		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin	NDS 114,1497 (2013)	31-Aug-2013

All data are from 1982Ko03, except where noted otherwise. The $K^{\pi}=4^+$ band is proposed by 2005Ga47.

2005Ga47: E=22.5 MeV. Measured E γ , $\gamma\gamma$.

1978CoZV: E=27 MeV. Measured E γ , I γ , $\gamma\gamma$.

1972Ha75: E=16.5-38.4 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$.

1966Lo11: E=20.5 MeV. Measured E γ , I γ .

1982Ko03: E=21-26 MeV. Measured E γ , I γ , Ice, $\gamma(\theta)$, $\gamma(t)$, $\gamma\gamma(t)$, $\gamma(t)$, $\gamma(t)$, excit

¹⁵²Sm Levels

E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi^{\dagger}}$	T _{1/2}
0.0#	0^{+}	1945.80 ^b 9	7+	
121.73 [#] 5	2^{+}	2003.51 ^c 16	7-	
366.38 [#] 7	4+	2040 ^e	6+	
685.2 [@] 5	0^{+}	2045.99 16	4+,5,6,7+	
706.83 [#] 8	6+	2055.7 10		
810.38 [@] 10	2+	2057.46 <mark>8</mark> 9	7-	
963.90 <mark>&</mark> 20	1-	2079.59 [@] 11	10^{+}	
1022.85 [@] 8	4+	2120.92 ^j 10	7-	2.4 ns 2
1040.73 ^{&} 11	3-	2139.67 ^a 23	8+	
1085.67 ^a 14	2^{+}	2148.40 [#] 19	12^{+}	
1125.29 [#] 9	8+	2201.42 ^d 11	8-	
1221.39 ^{&} 12	5-	2206 ^{<i>f</i>}	7+	
1233.84 ^b 9	3+	2214.92 ^h 10	8-	
1293.4? <i>3</i>	2^{+}	2269.82 ^j 11	8-	
1310.42 [@] 9	6+	2290.43 ^c 19	9-	
1371.36 ^{<i>a</i>} 11	4+	2308.5 4		
1505.53 ^{&} 12	7-	2326.91 ^{&} 16	11-	
1529.9 ^d 3	2-	2348.8 8	$6^+, 7, 8, 9^-$	
1559.55 ^b 8	5+	2359.7 4		
1578.4 ^c 10	3-	2375.47 ^b 12	9+	
1609.17 [#] 11	10^{+}	2388.76 <mark>8</mark> 11	9-	
1666.31 [@] 10	8+	2393 ^e	8+	
1681.99 ^d 21	4-	2424.31 ^j 11	9-	
1728.15 ^a 11	6+	2510.56 ^d 12	10-	
1756.80 ^e 24	4+	2516.41 22	8+,9,10,11-	
1764.4 ^c 3	5-	2525.68 [@] 13	12+	
1803.92 ^g 9	5-	2576.24 ^h 12	10-	
1821.09 <i>21</i>	(4 ⁻)	2588 ^f	9+	
1878.99 ^{&} 11	9-	2590.62 ^j 12	10-	
1890.90 ^{<i>f</i>} 12	5+	2641.11 ^c 16	11-	
1920.41 ^{<i>h</i>} 10	6-	2712.4 4		
1930.09 ^d 11	6-	2735.90 [#] 21	14+	

¹⁵⁰Nd(α ,2n γ) 2005Ga47,1982Ko03 (continued)

¹⁵²Sm Levels (continued)

E(level)	J^{π}^{\dagger}	Comments
2751.45 [‡] <i>13</i>	11-	
2810 ^e	(10 ⁺)	
2833.0 ^{&} 3	13-	
2841.5 4	$10^+, 11, 12, 13^-$	
2901.36 ^d 16	12-	
2976.78 ⁱ 17	14+	E(level): Assigned by the authors as the 14 ⁺ member of the $K^{\pi}=0^+ \beta$ band. In Coulomb excitation, this band member is found at 3292 and the 2976 level is assigned as the 14 ⁺ member of a band with unknown K.
3027 <i>f</i>	11^{+}	
3079.5 ^c 3	13-	
3361.9 [#] 4	16 ⁺	
3378.4 ^d 3	14-	
3383.1 4	15-	
† From Ado	nted Levels	
[‡] This level	could be a memb	ber of either the $K^{\pi} = 5^{-}$ or $K^{\pi} = 7^{-}$ band.
# Band(A):	$K^{\pi}=0^+$ g.s. band.	
[@] Band(B): 1	$K^{\pi} = 0^+ \beta$ band.	
& Band(C): 1	$K^{\pi}=0^{-}$ band.	
^a Band(D):	$K^{\pi}=2^+ \gamma$ band (ev	ven).
^b Band(E): I	$K^{\pi}=2^+ \gamma$ band (or	ld).
^c Band(F): I	$X^{\pi} = 1^{-}$ band (odd)).
^{d} Band(G): 1	$K^{\pi}=1^{-}$ band (even	n).
^e Band(H): 1	$K^{\pi}=4^{+}$ band (even	n).
^f Band(I): K	$x^{\pi}=4^{+}$ band (odd)	
^g Band(J): K	$x^{\pi}=5^{-}$ band (odd)	
^{n} Band(K): 1	$K^{\pi}=5^{-}$ band (even	n).

^{*i*} Band(K): $K^{\pi}=5^{\circ}$ band (i) ^{*i*} Band(L): $K^{\pi}=7^{\circ}$ band.

$\gamma(^{152}\text{Sm})$

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{<i>x</i>}	δ	α^{\dagger}	Comments
63.51.5	0.8 [#] 1	2120.92	7-	2057.46 7-				
116.51 6	1.51 15	1920.41	6-	1803.92 5-	M1+E2	+0.21 7	1.104 18	Mult.: $A_2 = +0.09 4$, $A_4 = +0.03 7$.
121.75 5	61 <i>6</i>	121.73	2^{+}	$0.0 0^+$	E2		1.156	Mult.: $A_2^{=}+0.13$ 3, $A_4^{=}-0.08$ 4.
134 ^w		1890.90	5+	1756.80 4+				
135.13 5	0.98 10	2510.56	10^{-}	2375.47 9+	D(+Q)	-0.11 + 11 - 7	0.19 11	Mult.: $A_2 = -0.33 5$, $A_4 = +0.04 8$.
137.08 5	2.3 2	2057.46	7-	1920.41 6-	M1+E2	+0.18 +3-4	0.692	Mult.: $A_2 = +0.05 \ 3$, $A_4 = +0.03 \ 5$.
148.95 5	2.5 3	2269.82	8-	2120.92 7-	M1+E2	-0.18 8	0.547	Mult.: $A_2 = -0.40 \ 9$, $A_4 = -0.20 \ 11$.
149 ^w		2040	6+	1890.90 5+				
152.1 <i>1</i>	0.56 6	2576.24	10-	2424.31 9-	D(+Q)	+0.07 + 7 - 10		Mult.: $A_2 = -0.12$ 7, $A_4 = -0.21$ 12.
154.6 <i>1</i>	1.31 13	2424.31	9-	2269.82 8-	M1+E2	-0.25 + 9 - 15	0.493	Mult.: $A_2 = -0.55 4$, $A_4 = -0.12 6$.
157.3 1	1.23 12	2214.92	8-	2057.46 7-	M1+E2	+0.36 6	0.469	Mult.: $A_2 = +0.29 4$, $A_4 = -0.08 6$.
160.8% 2	<1.01%	1666.31	8+	1505.53 7-	0			
160.890 2	<1.01%	2751.45	11-	2590.62 10-	0			
166.2 <i>I</i>	0.44 5	2590.62	10-	2424.31 9-	D(+Q)	-0.11 11		Mult.: $A_2 = -0.40 \ I0, \ A_4 = +0.12 \ I4.$
173.8 <i>1</i>	1.23 ¹ 16	2388.76	9-	2214.92 8-	l			
174.1 2	0.26^{l} 5	2375.47	9+	2201.42 8-	l			
175.1 <i>I</i>	<1.0#	2751.45	11^{-}	2576.24 10-				I_{γ} : $I_{\gamma}=0.7 \ 3$ for the 175.1 γ and an impurity line.
187.6 ^{ym} 2	≤1.49 ^{ym}	2388.76	9-	2201.42 8-	т			
187.6 ^{ym} 2	$\leq 1.49^{ym}$	2576.24	10^{-}	2388.76 9-	т			
195 ^w		2588	9+	2393 8+				
198.4 ^{<i>n</i>} 2	0.2 ^{<i>np</i>}	2525.68	12^{+}	2326.91 11-				
200.6 ^{zk} 1	0.3^{zk}	2079.59	10^{+}	1878.99 9-	k			
200.6 ^{zk} 1	1.2^{zk}	2120.92	7^{-}	1920.41 6-	k			
202.0 2	$0.8^{\#} 2$	2590.62	10^{-}	2388.76 9-				
212.4 <i>I</i>	0.52 3	1022.85	4+	810.38 2+	E2		0.1707	Mult.: $A_2 = +0.29$ 6, $A_4 = +0.01$ 11.
217.6 3	0.3 ^{<i>p</i>}	1945.80	7+	1728.15 6+				
235.8 2	0.3 ^{<i>p</i>}	2375.47	9+	2139.67 8+				
244.67 5	100	366.38	4+	$121.73 \ 2^+$	E2		0.1074	Mult.: $A_2 = +0.253 \ 13$, $A_4 = -0.05 \ 2$; lin pol=+0.50 4 .
253.2 2	0.4^{i}	2057.46	7^{-}	1803.92 5-	i			
255.6 1	2.77 9	2201.42	8-	1945.80 7+	E1+(M2)	-0.03 3	0.0227 16	Mult.: $A_2 = -0.28 \ 2$, $A_4 = +0.01 \ 3$, lin pol = +0.44 9.
260^{W}		2206	7+	1945.80 7+				
269.0 ^d 1	0.9 ^d	2214.92	8-	1945.80 7+	d			
269.8 ^d 4	0.9 ^d	1878.99	9-	1609.17 10+	d			
^x 271.3 ^{zv} 1	1.1^{zv}		-					
271.3^{zv} 1	0.5^{zv}	2201.42	8-	1930.09 6-				
276 ^w		2040	6+	1764.4 5-				
276 ^w		2206	7+	1930.09 6-				

ω

¹⁵⁰Nd(α,2nγ) **2005Ga47,1982Ko03** (continued)

$\gamma(^{152}\text{Sm})$ (continued)

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{<i>x</i>}	α^{\dagger}	Comments
287.5 1	3.22 10	1310.42	6+	1022.85 4+	E2	0.0642	Mult.: $A_2 = +0.30$ 2, $A_4 = -0.04$ 3; lin pol=+0.54 8.
294.4 1	1.1 ^{<i>p</i>}	2214.92	8-	1920.41 6-	E2	0.0596	I_{γ} ,Mult.: The authors report $I_{\gamma}=1.325$ and $A_2=+0.354$, $A_4=-0.165$, lin
303.5 1	0.5 ^{<i>p</i>}	2424.31	9-	2120.92 7-			I_{γ} ,Mult.: For the 303.5 γ and an impurity line, I_{γ} =0.46 3 and A_2 =+0.04 13, A_4 =-0.07 19.
309.0 1	1.28 5	2510.56	10-	2201.42 8-	E2	0.0513	Mult.: $A_2 = +0.29 3$, $A_4 = -0.09 5$.
312 ^w		2040	6+	1728.15 6+			
314.3 <i>1</i>	0.69 3	2641.11	11^{-}	2326.91 11-	D+Q		Mult., δ : A ₂ =-0.02 6, A ₄ =-0.10 9; δ =+1.75 5 or -0.90 3.
^x 316.3 ^z	0.39 ^{zc} 3						
316.3 ^z	0.222 ^{zc} 12	1022.85	4+	706.83 6+	(E2)	0.0478	
320.9 1	0.17 [#] 5	2590.62	10^{-}	2269.82 8-			Mult.: for the $320.9\gamma + 322.2\gamma$ doublet: A ₂ =-0.19 11, A ₄ =+0.26 18.
322.2 ¹ 1	0.17 [#] 5	2201.42	8-	1878.99 9-			Mult.: for the $320.0\gamma + 322.2\gamma$ doublet: A ₂ =-0.19 11, A ₄ =+0.26 18.
325.6 1	0.17.5	1559.55	5^{+}	1233.84 3+	$(0)^{@}$		
327.3.1	0.98.7	2751.45	11-	2424 31 9-	@		
329.4 1	0.32.3	2057.46	7-	$1728.15 6^+$			Mult: $A_2 = -0.08 \ 14. \ A_4 = -0.4 \ 3.$
331.3 ^{ze} 1	0.13^{ze} 13	1890.90	, 5+	1559.55 5+	е		
331.3 ^{ze} 1	1.2^{ze}	2388.76	9-	2057.46 7-	е		
340.47 4	≤82.5	706.83	6+	366.38 4+	E2	0.0382	I_{γ} ,Mult.: $I_{\gamma} = 82.5 \ 25$ for a peak that includes a ¹⁵⁰ Nd impurity line. α (K)exp=0.036 6, A ₂ =0.289 14, A ₄ =-0.04 2, and lin pol=+0.50 4 for the doublet. The impurity line is a 6 ⁺ to 4 ⁺ transition, presumably with mult=E2.
355.9 1	6.5 ^{<i>p</i>}	1666.31	8+	1310.42 6+	E2	0.0334	Mult.: A ₂ =+0.32 3, A ₄ =-0.08 5; lin pol=+0.54 5; α (K)exp=0.016 11.
361.0 1	0.6^{f}	2576.24	10-	2214.92 8-	f		
361.5 3	2.3^{f} 5	1920.41	6-	1559.55 5+	f		
362.4 3	0.66 ^f 10	2751.45	11^{-}	2388.76 9-	f		
370.5 1	0.98 4	1930.09	6-	1559.55 5+	E1	0.00872	Mult., δ : A ₂ =-0.18 5, A ₄ =-0.03 7; lin pol=+0.15 12; δ =0.00 7.
375.5 3	1.0 [#] 3	2590.62	10-	2214.92 8-			I_{γ} ,Mult.: for 375.5 γ +impurity doublet: I_{γ} =5.76 <i>18</i> , A ₂ =+0.36 <i>2</i> , A ₄ =-0.06 <i>3</i> ; lin pol=+0.35 <i>16</i> .
380.6	0.7	1505.53	7-	1125.29 8+	D		E_{γ} , I_{γ} , Mult.: The authors report E_{γ} =380.6 2 with I_{γ} =0.90 4. I_{γ} =0.7 is assigned to the 1506 level from $\gamma\gamma$, and I_{γ} =0.2 is assigned as an impurity line. A ₂ =-0.17 9 and A ₄ =-0.03 10, lin pol=+0.06 14 are determined for the composite peak.
385 ^w		1756.80	4+	1371.36 4+			r r
386.2 1	0.88 4	1945.80	7+	1559.55 5+			
390.8 1	0.96 4	2901.36	12^{-}	2510.56 10-	E2	0.0254	Mult.: A ₂ =+0.39 4, A ₄ =-0.09 7; lin pol=+0.81 20.
^x 411.1 <i>1</i>	0.92 4						Mult.: $A_2 = +0.33 6$, $A_4 = +0.09 10$.
413.3 <i>I</i>	5.17 16	2079.59	10^{+}	1666.31 8+	E2	0.0217	Mult.: A ₂ =+0.268 14, A ₄ =-0.05 2; lin pol=+0.55 5; α (K)exp=0.018 6.

4

From ENSDF

150 Nd(α ,2n γ) 2005Ga47,1982Ko03 (continued)													
$\gamma(^{152}\text{Sm})$ (continued)													
E_{γ}	I_{γ}	E _i (level)	J^π_i	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^{<i>x</i>}	α^{\dagger}	Comments						
418.45 5	46.1 14	1125.29	8+	706.83 6+	E2	0.0209	Mult.: $A_2 = +0.311$ 15, $A_4 = -0.08$ 2; lin pol=+0.57 4; $\alpha(K) \exp = 0.017$ 2.						
427		2040	6+	1609.17 10+									
430.2 2	0.75 ^{<i>p</i>} 8	2375.47	9+	1945.80 7+			I _{γ} ,Mult.: The authors report I γ =2.82 9 and A ₂ =+0.29 2, A ₄ =-0.02 4, lin pol=+0.59 10 for the 430.2 γ and an impurity line.						
432.5 2 440 ^w	0.38 3	1803.92 3027	5 ⁻ 11 ⁺	1371.36 4 ⁺ 2588 9 ⁺			Mult.: $A_2 = +0.25 \ 14, \ A_4 = +0.06 \ 19.$						
x444.4 ^{zu}	$0.12^{2u} 6$												
444.4 ²⁰	0.266^{2u} 17	810.38	2+	366.38 4+									
444.4	0.08^{24} 3	1529.9	2-	$1085.67 2^+$	50	0.01740							
440.1 1	2.91 9	2525.68	12	$2079.59 \ 10^{\circ}$	E2 E2	0.01749	Mult.: $A_2 = +0.29$ 2, $A_4 = -0.10$ 3; lin pol=+0.51 8.						
470.2 2	0.49 7	2970.78 2079.59	14 10 ⁺	2323.08 12 1609.17 10 ⁺	E2 M1(+E0)	0.01698	Mult: $A_2=+0.29$ 4, $A_4=-0.12$ 7, in pol=+0.5 4. Mult: $A_2=+0.49$ 11, $A_4=-0.19$ 16; $\alpha(K)\exp=0.039$ 17; $\delta=+0.3$ 5 gives mult=M1+(E2). $\alpha(K)(M1)=0.0214$ compared with $\alpha(K)\exp=0.039$ 17 suggests the possibility of an E0 component.						
							α : From Adopted Gammas for mult=M1.						
477.0 2	0.5 1	3378.4	14-	2901.36 12-			Mult.: $A_2 = +0.10 \ I6, A_4 = +0.1 \ 3.$						
478	01.1.7	2206	/+ 10 ⁺	1728.15 6+	50	0.01400							
483.9 1	21.17	1609.17	10'	1125.29 8	E2	0.01400	Mult.: $A_2 = +0.329 \ 14$, $A_4 = -0.09 \ 2$; Iin pol=+0.59 4; $\alpha(K) \exp = 0.011 \ 2$.						
486.2 2	0.64 4	2045.99	4+,5,6,7+	1559.55 5+			Mult.: $A_2 = -0.09 \ 6, \ A_4 = -0.14 \ 16.$						
493.0 2	0.5 2	2641.11	11-	2148.40 12+									
506.6 ^{yu}	< 0.394	1728.15	6 ⁺	1221.39 5									
506.6^{yu}	$< 0.3^{3}$	2833.0	13	2326.91 11									
514.6^{30}	1.0^{-570}	1221.39	3	/06.83 6									
510.7.2	0.3~**	2841.5	$10^{+},11,12,13$	2320.91 11 1271.26 4 ⁺									
x522 5	0.22 1.03 ^{r} 7	1890.90	5	13/1.30 4									
523.5 523.5	1.03 7 0.62 ^r 1	1756.80	<u>/+</u>	1233 84 3+									
539 5 2	762	2148.40	4 12 ⁺	$1233.04 \ 3$ 1609 17 10 ⁺	F2	0.01050	Mult : $\Delta_2 = \pm 0.29.2$, $\Delta_4 = -0.04.3$: $\alpha(K) = vn = 0.00867$ the E2						
557.5 2	1.0 2	2110.10	12	1009.17 10		0.01050	theory value, is used for normalization of I γ and Ice(K).						
540.9 <i>3</i>	1.89 7	1666.31	8+	1125.29 8+	E0+M1+(E2)	0.066 10	Mult.: $A_2 = +0.27$ 5, $A_4 = -0.05$ 8; $-0.45 < \delta(Q/D) < +1.0$; $\alpha(K) \exp = 0.058$ 9. α : From Adopted Gammas.						
560.9 <i>3</i>	0.2 ^{<i>p</i>}	2641.11	11-	2079.59 10+			E_{γ} : peak contains an impurity.						
563.5 [‡] .5		685.2	0^{+}	121.73 2+									
587 3 ^b	0.27^{b} 14	1821.09	(4^{-})	1233.84 3+									
507.5	1.65^{b} 16	2725.00	14+	1233.07 3									
J01.5 1	1.03 10	2155.90	14	2140.40 12									

S

Т

				150 Nd(α	$(2n\gamma)$ 2005G	a47,1982Ko03 ((continued)	
					$\gamma(^{152}\text{Sm})$	(continued)		
E_{γ}	I_{γ}	E _i (level)	J_i^π	$E_f = J_f^{\pi}$	Mult. ^{<i>x</i>}	δ	α^{\dagger}	Comments
603.6 1	3.35 11	1310.42	6+	706.83 6+	E0+M1+E2		0.032 4	Mult., δ : A ₂ =+0.08 2, A ₄ =-0.11 3; lin pol=-0.20 8; α (K)exp=0.027 3. δ (Q/D)=+1.6 3 gives α (K)=0.0080 4. α : From Adopted Gammas.
623.9	0.13 4	2290.43	9-	1666.31 8+				
626.0 [‡] 3	0.82	3361.9	16+	2735.90 14+				E_{γ} : $E_{\gamma}=628.82$ 3 in Coulomb excitation.
631.5 3	< 0.6	2510.56	10-	1878.99 9-				
634.1 ⁿ	0.2 ^{<i>np</i>}	2139.67	8+	1505.53 7-				E_{γ}, I_{γ} : Includes an impurity peak. I γ is from $\gamma\gamma$.
637.9 7	0.13 3	2516.41	8+,9,10,11-	1878.99 9-				Mult.: $A_2 = -0.2 4$, $A_4 = -0.4 6$.
647.2 [‡] 3	0.67	3383.1	15-	2735.90 14+				
656.5 2	3.26 11	1022.85	4+	366.38 4+	E0+M1+E2		0.0568 20	Mult., δ : A ₂ =-0.07 2, A ₄ =-0.06 3; α (K)exp=0.041 6; lin pol=-0.28 6; δ (E2/M1)=+6 +9-2 gives α (K)=0.055 1.
(caW		1000.00	c +	1000 04 0+				α : From Adopted Gammas.
657 ¹⁰ 671.1 2	1.14	1890.90 1756.80	5' 4+	1233.84 3 ⁺ 1085.67 2 ⁺				Mult.: The data are conflicting. The authors suggest mult=E2 and/or M1 from A ₂ =+0.39 4, A ₄ =+0.06 6, lin. pol=+0.8 2, and α (K)exp=0.0077 19. from Adopted L avala, I^{\pm} is A^{\pm} , requiring mult=E2
67432	0.63.3	1040 73	3-	366 38 4+	$F1 \pm M2$	$\pm 1.2 \pm 60 - 9$	0.018 14	Adopted Levels, J 18 4, requiring mult-E2. Mult: $\Delta_2 = -0.43.8$ $\Delta_4 = \pm 0.14.12$ lin pol= $\pm 0.12.19$
681.6.3	0.03 3	2290.43	9-	$1609 \ 17 \ 10^+$	D+O	11.2 100 9	0.010 14	Mult: $A_2 = -0.22$ $A_4 = -0.34$ lin pol=+0.12 12.
684.6 2	0.99 4	2833.0	13-	2148.40 12+	E1+(M2)	-0.03 3	0.00220 8	Mult.: $A_2 = -0.33$ 7, $A_4 = +0.06$ 9; lin pol = +0.4 2; $\alpha(K) \exp < 0.003$ for the 684.6y and the known 684.7 E0 transition from the 684.7 level. $\alpha(K) = 0.00486$ for E2.
688.6 2	0.78 3	810.38	2+	121.73 2+	E0+M1+E2		0.0434 13	Mult.: $A_2 = -0.16 \ 8, \ A_4 = -0.01 \ 12; \ \alpha(K) \exp = 0.036 \ 7. \ \alpha$: From Adopted Gammas.
693.1 <i>3</i>	0.2 ^{<i>p</i>} 1	2841.5	$10^+, 11, 12, 13^-$	2148.40 12+				
717.9 3	2.2 3	2326.91	11-	1609.17 10+	E1		0.00198	I _y ,Mult.: The authors report I _Y =4.1 3 and A ₂ =-0.15 6, A ₄ =+0.10 18, lin pol=+0.48 7, and α (K)exp=0.0021 5 for the 717 γ and an impurity line. The impurity line is E2, so α (K)exp is consistent only with mult(717.9 γ)=E1.
719.1	0.0140 11	1085.67	2+	366.38 4+				I_{γ} : From $I_{\gamma}/(1086\gamma)=0.0246$ 9 in Adopted Gammas.
727 ^w		2393	8+	1666.31 8+				•
730 ^w		2810	(10^{+})	2079.59 10+				
747.1 2	0.4 ^{<i>p</i>} 2	2057.46	7-	1310.42 6+				
753.7 1	6.02 19	1878.99	9-	1125.29 8+	E1+(M2)	-0.03 3	0.00181 6	Mult.: $A_2 = -0.30 \ 2$, $A_4 = +0.03 \ 3$; lin pol=+0.31 5; α (K)exp=0.0012 3.
766.3 2	0.57 3	2375.47	9+	1609.17 10+	M1+E2	-1.0 4	0.0060 8	Mult.: $A_2 = +0.71$ 9, $A_2 = +0.14$ 16; lin pol = -1.7 6.
780.9 <i>3</i>	0.40 10	1803.92	5-	1022.85 4+				

6

				¹⁵⁰ Nd($(\alpha, 2\mathbf{n}\gamma)$ 20	05Ga47,1982Ko(3 (continued)					
γ ⁽¹⁵² Sm) (continued)												
E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^x	δ	α^{\dagger}	Comments				
798.7 1	5.84 19	1505.53	7-	706.83 6+	E1		1.59×10^{-3}	Mult.: $A_2 = -0.19 2$, $A_4 = +0.02 4$; lin pol=+0.26 5; $\alpha(K) \exp = 0.0016 4$.				
$x 810.1^{zt}$	0.6^{zt}											
810.1 ^{zt} 2	0.4 ^{zt}	810.38	2+	$0.0 0^+$								
819 ^w		2040	6+	1221.39 5-								
820.6 1	2.09 7	1945.80	7+	1125.29 8+	M1+E2	-1.6 4	0.0045 4	Mult.: A ₂ =+0.35 4, A ₄ =+0.14 5; lin pol=-0.79 16; α(K)exp=0.0043 12.				
841.6 ^{‡1} 4	0.52 10	963.90	1-	121.73 2+				I _{γ} : From I γ /I γ (963 γ)=1.18 5 in Adopted Gammas.				
843.7	<3.8	2348.8	6+,7,8,9-	1505.53 7-				E_{γ} , I_{γ} : The authors determine E_{γ} =843.7 with I_{γ} =3.8 for this placement from the 2348 level and an impurity line.				
852.8 1	2.44 7	1559.55	5+	706.83 6+	M1+E2		0.0046 12	Mult., δ : A ₂ =+0.28 3, A ₄ =-0.02 5; α (K)exp=0.0053 15. From $\gamma(\theta)$, δ =-0.5 2 or -1.6 4. From α (K)exp, δ <1.2 so the small solution is favored.				
855.0 1	3.30 11	1221.39	5-	366.38 4+	E1+(M2)	-0.11 7	0.0016 3	Mult.: $A_2 = -0.30 \ 3$, $A_4 = +0.05 \ 3$; $\alpha(K) \exp < 0.001$.				
867.0 2	0.63 11	1233.84	3+	366.38 4+	M1,E2		0.0045 11	Mult.: $\alpha(K) \exp = 0.005 \ 2.$				
878.1 2	0.6 2	2003.51	7-	1125.29 8+								
887 ^w		2393	8+	1505.53 7-								
901.1 1	1.79 6	1022.85	4+	121.73 2+	E2		0.00311	Mult.: A ₂ =+0.33 4, A ₄ =-0.05 5; lin pol=+0.64 19.				
907.2 2	0.54 5	2516.41	8+,9,10,11-	$1609.17 \ 10^+$				Mult.: $A_2 = +0.09 \ 13, \ A_4 = -0.1 \ 3.$				
916.8 2	0.39 6	2525.68	12'	1609.17 10	$E_1(\mathbf{M}_2)$	0.07 .0.14	0.0012.5	Mult.: $A_2 = +1.13$, $A_4 = +0.014$.				
919.0 <i>I</i>	1.56 0	2810	3 (10 ⁺)	121.73 2	E1(+M2)	-0.07 +9-14	0.0013 5	Mult.: $A_2 = -0.264$, $A_4 = +0.117$; III poi=+0.09 13.				
951	o -i o	2810	(10^{-1})	18/8.99 9	i							
931.1 2	0.73	3079.5	13	2148.40 12	;							
931.9 2	1.57 3	2057.46	7=	1125.29 8+	J		0.00001					
944.1 1	2.0 4	1310.42	6'	366.38 4	E2		0.00281	I_{γ} : The authors report $I_{\gamma}=2.44$ / in singles, and 2.0 4 in $\gamma\gamma$ so there is possibly a small part of this intensity that could belong elsewhere. Mult., I_{γ} : A ₂ =+0.21 3, A ₄ =0.00 5; lin pol=+0.44 <i>I6</i> ;				
954.2 3	0.77 7	2079.59	10+	1125.29 8+			0.007-1	Mult.: $A_2 = -0.02$ 17, $A_4 = 0.02$.				
959.5 1	1.04 4	1666.31	8+	706.83 6+	(E2)		0.00271	Mult.: Mult=Q from A ₂ =+0.43 7, A ₄ =-0.05 11. Placement in the decay scheme requires $\Delta \pi$ =no.				
963.9 ^{zs} 2	0.44 ^{zs} 8	963.90	1-	$0.0 0^+$								
963.9 ^{zs} 2	0.81 ^{zs} 6	1085.67	2+	121.73 2+								

Ţ

From ENSDF

 $^{152}_{62}\mathrm{Sm}_{90}$ -7

				() ()	,							
γ ⁽¹⁵² Sm) (continued)												
E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^{<i>x</i>}	δ	$lpha^\dagger$	Comments					
1371.36	4+	366.38	4+	E2		0.00246	Mult.: A ₂ =-0.15 5, A ₄ =+0.01 8; lin pol=-0.30 12; $\alpha(K)$ =0.00210 (E2 theory) used as a calibration point.					
2139.67	8+	1125.29	8+				$F_{\alpha}L_{\nu}$: Includes an impurity peak. It is from $\gamma\gamma$.					
1728.15	6+	706.83	6 ⁺	M1+E2	-1.4 +4-7	0.00284 23	Mult.: $A_2 = -0.15 4$, $A_4 = -0.01 6$; lin pol= $-0.11 12$; $\alpha(K) \exp = 0.0026 8$.					
2641.11	11-	1609.17	10^{+}	E1+(M2)	+0.03 8	0.00098 9	Mult.: A ₂ =-0.16 8, A ₄ =+0.10 11; lin pol=-0.3 5; α(K)exp<0.0013.					
1764.4	5-	706.83	6+									
2201.42	8-	1125.29	8+									
2206	7 ⁺	1125.29	8+									
1085.67	2+	0.0	0^{+}	0			Mult.: $A_2 = +0.25$ 15, $A_4 = +0.2$ 2.					
1803.92	5-	706.83	6+	E1 + (M2)	-0.03 8	0.00087 8	Mult.: $A_2 = -0.07 4$, $A_4 = +0.09 7$: lin pol=+0.20 13.					
2712.4		1609.17	10^{+}				Mult.: $A_2 = +0.3 3$, $A_4 = +0.3 4$.					
1233.84	3+	121.73	2^{+}	E2+M1	-7 + 2 - 7	0.00202 4	Mult.: $A_2 = -0.094$, $A_4 = -0.057$; lin pol=+0.1614.					
2290.43	9-	1125.29	8+	E1+(M2)	-0.05 11	0.00081 13	Mult.: $A_2 = -0.32$ 6, $A_4 = +0.10$ 9; lin pol=+0.4 4; $\alpha(K)\exp(-0.0017)$.					
2308.5		1125.29	8+				Mult.: $A_2 = +0.53$ 7, $A_4 = +0.3$ 2.					
1559.55	5+	366.38	4+	M1+E2	-4.0 8	0.00178 4	Mult.: $A_2 = -0.34$ 2, $A_4 = +0.17$ 4; lin pol=+0.32 10; $\alpha(K) = 0.0015$ (E2 theory) used as a calibration point.					
1578.4	3-	366.38	4+	&			-					
1000 41				Q.								

g

g

E1

h

h

M1+E2

-1.72

h

h

0.00181 5

 7.17×10^{-4}

706.83 6+

1125.29 8+

1125.29 8+

706.83 6+

121.73 2+

1125.29 8+

1125.29 8+

706.83 6+

366.38 4+

706.83 6+

706.83 6+

706.83 6+

706.83 6+

366.38 4+

 $0.0 \quad 0^+$

Eγ

1005.0 1

1014.4ⁿ

1021.4 *I*

1031.5 2

1057.3 3

1075¹ 1

1097.1 *1*

1103.2 3

1112.1 *I*

1165.02

1213.4[&] 3

1223.1^{zg}

1223.1^{zg}

1234.4 3

1238.9 1

1250.1^{*zq*}

1250.1^{zq}

1293.4¹ 3

1296.8 2

1315.62

1339.4 2

1348.9 10

1350.9 4

1361.7¹ 6

1333^w

1267^w

 ∞

1081^w 1085.7 2 Iγ

2.01 9

 2.0^{np}

1.64 6

0.85 4

0.3 1

0.2 1

0.57 4

2.01 8

0.58 11

1.97 8

0.99 5

1.7[&] 4

 $0.8^{28} 2$

 $0.8^{28} 2$

3.96 13

 0.6^{zq} 2

 0.9^{2q} 3

0.19 9

0.84 6

0.57 5

0.57 7

1.0^h 3

0.3 1

0.7^h

0.7**P**

1930.09

2348.8

2359.7

1945.80

1371.36

2375.47

1293.4?

2003.51

1681.99

2045.99

2055.7

2057.46

1728.15

2040

2393

6-

 7^{+}

 4^{+}

9+

 8^{+}

 2^{+}

 7^{-}

4-

 6^+

 7^{-}

6+

 $4^+, 5, 6, 7^+$

 $6^+, 7, 8, 9^-$

 I_{γ} : The authors determine $I_{\gamma}=1.47$ 6 for the 1234 γ

Mult.: $A_2 = -0.18 \ 10$, $A_4 = +0.17 \ 17$; lin pol=+0.2 5.

Mult.: A₂=+0.47 *16*, A₄=+0.2 *2*; lin pol=+0.6 *7*.

and an impurity line.

Mult.: $A_2 = -0.74 \ 3$, $A_4 = +0.23 \ 4$.

 $^{152}_{62}\mathrm{Sm}_{90}$ -8

 $^{152}_{62}{\rm Sm}_{90}\text{--}8$

$\gamma(^{152}\text{Sm})$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. ^x	δ	α^{\dagger}	Comments
1391 ^w		1756.80	4+	366.38 4+				
1398.6 5	0.2 1	1764.4	5-	366.38 4+				
1408.1 <i>3</i>	0.6 2	1529.9	2-	121.73 2+				
1437.4 2	0.33 13	1803.92	5-	366.38 4+	E1+(M2)	-0.07 11	0.00072 9	Mult.: $A_2 = -0.26 \ 6$, $A_4 = +0.11 \ 9$; lin pol = -0.4 4.
1454.7 2	1.52 15	1821.09	(4^{-})	366.38 4+				Mult.: From $A_2 = -0.49$ 6, $A_4 = +0.24$ 10 the authors assign mult=M1+E2,
								with $\delta = -2.8 + 12 - 7$. This assignment is in conflict with the adopted
								$J^{\pi} = (4^{-})$ for the 1821 level.
1463 ^w		2588	9+	1125.29 8+				
1499 <mark>w</mark>		2206	7+	706.83 6+				
1525 ^w		1890.90	5+	366.38 4+				
1635 ^w		1756.80	4+	121.73 2+				
1672 ^w		2040	6+	366.38 4+				

[†] Additional information 1.

9

[‡] Observed only by 1978CoZV.

 $^{\#}$ A 90° value; not corrected for anisotropy.

^(a) The 325.6 γ from the 1560 level and the 327.3 γ from the 2752 level are unresolved in $\gamma(\theta)$. A₂=+0.38 4 and A₄=+0.02 6 for the combined transitions.

[&] The authors report I γ =2.34 8 for the 1212.0 from the 1580 level and the 1213.4 γ from the 1920 level. They give divided intensities as shown, but do not state how these were obtained. A₂=0.19 3, A₄=-0.01 5 and lin pol=-0.6 2 for the doublet.

^{*a*} The authors report E γ =506.6 3 with I γ =0.2 1 doubly placed from the 1728 and 2833 levels.

^b The authors report $E\gamma = 587.5 \ I$ with $I\gamma = 1.92 \ 7$ doubly placed from the 1821 and 2736 levels. $A_2 = +0.31 \ 3$, $A_4 = -0.17$ and lin pol=+0.87 I9 for the doublet. From $I\gamma/I\gamma(1455\gamma)=0.18 \ 9$ for the 1821 level from Adopted Gammas, one gets $I\gamma(587\gamma)=0.27 \ I4$ for placement from the 1821 level, leaving $I\gamma=1.65 \ I6$ for placement from the 2736 level. The $E\gamma$ value for the 1821 level is from the level energy difference.

^c 1982Ko03 report E γ =316.3 *1* with I γ =0.61 *3* placed in part from the 1023 level. From I γ /I γ (656 γ + 901 γ)=0.0440 *20* from Adopted Gammas, one expects I γ (316 γ)=0.222 *12* for the 1023 level. This leaves I γ =0.39 *3* as unplaced. The authors measure A₂=+0.39 *6* and A₄=-0.03 *11* for the multiplet.

^d The authors report I γ =1.91 7 for the 269.0 *l* + 269.8 4 γ 's placed from the 1879 and 2215 levels, respectively. the 269.0 γ has an impurity component. The I γ values shown are from $\gamma\gamma$. A₂=-0.16 2, A₄=+0.04 4 and lin pol=+0.03 3 for the multiplet.

^{*e*} The authors report I γ =1.96 7 with A₂=+0.11 2 and A₄=+0.03 4 for E γ =331.3 *I* doubly placed from the 1891 and 2389 levels and E γ =331.6 2, an impurity line. I γ =1.4 is determined from $\gamma\gamma$ for the doubly placed 331.3 γ . From I γ /I γ (520 γ)=0.65 20 in Coulomb excitation for the 1891 level, one gets I γ (331 γ)=0.13 *I*3 for placement from the 1891 level, leaving I γ =1.2 for placement from the 2389 level.

^{*f*} The authors report I γ =2.90 *10* and A₂=-0.14 *3*, A₄=-0.00 *4* for the 361.0 and 361.5 γ 's from the 2577 and 1920 levels, respectively. Lin pol=+0.30 5 for these γ 's combined with the 362.4 γ from the 2752 level. The intensities shown for the 361.0 and 361.5 γ 's are from $\gamma\gamma$.

^g The authors report E γ =1223.1 3 doubly placed from the 1930 and 2348 levels. A₂=+0.15 4, A₄=-0.13 7 and lin pol=-0.3 3 for the doublet. The I γ values shown are from $\gamma\gamma$.

^{*h*} The authors report I γ =1.70 7 and A₂=-0.25 5, A₄=+0.04 7 for the 1348.9 γ +1350.9 γ placed from the 2056 and 2058 levels, respectively. I γ =1.0 3 is determined from $\gamma\gamma$ for the 1350.9 γ , and I γ for the 1348.9 γ is taken to be what remains. δ =-0.03 5 or -5.7 +17-38 for the doublet.

^{*i*} The authors report I γ =0.83 3 and A₂=+0.05 4, A₄=+0.07 7 for the 253.8 γ from the 2057 level and an impurity line. I γ shown is from $\gamma\gamma$. Lin pol=+0.46 6 for the

¹⁵²₆₂Sm₉₀-9

$\gamma(^{152}\text{Sm})$ (continued)

253.8 γ and two impurity lines.

- ^{*j*} The authors report I γ =2.13 7 and A₂=-0.19 4, A₄=+0.06 6 and lin pol=+0.10 14 for the 931.1 γ and 931.9 γ from the 3080 and 2057 levels, respectively. The I γ values shown are from $\gamma\gamma$.
- ^k The authors report $E\gamma = 200.6 I$ with $I\gamma = 1.6 3$ doubly placed from the 2080 and 2121 levels. The $I\gamma$ shown are from $\gamma\gamma$. A₂=+0.07 3, A₄=+0.01 4, lin pol=-0.4 2 for the doublet.
- ^{*l*} The authors report I γ =1.49 *15* for the 174.1 γ from the 2376 level and 173.8 γ from the 2389 level. A₂=-0.04 *3*, A₄=+0.02 *5* and δ =+0.11 *5* are determined for the doublet. From Coulomb excitation, one has I γ /I γ (430 γ +766 γ +1250 γ)=0.117 *11* for placement from the 2376 level, leaving I γ =1.23 *16* for placement from the 2389 level.
- ^{*m*} The authors report E γ =187.6 3 with I γ =1.49 15 doubly placed from the 2389 and 2577 levels. A₂=-0.12 3, A₄=+0.08 5 for the doublet.
- ^{*n*} The authors report $E\gamma$ =514.6 with $I\gamma$ =1.6 *16* doubly placed from the 1221 and 2842 levels. $I\gamma$ =1.0 and 0.5 are determined from $\gamma\gamma$ for these two placements, respectively.

^o The authors report Ey=160.8 2 with Iy=0.92 9 doubly placed from the 1666 and 2752 levels. A₂=-0.40 5, A₄=-0.12 9, and δ =-0.14 11 for the doublet.

^{*p*} From $\gamma\gamma$.

10

^{*q*} The authors report $E\gamma$ =1250.1 2 with $I\gamma$ =1.49 7 doubly placed from the 1372 and 2375 levels. From $\gamma\gamma$ the intensities for these two placements are 0.6 2 and 0.9 3, respectively.

- ^{*r*} The authors report $E_{\gamma}=523.5\ 2$ with $I_{\gamma}=1.65\ 6$ placed from the 1758 level. From $I_{\gamma}/I_{\gamma}(671\gamma)=0.55\ 3$ in Adopted Gammas, one expects $I_{\gamma}=0.62\ 4$. This leaves $I_{\gamma}=1.03\ 7$ unplaced. $A_2=+0.41\ 13$ and $A_4=+0.08\ 17$ for the multiplet.
- ^{*s*} The authors report $E\gamma = 963.9\ 2$ with $I\gamma = 1.25\ 5$ doubly placed from the 963 and 1086 levels. From $I\gamma/I\gamma(1086\gamma) = 1.416\ 4$ from Adopted Gammas for the 1086 level, one deduces $I\gamma = 0.81\ 6$ for placement from the 1086 and thus $I\gamma = 0.44\ 8$ for placement from the 963 level. $A_2 = -0.19\ 6$ and $A_4 = +0.06\ 10$ for the doublet.
- ^t $I\gamma=1.03$ 4 in singles for $E\gamma=810.1$ 2. $I\gamma=0.4$ from $\gamma\gamma$ is deduced for placement from the 810 level. This leaves $I\gamma=0.6$ for additional placement(S) of this transition. The authors determine $A_2=0.05$ 10 and $A_4=-0.26$ 10 and also lin pol=-0.4 3 for the multiplet.

^{*u*} $I\gamma$ =0.47 4 in singles for $E\gamma$ =444.4 2. From branching in Adopted Gammas, one gets $I\gamma$ =0.266 17 and 0.08 3 for placement from the 810 and 1529 levels, respectively. This leaves $I\gamma$ =0.12 6 for a possible unplaced component. The authors give A₂=-0.23 10 and A₄=-0.02 15 for the multiplet.

^{ν} I γ =1.59 6 in singles for E γ =271.3 *1*. I γ =0.5 from $\gamma\gamma$ is deduced for placement from the 2201 level. This leaves I γ =1.1 for additional placement(S) of this transition. A₂=+0.14 *3*, A₄=-0.06 *4* for the multiplet.

^w From 2005Ga47. No uncertainty is given by the authors.

- ^x From $\alpha(K)\exp, \gamma(\theta)$, and $\gamma(Iinear pol)$. The $\alpha(K)\exp$ are from relative I γ and Ice(K) normalized to $\alpha(K)=0.00867$ (E2 theory) for the 539.5 γ , assigned as the 12⁺ to 10⁺ member of the g.s. rotational band. mult (539 γ) is determined from $\gamma(\theta)$. This normalization results in E2 assignments for the 10⁺ to 8⁺ 483.9 γ , the 8⁺ to 6⁺ 418.4 γ , and the 6⁺ to 4⁺ 340.5 γ in the g.s. rotational band. The mult=E2 character of these transitions is established by $\gamma(\theta)$ and $\gamma(Iinear pol)$. In the absence of polarization data, mult=Q from large positive A₂ is assumed to be E2. For low–energy transitions mult=D+Q with large δ is assumed to be M1+E2.
- ^y Multiply placed with undivided intensity.
- ^z Multiply placed with intensity suitably divided.
- ¹ Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

¹⁵²₆₂Sm₉₀

$\frac{\text{Level Scheme (continued)}}{\text{Intensities: Relative I}_{\gamma}}$

& Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{152}_{62}{\rm Sm}_{90}$

 $^{152}_{62}Sm_{90}$

From ENSDF

1

 $^{152}_{62}{
m Sm}_{90}$

Level Scheme (continued)

¹⁵²₆₂Sm₉₀

¹⁵²₆₂Sm₉₀

 $^{152}_{62}Sm_{90}$

¹⁵⁰Nd(α,2nγ) 2005Ga47,1982Ko03 (continued)

¹⁵²₆₂Sm₉₀