		Tu	20	Author	History	Litaratura Cutoff Data
Type Full Evaluation		M I Martin	NDS 114 1497 (2013)	31-Aug-2013		
Full Evaluation M. J. Martin NDS 114, 1497 (2013) 31-Aug-2013 $Q(\beta^-)=6.39 \times 10^3 \ 3; \ S(n)=5050 \ 22; \ S(p)=9.82 \times 10^3 \ 3; \ Q(\alpha)=-3.47 \times 10^3 \ 3$ 2017Wa10 $S(2n)=11600 \ 22; \ S(2p)=2.22 \times 10^4 \ 3$ 2017Wa10 Additional information 1.						
					¹⁵² Pr Levels	
				Cross	Reference (XREF) Flags	
				A ¹ B ²	152 Ce β^- decay 252 Cf SF decay	
E(level)	\mathbf{J}^{π}	T _{1/2}	XREF		(Comments
0.0	(4 ⁺) [#]	3.57 s 18	A	$\%\beta^{-}=100$ T _{1/2} : Weight in 1988Ka	ed average of 3.7 s 2 (199 14), and 3.24 s 19 (1983H	0An31), 3.8 s 2 (1985Br08, also reported i05).
114.8 2	(3 ⁺) [#]	4.1 μs 1	A	T _{1/2} : From (β)(114.8 γ)(t). Other: 1.0 μ	is 3 (1990TaO7), also from $\beta\gamma$ (t).
212.5 2	$(1^+)^{\#}$		A	$T_{1/2}$: $(\beta)(97.2)$	7γ)(t) indicates a prompt c	oincidence.
296.7 <i>5</i> 329.7 <i>5</i>			A A			
658.8 <i>3</i>			Α			
717.4 4			A A			
773.8 3			A			
786.2 4			Α			
812.8 <i>3</i> 844 1 3			A A			
939.7 2			A			
975.4 5			Α			
1414.83			A			
0+x 60 00+x [‡] 3			B			
$136.00 + x^{\dagger} 3$			B			
$228.0+x^{\ddagger}$ 3			B			
336.4+x [†] 4			В			
460.0+x [‡] 5			В			
600.9+x [†] 5			В			
$755.3 + x^{\ddagger} 6$			В			
928.2+x [†] 6			В			
$1108.7 + x^{+} 6$			В			
$1314.3 + x^{\ddagger}$ /			В			
$1314.1 + X^{+}$ /			B			
1/3 + . + + x = 7 1966 5 + $x = 8$			B			
$2243.1 + x^{\dagger} 8$			B			
2462.7+x [‡] 8			В			
2777.1+x [†] 9			В			
3002.2+x [‡] 9			В			

Adopted Levels, Gammas (continued)

¹⁵²Pr Levels (continued)

[†] Band(A): Band A.

[‡] Band(B): Band B.

[#] From $\Delta \pi$ =no for the 98 and 115 γ 's, π must be the same for the g.s., 115, and 212 levels. For the g.s., the probable Nilsson states suggest configurations $\pi 3/2[541] \otimes v3/2[521]$ or $\pi 3/2[541] \otimes v5/2[642]$ (2011Li41) giving $K^{\pi}=3^+$ and 4⁻, respectively. For J(g.s.)=4, mult(115 γ) gives J^{π}(115 level) \geq 3 so there will be no direct β^- feeding. from the β^- decay scheme of 1995Ya21 one can deduce a β^- feeding to the 212 level of \approx 45% and thus a log *ft* of 4.6. since the decay scheme is incomplete, this feeding is likely an overestimate, but even if it were a factor of 10 smaller, the log *ft* would still be consistent only with J^{π}(212 level)=1⁺. Then, from the mults As given above, it follows that J^{π}(115 level)=3⁺ and π =+ for the g.s. for J(g.s.)=³. Noavailable Nilsson configuration would give 3⁻. for J^{π}(g.s.)=3⁺, the above restriction on mult(115 γ) is removed allowing E2 and thus allowing J^{π}(115)=1⁺ and the possibility of a direct β^- branch to this level. In this case, the combined feeding to the 115 and 212 levels is still large, giving a low log *ft* and thus requiring J^{π}=1⁺ for one or both of the 115 and 212 levels. 2011Li41 suggest that for the K^{π}=3⁺ configuration, the J=4 member is expected to lie below the J=3 member. From all the above arguments, the most probable J^{π} assignment for the g.s. is 4⁺, with configuration π 3/2[541] $\otimes v$ 3/2[521]. One then has probable J^{π}=3⁺ and 1⁺ for the 115 and 212 levels, respectively, and an M1 component for the 98 γ is ruled out.

γ(¹⁵² Pr)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\ddagger}	Comments
114.8	(3 ⁺)	114.8 2	100.0 18	0.0	(4 ⁺)	M1(+E2) [†]	1.08 22	$\frac{B(M1)(W.u.) \le 1.90 \times 10^{-6} 5;}{B(E2)(W.u.) < 0.062}$
212.5	(1^{+})	97.7 2	62.2 11	114.8	(3^{+})	$E2^{\dagger}$	2.30	
296.7		84.2 4	100	212.5	(1^{+})			
329.7		117.2 4	100	212.5	(1^{+})			
658.8		446.9 <i>3</i>	28 7	212.5	(1^{+})			
		658.2 4	100 19	0.0	(4^{+})			
717.4		421.7 <i>3</i>	100 14	296.7				
		503.9 4	40 21	212.5	(1^{+})			
751.7		454.7 <i>4</i>	41 11	296.7				
		539.5 4	51 17	212.5	(1^{+})			
		751.6 4	100 31	0.0	(4^{+})			
773.8		443.9 <i>3</i>	18 5	329.7				
		561.6 <i>3</i>	16 10	212.5	(1^{+})			
		773.8 3	100 22	0.0	(4^{+})			
786.2		456.4 3	100 16	329.7	24 I.S.			
		5/3.8 3	69 7	212.5	(1^+)			
812.8		812.8 3	100	0.0	(4+)			
844.1		70.3 3	92.5	773.8	(4 ±)			
		844.0 3	100 23	0.0	(4')			
939.7		727.2 1	100	212.5	(1')			
9/5.4		316.6 4	100	658.8				
1414.8		439.5 3	12.0 19	975.4				
		570.54	100 0	844.1				
60.00 L v		60.0.3	1.2 21	012.0				
$136.00 \pm x$		76.0.3		$60.00 \pm x$				
130.00±x		136.0.3		0.00+x				
228.0 + x		92.0.3		136.00+x				
220.01X		168.0.3		60.00 + x				
336 4+x		108.4.3		228.0+x				
22011A		200.4 3		136.00+x				
460.0+x		232.0.3		228.0+x				
600.9+x		264.5.3		336.4+x				
755.3+x		295.3.3		460.0+x				
928.2+x		327.3 3		600.9+x				

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{152}Pr)$ (continued)

E _i (level)	Eγ	E_f	E _i (level)	Eγ	E_f	E _i (level)	Eγ	E_f
1108.7+x	353.4 <i>3</i>	755.3+x	1754.4+x	440.1 <i>3</i>	1314.3+x	2462.7+x	496.2 <i>3</i>	1966.5+x
1314.3+x	386.1 <i>3</i>	928.2+x	1966.5+x	452.4 <i>3</i>	1514.1+x	2777.1+x	534.0 <i>3</i>	2243.1+x
1514.1+x	405.4 3	1108.7+x	2243.1+x	488.7 <i>3</i>	1754.4+x	3002.2+x	539.5 <i>3</i>	2462.7+x

[†] From an intensity balance argument in ¹⁵²Ce β^- decay.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

	Legend			
Level Scheme Intensities: Type not specified	$\begin{array}{c c} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \hline & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \hline & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$			

4

¹⁵²₅₉Pr₉₃

 $^{152}_{59}{\rm Pr}_{93}$