.022 7 0.0350 8	1769.130	2+	0.0	0+	E2		0.000989 14	E _γ ,I _γ : From 1990St02. Not seen by 1992Ya12, Iγ<0.005. α =0.000989 14; α (K)=0.000691 10; α (L)=9.09×10 ⁻⁵ 13; α (M)=1.94×10 ⁻⁵ 3; α (N+)=0.000188 3 α (N)=4.38×10 ⁻⁶ 7; α (O)=6.57×10 ⁻⁷ 10; α (P)=4.12×10 ⁻⁸ 6; α (IPF)=0.000182 3 Mult.: α (K)exp=0.00072 5 (1967La13). α (K)(theory)=0.000905 (M1), 0.000691 (E2). α (K)exp allows some M1; however, placement in the decay scheme requires Δ J=2.			

[†] Weighted average of values of 2007Ku20, 1990Me15, and 1990St02, except where noted otherwise. In particular, values from 2000He14 are adopted wherever available. These authors give recommended values, based on $E\gamma$ =411.80205 (17) for the ¹⁹⁸Au transition, from a reanalysis of data of 1992Le19 and 1986Wa33. transitions seen only by 2007Ku20 are noted. Based on extensive coincidence studies, these authors report several weak transitions and also resolve for the first time the 444 and 719 γ doublets. 2004Ca04 also report some of the weak transitions, and inclusion of values from these authors is noted. For the data of 1990Me15, α comparison of the values with those from other works and from energy level differences, and the observation of some internal inconsistencies, suggest that In some cases the stated uncertainties are too small. The evaluator has assigned a minimum uncertainty of 50 eV to the data from this reference. [‡] Values are weighted averages of data of 2007Ku20, 2004Ca04, 1998Hw07, 1993Ka30, 1992Ya12, 1990Me15, 1990St02, 1989Da12, 1986Me10, 1984Iw03,

1980Sh15, 1979De21, 1977Ge12, 1975LeZH, 1972Bb05, 1971Ba63, 1970No06, 1970Ri19, and 1969Va09 normalized to $I\gamma$ =100 for the 344 γ in Gd. Some of the

From ENSDF

¹⁵²Eu ε decay (13.517 y) (continued)

$\gamma(^{152}\text{Sm})$ (continued)

values adopted here differ from those of 2004VaZW, an evaluation of data published prior to 2004. Some of these differences are a result of inclusion here of the new work, 2007Ku20, and one older reference, 1975LeZH. Another difference is one of policy. In 2004VaZW, the uncertainties in the work of 1998Hw07 were increased by a factor of two. This was not done in the present evaluation. also, In the present evaluation, for the data from 1990Me15, an uncertainty of 2% has been added In quadrature to take into account the uncertainty In the efficiency calibration. Intensities for some weak transitions have been given by 2004Ca04, and these are noted. Some additional weak transitions have been reported by 1989Gh02. These have been looked for but not confirmed by 1993Ka30, except for the the 137.56 γ from the 1372 level which has been confirmed by 2007Ku20. Transitions noted As being excluded In individual cases are outliers As determined from CHAUVENET's criterion.

[#] From Adopted Gammas. Mult measurements from this decay are given in comments. The $\alpha(K)$ exp values are from the ce data of the references as noted, using the adopted I γ values, normalized to $\alpha(K)$ =0.03103 for the 344 E2 transition in Gd.

[@] The 963 γ -964 γ doublet is placed from the 963 and 1085 levels, respectively. The doublet has been resolved by 2007Ku20, 1972Bb05, and 1971Ba63 with I γ (963 γ)=0.528 23 and I γ (964 γ)/I γ (doublet)=0.9904 6. The value given for I γ (964 γ) is α weighted average of all values with this correction factor applied to the unresolved data. Since 99% of the intensity belongs with the 1085 level, the evaluator assumes that the measured energies can be assigned to this placement. The evaluator adopts E γ =964.057 5 from 1986Wa33. From a measurement of ce energies, 1984Bu35 determine E(964 γ)-E γ (963 γ)=0.690 5, which then gives E γ (963 γ)=963.367 5. α (K)exp=0.00245 6 (1990Ka35, 1985Co08, 1981Ka40, 1979De22, 1967Ma29), for the doublet, along with δ =-9.3 6 is consistent only with mult=M1+E2 for the strong component (α (K)=0.00233 11 for E2). No assignment can be made for the weak component based just on the ce data but if one assumes mult(963 γ)=E1, based on its placement, then one gets α (K)exp=0.00246 6 for the 964 γ , consistent with mult=E2. there seems to be No need to invoke an E0 component for the 964 γ As has been suggested by some authors.

- [&] The 444 γ is a doublet placed from the 810 and 1530 levels. The doublet has been resolved by 2007Ku20, 1972Bb05, 1971Ba63, 1970Ri19, and 1969Va09 with I γ (from 810)=1.12 4 and I γ (from 1530)/I γ (doublet)=0.906 4. The value adopted for the 1530 level is a weighted average of all data with this correction factor applied to the unresolved data. The value of 1970No06 has been excluded. Since 91% of the intensity belongs with the 1530 level, the evaluator assumes that the measured energies can be assigned to this placement. The evaluator adopts E γ from 1992Le19. The value given for the 810 level is from 2007Ku20. from α (K)exp=0.00596 *16* (1991Go22, 1985Co08, 1979De22) for the doublet, with α (K)(theory)=0.00485 (E1) and 0.0144 (E2), the strong component must be E1 and the weak component mainly E2. placement of the weak component In the decay scheme requires Δ J=2.
- ^{*a*} The 919 γ is placed from the 1041 and 1730 levels. The doublet has been resolved by 2007Ku20 and 2004Ca04 from which a weighted average of I γ =0.0244 14 is obtained for the weak component from the 1730 level. The values for the doublet obtained by the other authors are corrected for this component and give α weighted average of 1.574 16 for the component from the 1041 level.
- ^b The 719 γ is placed from the 1086 and 1530 levels. 2007Ku20 resolve the components and show that 85% of the intensity belongs with the 1086 level. The evaluator assumes that the accurate E γ value from 1992Le19 can be assigned to this placement. the doublet is not resolved in the other works. α (K)exp=0.0038 7 (1983KaZJ) for the doublet is consistent with mult=E2 for placement from the 1086 level and mult=E1 for placement from the 1530 level. These mults are expected based on the ADOPTED J^{π} values.
- ^c From 2000He14.
- ^d This unplaced transition is from 1993Ka30.
- ^e This unplaced transition is from 1990Me15.
- ^{*f*} Weighted average from 1992Le19 and 1986Wa33. Not included in 2000He14.
- ^g The 285 γ is doubly placed, from the 1372 and 1579 levels. E γ and I γ for placement from the 1372 level are from 2007Ku20 and for the 1579 level are weighted averages from 2007Ku20 and 2004Ca04. The transitions are not resolved in other works.

^h From 1986Wa33.

^j Weighted average from 2007Ku20, 2004Ca04, and 1990Me15.

From ENSDF

^{*i*} Weighted average from 2007Ku20 and 2004Ca04.

¹⁵²Eu ε decay (13.517 y) (continued)

 $\gamma(^{152}\text{Sm})$ (continued)

- ^k The 674 γ is placed from the 1041 level in Sm and from the 1606 level in Gd with I γ (doublet)=0.706 *14*. the component in Sm is resolved by 2007Ku20 with E γ =674.64 *14* and I γ =0.656 *21*. From branching in Tb ε decay, the component in Gd can be deduced as 0.080 *3* which, combined with I γ for the doublet, gives I γ =0.628 *15* for the component in Sm. The value adopted is a weighted average of these two determinations.
- ^{*l*} From 2007Ku20.
- ^{*m*} For absolute intensity per 100 decays, multiply by 0.2659 11.

^{*n*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^o Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

$\frac{152}{\mathrm{Eu}} \varepsilon \operatorname{decay} (13.517 \mathrm{y})$

 $^{152}_{62}Sm_{90}$

¹⁵²Eu ε decay (13.517 y)

$\frac{152}{\mathrm{Eu}} \varepsilon \operatorname{decay} (\mathbf{13.517 y})$

 $^{152}_{62}{\rm Sm}_{90}$

¹⁵²Eu ε decay (13.517 y)

Decay Scheme (continued)

¹⁵²Eu ε decay (13.517 y)

Decay Scheme (continued)

¹⁵²₆₂Sm₉₀