		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin	NDS 114, 1497 (2013)	31-Aug-2013

Parent: ¹⁵²Tb: E=0.0; $J^{\pi}=2^-$; $T_{1/2}=17.5$ h *1*; $Q(\varepsilon)=3990$ 40; $\%\varepsilon+\%\beta^+$ decay=100.0

¹⁵²Tb-% ε +% β^+ decay: From I(γ^{\pm})/I(γ) for each level and theoretical ε/β^+ ratios. the sum of the authors' values for all levels, excluding the g.s., is 75.0% 18, leaving 25.0% 18 for feeding to the g.s. the γ normalization then follows from Σ I(γ +ce to g.s.)=75.0 18.

- ¹⁵²Tb isotope prepared by irradiation of a tantalum target by a proton beam at E=660 MeV, followed by chromatographic isolation and electromagnetic separation.
- Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, I β , I(ceK)/I(β +) with a planar HPGe detector and a coaxial HPGe detector for the energy range from 5-1500 keV. Another coaxial HPGe detector ORTEC was used to measure the aforementioned quantities in the high energy range of 300-4000 keV. The $\gamma\gamma$ coincidences were recorded by the two HPGe detectors. A 7 mm thick Pb filter was placed between the detectors to avoid registration of Compton-scattered photons.

¹⁵²Gd Levels

E(level) [†]	J^{π}
0	0^{+}
344.2790 13	2+
615.38 <i>3</i>	0^{+}
755.3960 19	4+
930.560 18	2+
1047.78 4	0^{+}
1109.203 20	2^{+}
1123.186 3	3-
1227.36 7	6+
1274.26 7	$1,2^{+}$
1282.25 4	4+
1314.638 25	1-
1318.355 22	2+
1434.021 6	3+
1470.63 6	2^{+}
1533.92 9	
1550.15 5	4+
1605.60 <i>3</i>	2+
1643.428 9	2^{-}
1680.75 5	0^{+}
1692.43 4	$2^+, 3^+$
1734.44 12	
1755.77 8	1-
1771.58 4	2+
1785.21 10	2+
1807.52 7	
1808.92 8	
1839.71 5	2+
1861.89 4	2+
1862.06 6	2+
1915.15 6	(4)+
1915.76 5	$2^+,3,4^+$
1941.17 3	2+
1975.72 7	1+,2+
2011.67 4	1 ⁺ ,2 ⁺
2121.05 7	2+,3-,4+
2133.38 14	1+,2+
2169.65 7	2+

¹⁵²Gd Levels (continued)

E(level) [†]	\mathbf{J}^{π}	Comments
2201.71.7	2+	
2246.80 4	$\frac{-}{2^{+}}$	
2258.14 6	$2^{+}.3.4^{+}$	
2264.88 7	12.3-	
2265.29 8	$1^{+}.2^{+}.3^{+}$	
2267.73 9	· , _ ,c	
2299.66.3	2 3-#	
2325.68 10	2,5	
2330 72 9	$2^+ 3 4^+$	
2386.95 9	$(2)^+$	
2401.55 7	1+.2.3-	
2437.43 8	2+	
2448.01 12	+	
2495.18 6	&	
2513.9 4	1.2^{+}	
2523.81 4	2+	
2529.43 4	$2^+, 3, 4^+$	
2540.45 6	$2^+, 3^+$	
2544.02 6		
2551.14 7		
2557.87 5	2+	
2598.80 5	$1^+, 2^+$	
2604.34 6	1-,2,3-	
2641.59 10	1-,2-,3-	
2667.56 6	1-	
2686.87 9	2+	
2709.43 5	2 · 2+	
2719.04 0	$\frac{2}{2^+}$	
2729.17 4	2	I^{π} . The mults for the two deexciting transitions to 2^+ are inconsistent
2744 04 10	1-	J. The multiplier we deckelding transitions to 2° are meensistent.
2749.23 4	$2^+.3^+$	
2772.40 6	2 ⁺ ,°	
2862.66 5	1-,2,3-	
2869.84? [@] 10		
2880.67 3	2+	
2914.19 6	2+	
2920.10 10		
2927.86 5	$2^+, 3^+$	
2928.68 17		
2932.71 6	2+	
2964.30 5	2-	
2981.45 8	$2^+,3,4^+$	
2989.03 8	1 + 2 +	
2999.55 5	1+,2+	
3006.78.5	2	
3009.23 J 3012 37 9	3^{+} 2+ 2+ 4+	
3012.37 ð 3042 20 5	2,3',4' 2+	
3042.29 3	∠ 3-	
3074 85 12	$2^+ 3 4^+$	
3079.66 12	$2^{+},3,4^{+}$	
3090.42 16	- ,0,1	
3099.02 8	$1^+, 2^+, 3^+$	
3105.52 7	2+	

152Gd Levels (continued)

E(level) [†]	J^{π}	Comments
3110.93 10	1+,2+	
3112.53 7	$1^+, 2^+$	
3140.21 6	$1,2^{+}$	
3143.97 7	3-	
3152.89 9	3-	
3214? [‡] 1		
3232.06 8		
3236.96 9	$2^+, 3, 4^+$	
3285.17 8	2+	E(level): Deduced by evaluator based on the 1970 and $2162\gamma'$ s. The authors give 3285.12 7.
3340.65 6	$1^{-},2,3,4^{+}$	
3358.27 11	2+	

[†] From a least-squares fit to the $E\gamma$ values.

[‡] The three transitions from the 3214 level do not yield consistent energies. The 887, 1045, and $1521\gamma'$ s give E(level)=3213.00 *14*, 3214.96 *24*, and 3214.00 *17*, respectively. 2003Ad25 give 3214.23 *9*. The evaluator adopts E=3214 *1* and considers the level as tentative.

- [#] $\alpha(K)\exp$ gives mult=M1 and E1 for the 1369 and 1955 γ 's, respectively; however, both transitions feed levels with $J^{\pi}=2^+$. mult(1369 γ)=M1, along with other branchings, give $J^{\pi}=2^+$, while mult(1955 γ)=E1 would allow $J^{\pi}=2^-$ or 3^- . Observation of the 2299 level in (d,d') rules out the 2^- alternative. 2003Ad25 (and 2004AdZZ) adopt 2^+ , while 1971Zo05, who give the same inconsistent mults, adopt $J^{\pi}=3^-$. 1990Ta19, in their $\gamma(\theta)$ analysis use J=3.
- ^(a) 2003Ad25 list a level at 2869.76 with transitions $E\gamma$ =2525.43 and $E\gamma$ =2254.44. The 2525.43 γ is shown as having a branching of 0.0, and neither transition is given in the tables of 2004AdZZ. there is a transition with $E\gamma$ =2254.54 listed in both works and placed from the 2598 level. In table 2 of 2004AdZZ, which gives transition multipolarities, the 2254.54 γ is indicated as being a doublet, but no further information is given. The evaluator has chosen to show the 2869 level as questionable.
- [&] The mults for the transitions deexciting the 2495 level are not consistent. From $\alpha(K)$ exp, the 1372 and 2150 γ 's are both M1(+E2); however, the 1372 γ feeds a 3⁻ level and the 2140 γ feeds a 2⁺ level.

ε, β^+ radiations

Relative I(β +) measured from annihilation radiation in coin with γ rays are given under comments. The values are from table 1 of 2003Ad25.

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\ddagger}$	Comments
$(6.3 \times 10^2 4)$	3358.27	0.074 4	8.42 7	0.074 4	εK=0.8235 15; εL=0.1363 11; εM+=0.0401 4
$(6.5 \times 10^2 \ 4)$	3340.65	0.118 5	8.24 7	0.118 5	εK=0.8241 14; εL=0.1359 11; εM+=0.0400 4
$(7.0 \times 10^2 4)$	3285.17	0.154 3	8.21 6	0.154 3	εK=0.8258 12; εL=0.1347 9; εM+=0.0395 3
$(7.5 \times 10^2 4)$	3236.96	0.0728 19	8.59 6	0.0728 19	εK=0.8270 10; εL=0.1338 8; εM+=0.0392 3
$(7.6 \times 10^2 4)$	3232.06	0.0686 18	8.62 6	0.0686 18	εK=0.8271 10; εL=0.1337 8; εM+=0.0392 3
$(8.4 \times 10^2 4)$	3152.89	0.071 3	8.70 5	0.071 3	εK=0.8288 8; εL=0.1324 6; εM+=0.03876 21
$(8.5 \times 10^2 \ 4)$	3143.97	0.0603 15	8.78 5	0.0603 15	εK=0.8290 8; εL=0.1323 6; εM+=0.03872 20
$(8.5 \times 10^2 \ 4)$	3140.21	0.14 3	8.4 1	0.14 3	εK=0.8290 8; εL=0.1323 6; εM+=0.03870 20
$(8.8 \times 10^2 4)$	3112.53	0.120 8	8.51 6	0.120 8	εK=0.8295 8; εL=0.1319 6; εM+=0.03858 19
$(8.8 \times 10^2 \ 4)$	3110.93	0.0876 21	8.65 5	0.0876 21	εK=0.8295 8; εL=0.1319 6; εM+=0.03857 19
$(8.8 \times 10^2 4)$	3105.52	0.0572 15	8.84 5	0.0572 15	εK=0.8296 7; εL=0.1318 6; εM+=0.03855 18
$(8.9 \times 10^2 4)$	3099.02	0.157 13	8.41 6	0.157 13	εK=0.8297 7; εL=0.1317 6; εM+=0.03852 18
$(9.0 \times 10^2 \ 4)$	3090.42	0.0090 6	9.66 5	0.0090 6	εK=0.8299 7; εL=0.1316 5; εM+=0.03849 18
$(9.1 \times 10^2 4)$	3079.66	0.091 4	8.67 5	0.091 4	εK=0.8301 7; εL=0.1315 5; εM+=0.03844 17
$(9.2 \times 10^2 \ 4)$	3074.85	0.066 4	8.81 5	0.066 4	εK=0.8301 7; εL=0.1314 5; εM+=0.03842 17

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$\mathrm{I}\beta^+$ ‡	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
$(9.2 \times 10^2 4)$	3067.42		0.0319 11	9.14 5	0.0319 11	εK=0.8302 7; εL=0.1314 5; εM+=0.03839 17
$(9.5 \times 10^2 4)$	3042.29		0.330 6	8.15 4	0.330 6	εK=0.8306 6; εL=0.1311 5; εM+=0.03830 16
$(9.8 \times 10^2 4)$	3012.37		0.196 5	8.40 4	0.196 5	εK=0.8310 6; εL=0.1308 5; εM+=0.03819 15
$(9.8 \times 10^2 4)$	3009.23		0.188 4	8.42 4	0.188 4	εK=0.8311 6; εL=0.1307 5; εM+=0.03818 15
$(9.8 \times 10^2 4)$	3006.78		0.366 7	8.13 4	0.366 7	εK=0.8311 6; εL=0.1307 5; εM+=0.03817 15
$(9.9 \times 10^2 4)$	2999.55		0.233 5	8.34 4	0.233 5	εK=0.8312 6; εL=0.1306 4; εM+=0.03815 14
$(1.00 \times 10^3 4)$	2989.03		0.0308 15	9.23 5	0.0308 15	εK=0.8313 6; εL=0.1305 4; εM+=0.03811 14
$(1.01 \times 10^3 4)$	2981.45		0.0545 18	8.98 4	0.0545 18	εK=0.8314 6; εL=0.1305 4; εM+=0.03809 14
$(1.03 \times 10^3 4)$	2964.30		0.335 9	8.21 4	0.335 9	εK=0.8317 5; εL=0.1303 4; εM+=0.03803 13
$(1.06 \times 10^3 \ 4)$	2932.71		0.450 10	8.11 4	0.450 10	εK=0.8320 5; εL=0.1300 4; εM+=0.03794 13
$(1.06 \times 10^3 4)$	2928.68		0.071 6	8.92 5	0.071 6	εK=0.8321 5; εL=0.1300 4; εM+=0.03792 13
$(1.06 \times 10^3 4)$	2927.86		0.265 7	8.34 4	0.265 7	εK=0.8321 5; εL=0.1300 4; εM+=0.03792 12
$(1.07 \times 10^3 4)$	2920.10		0.103 5	8.76 4	0.103 5	εK=0.8322 5; εL=0.1299 4; εM+=0.03790 12
$(1.08 \times 10^3 4)$	2914.19		0.251 5	8.38 4	0.251 5	εK=0.8322 5; εL=0.1299 4; εM+=0.03788 12
$(1.11 \times 10^3 4)$	2880.67		1.82 3	7.55 4	1.82 3	εK=0.8326 5; εL=0.1296 4; εM+=0.03779 11
$(1.13 \times 10^3 4)$	2862.66		0.232 4	8.46 4	0.232 4	εK=0.8328 5; εL=0.1295 3; εM+=0.03774 11
$(1.22 \times 10^3 4)$	2772.40		0.287 9	8.43 4	0.287 9	εK=0.8336 4; εL=0.1288 3; εM+=0.03753 10
$(1.24 \times 10^3 4)$	2749.23		1.59 <i>3</i>	7.71 <i>3</i>	1.59 <i>3</i>	εK=0.8337 3; εL=0.1287 3; εM+=0.03748 9
$(1.25 \times 10^3 4)$	2744.04		0.084 3	8.99 4	0.084 3	εK=0.8338 3; εL=0.1287 3; εM+=0.03747 9
$(1.26 \times 10^3 4)$	2734.07		0.146 3	8.75 <i>3</i>	0.146 3	εK=0.8338 3; εL=0.1286 3; εM+=0.03745 9
$(1.26 \times 10^{3} 4)$	2729.17		1.00 3	7.92 4	1.00 3	εK=0.8339 3; εL=0.1286 3; εM+=0.03744 9
$(1.27 \times 10^{3} 4)$	2719.64		1.39 3	7.79 <i>3</i>	1.39 3	εK=0.8339 3; εL=0.1285 3; εM+=0.03742 9
$(1.28 \times 10^{3} 4)$	2709.43		1.65 3	7.72 3	1.65 3	εK=0.8340 3; εL=0.12845 25; εM+=0.03740 9
$(1.30 \times 10^3 \ 4)$	2686.87		0.129 3	8.84 <i>3</i>	0.129 3	εK=0.8341 2; εL=0.12832 25; εM+=0.03735 9
$(1.32 \times 10^3 4)$	2667.56		0.132 4	8.84 <i>3</i>	0.132 4	εK=0.8341 2; εL=0.12820 24; εM+=0.03731 9
$(1.35 \times 10^3 \ 4)$	2641.59		0.132 9	8.86 4	0.132 9	ε K=0.8342 <i>1</i> ; ε L=0.12805 <i>24</i> ; ε M+=0.03726 8
$(1.39 \times 10^3 4)$	2604.34		0.159 4	8.81 <i>3</i>	0.159 4	ε K=0.8342 <i>I</i> ; ε L=0.12783 <i>25</i> ; ε M+=0.03718 8
$(1.39 \times 10^3 4)$	2598.80		0.289 5	8.55 <i>3</i>	0.289 5	εK=0.8342 2; εL=0.12779 25; εM+=0.03717 8
$(1.43 \times 10^3 4)$	2557.87	0.00022 10	0.170 4	8.81 <i>3</i>	0.170 4	av Eβ=198 18; εK=0.8341 3; εL=0.1275 3; εM+=0.03709 9
$(1.44 \times 10^3 4)$	2551.14	0.00019 9	0.139 4	8.90 <i>3</i>	0.139 4	av Eβ=201 18; εK=0.8340 3; εL=0.1275 3; εM+=0.03708 9
$(1.45 \times 10^3 \ 4)$	2544.02	0.00016 7	0.107 3	9.02 3	0.107 3	av Eβ=204 18; εK=0.8340 4; εL=0.1275 3; εM+=0.03706 9
$(1.45 \times 10^3 \ 4)$	2540.45	0.00028 12	0.183 4	8.79 <i>3</i>	0.183 4	av Eβ=206 18; εK=0.8340 4; εL=0.1274 3; εM+=0.03705 9
$(1.46 \times 10^3 \ 4)$	2529.43	0.0011 5	0.665 11	8.23 3	0.666 11	av Eβ=211 18; εK=0.8339 4; εL=0.1274 3; εM+=0.03703 9
$(1.47 \times 10^3 4)$	2523.81	0.0012 5	0.677 13	8.23 3	0.678 13	av Eβ=213 18; εK=0.8338 4; εL=0.1273 3; εM+=0.03702 9
$(1.48 \times 10^3 4)$	2513.9	9.×10 ⁻⁵ 4	0.045 12	9.4 2	0.045 12	av E β =218 18; ε K=0.8338 5; ε L=0.1273 3; ε M+=0.03700 9
$(1.49 \times 10^3 4)$	2495.18	0.00063 24	0.272 6	8.64 <i>3</i>	0.273 6	av $E\beta$ =226 18; ε K=0.8336 6; ε L=0.1271 3; ε M+=0.03696 9
$(1.54 \times 10^{3#} 4)$	2448.01	$<1.\times10^{-5}$	< 0.003	>10.6	< 0.003	av E β =247 18; ε K=0.8329 8; ε L=0.1268 3; ε M+=0.03686 10
$(1.55 \times 10^3 \ 4)$	2437.43	0.0015 5	0.42 4	8.49 5	0.42 4	av E β =252 18; ε K=0.8328 8; ε L=0.1267 3; ε M+=0.03683 10
$(1.59 \times 10^3 4)$	2401.55	0.0010 3	0.200 <i>10</i> Continued	8.83 <i>4</i> 1 on next pag	0.201 <i>10</i> ge (footnotes a	av $E\beta=267$ 18; $\varepsilon K=0.8320$ 10; $\varepsilon L=0.1265$ 4; t end of table)

¹⁵²₆₄Gd₈₈-5

¹⁵² Tb ε decay (17.5 h)	2004AdZZ,2003Ad25,1970Ad05 (continued)
--	--

			6	β radiations	(continued)			
E(decay)	E(level)	$\mathrm{I}\!\beta^+$ ‡	$\mathrm{I}arepsilon^{\dagger\ddagger}$	Log <i>ft</i>	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments		
$(1.60 \times 10^3 4)$	2386.95	0.00083 24	0.158 7	8.94 <i>3</i>	0.159 7	ε M+=0.03675 <i>10</i> av E β =274 <i>18</i> ; ε K=0.8317 <i>11</i> ; ε L=0.1264 <i>4</i> ;		
$(1.66 \times 10^3 \ 4)$	2330.72	0.00048 12	0.0640 20	9.36 <i>3</i>	0.0645 20	av E β =298 18; ε K=0.8301 15; ε L=0.1259 4; ε M+=0.03656 12		
$(1.66 \times 10^{3 \#} 4)$	2325.68	<9.9×10 ⁻⁵	< 0.013	>10.1	< 0.013	av E β =301 18; ε K=0.8300 15; ε L=0.1258 4; ε M+=0.03655 12		
$(1.69 \times 10^3 \ 4)$	2299.66	0.0089 21	0.988 16	8.19 <i>3</i>	0.997 16	av $E\beta$ =312 18; ε K=0.8290 17; ε L=0.1256 4; ε M+=0.03648 12 $B^{++} < 0.0056$		
$(1.72 \times 10^3 4)$	2267.73	0.00071 16	0.0664 22	9.38 <i>3</i>	0.0671 22	av $E\beta$ =326 18; ε K=0.8278 19; ε L=0.1253 5; ε M+=0.03638 13 B^+ : <0.0005		
$(1.72 \times 10^3 4)$	2265.29	0.0045 10	0.416 10	8.58 <i>3</i>	0.420 10	av $E\beta$ =327 18; ε K=0.8277 19; ε L=0.1253 5; ε M+=0.03637 13		
$(1.73 \times 10^3 4)$	2264.88	< 0.0004	<0.04	>9.6	<0.04	av $E\beta$ =327 18; ε K=0.8276 19; ε L=0.1253 5; ε M+=0.03637 13		
$(1.73 \times 10^3 \ 4)$	2258.14	0.00101 23	0.0904 25	9.25 3	0.0914 25	$^{1\beta'}: <0.0003.$ av E β =330 18; ε K=0.8274 19; ε L=0.1252 5; ε M+=0.03635 13 $^{1\beta'}: <0.0009$		
$(1.74 \times 10^3 4)$	2246.80	0.044 10	3.71 6	7.64 3	3.75 6	av $E\beta$ =335 18; ε K=0.8268 20; ε L=0.1251 5; ε M+=0.03631 14 R^{+} < 0.045		
$(1.79 \times 10^3 4)$	2201.71	0.0043 9	0.289 10	8.77 3	0.293 10	av $E\beta$ =355 18; ε K=0.8246 24; ε L=0.1246 5; ε M+=0.03616 15		
$(1.82 \times 10^3 \ 4)$	2169.65	0.0026 5	0.149 7	9.08 <i>3</i>	0.152 7	av $E\beta$ =369 18; ε K=0.823 3; ε L=0.1242 6; ε M+=0.03605 16		
$(1.86 \times 10^3 \ 4)$	2133.38	0.0107 19	0.524 17	8.55 <i>3</i>	0.535 17	av $E\beta$ =385 18; ε K=0.820 3; ε L=0.1237 6; ε M+=0.03591 17		
$(1.87 \times 10^3 4)$	2121.05	0.0019 3	0.089 4	9.32 3	0.091 4	av $\mathcal{E}\beta$ =390 18; ε K=0.820 3; ε L=0.1236 6; ε M+=0.03586 17		
$(1.98 \times 10^3 4)$	2011.67	0.026 4	0.800 19	8.42 3	0.826 19	$^{1\beta^{+1}} < 0.0016.$ av $E\beta = 438$ 18; $\varepsilon K = 0.811$ 4; $\varepsilon L = 0.1219$ 7; $\varepsilon M + = 0.03537$ 21		
$(2.01 \times 10^3 4)$	1975.72	0.0063 9	0.168 6	9.12 3	0.174 6	$\beta^{+1} < 0.019$. av $E\beta = 454 \ 18$; $\epsilon K = 0.807 \ 5$; $\epsilon L = 0.1213 \ 8$; $\epsilon M + = 0.03518 \ 22$		
$(2.05 \times 10^3 4)$	1941.17	0.174 24	4.11 6	7.74 2	4.28 6	$^{1\beta'}: <0.0077.$ av $E\beta=469$ 18; $\varepsilon K=0.804$ 5; $\varepsilon L=0.1207$ 8; $\varepsilon M+=0.03500$ 23		
$(2.07 \times 10^3 4)$	1915.76	0.0064 9	0.139 7	9.23 3	0.145 7	$I\beta': 0.21$ 4. av $E\beta$ =481 18; ε K=0.801 5; ε L=0.1202 8; ε M+=0.03486 24		
$(2.07 \times 10^3 4)$	1915.15	0.0020 3	0.189 9	10.29 ¹ <i>u</i> 4	0.191 9	$I\beta^+: <0.0066.$ av $E\beta=498$ 18; ε K=0.8224 12; ε L=0.1292 4; ε M+=0.03773 13		
$(2.13 \times 10^3 4)$	1862.06	0.050 6	0.91 4	8.43 <i>3</i>	0.96 4	μ^{β} : <0.0073. av E β =504 18; ε K=0.795 6; ε L=0.1191 9; ε M+=0.0345 3		
(2.13×10 ³ 4)	1861.89	0.051 6	0.936 17	8.42 2	0.987 17	$I\beta^+: 0.070 \ 10.$ av $E\beta=504 \ 18; \ \varepsilon K=0.795 \ 6; \ \varepsilon L=0.1191 \ 9;$		
Continued on next page (footnotes at end of table)								

ϵ, β^+ radiations (continued)

¹⁵² Tb ε decay (17.5 h)	2004AdZZ,2003Ad25,1970Ad05 (continued)
------------------------------------	--

ϵ, p radiations (continued)									
E(decay)	E(level)	$\mathrm{I}\beta^+$ ‡	$\mathrm{I}arepsilon^{\dagger\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments			
						εM+=0.0345 3			
$(2.15 \times 10^3 4)$	1839.71	0.0148 19	0.253 14	9.00 4	0.268 15	$I\beta^+: <0.037.$ av $E\beta=514$ 18; $\varepsilon K=0.792$ 6; $\varepsilon L=0.1186$ 9; $\varepsilon M+=0.0344$ 3			
(2.18×10 ³ 4)	1808.92	0.0037 5	0.058 4	9.65 4	0.062 4	$I\beta': 0.054 I4.$ av $E\beta=528 I8; \varepsilon K=0.788 6; \varepsilon L=0.1180 I0; \varepsilon M+=0.0342 3$ $I\beta': 0.043 I3$			
$(2.18 \times 10^3 4)$	1807.52	0.0063 7	0.099 3	9.42 3	0.105 3	av $E\beta = 528 \ l8; \ \varepsilon K = 0.787 \ 6; \ \varepsilon L = 0.1179 \ l0; \ \varepsilon M + = 0.0342 \ 3$			
$(2.20 \times 10^3 \ 4)$	1785.21	0.0028 5	0.040 6	9.82 7	0.043 6	$I\beta^{+1} < 0.0062.$ av $E\beta = 538 \ l8; \ \varepsilon K = 0.784 \ 6; \ \varepsilon L = 0.1174 \ l0; \ \varepsilon M + = 0.0340 \ 3$			
$(2.22 \times 10^3 \ 4)$	1771.58	0.0228 25	0.319 7	8.92 <i>3</i>	0.342 7	$^{1\beta^{+}}: 0.029 \ 4.$ av $E\beta = 544 \ 18; \ \varepsilon K = 0.782 \ 6; \ \varepsilon L = 0.1171 \ 10; \ \varepsilon M + = 0.0339 \ 3$			
$(2.23 \times 10^3 \ 4)$	1755.77	0.024 3	0.32 3	8.93 5	0.34 3	$\beta^{+}: 0.039 \ 17.$ av $\beta = 551 \ 18; \ \varepsilon K = 0.780 \ 7; \ \varepsilon L = 0.1167 \ 10; \ \varepsilon M + = 0.0338 \ 3$			
$(2.26 \times 10^3 4)$	1734.44	0.00194 23	0.0245 15	10.05 4	0.0264 16	$I\beta^+: 0.044$ 7. av $E\beta=561$ 18; ε K=0.777 7; ε L=0.1162 11; ε M+=0.0337 3			
$(2.30 \times 10^3 4)$	1692.43	0.056 6	0.627 23	8.66 3	0.683 24	$I\beta^+: <0.0020.$ av $E\beta=579\ 18;\ \varepsilon K=0.770\ 7;\ \varepsilon L=0.1151\ 11;\ \varepsilon M+=0.0334\ 4$			
(2.31×10 ³ 4)	1680.75	0.0039 5	0.163 4	10.54 ¹ <i>u</i> 4	0.167 4	$I\beta^+: 0.078 \ 8.$ av $E\beta=600 \ 18; \ \varepsilon K=0.8134 \ 22; \ \varepsilon L=0.1266 \ 5; \ \varepsilon M+=0.03692 \ 16$			
$(2.35 \times 10^3 4)$	1643.428	0.170 17	1.69 5	8.25 3	1.86 5	$I\beta^+: <0.019.$ av $E\beta=601 \ 18; \ \varepsilon K=0.762 \ 7; \ \varepsilon L=0.1138 \ 12; \ \varepsilon M+=0.0330 \ 4$			
$(2.38 \times 10^3 4)$	1605.60	0.228 21	2.07 5	8.17 3	2.30 5	$I\beta^+: 0.317 \ 23.$ av $E\beta=618 \ 18; \ \varepsilon K=0.755 \ 8; \ \varepsilon L=0.1127 \ 12; \ \varepsilon M+=0.0327 \ 4$			
$(2.44 \times 10^3 4)$	1550.15	0.032 3	0.254 8	9.11 3	0.286 8	$I\beta^+: 0.41 \ 7.$ av $E\beta=642 \ 18; \ \varepsilon K=0.745 \ 8; \ \varepsilon L=0.1111 \ 13; \ \varepsilon M+=0.0322 \ 4$			
$(2.52 \times 10^3 4)$	1470.63	<0.0017	<0.011	>10.5	<0.013	$I\beta^+: <0.038.$ av $E\beta=678$ 18; $\varepsilon K=0.729$ 9; $\varepsilon L=0.1087$ 13; $\varepsilon M+=0.0315$ 4			
$(2.56 \times 10^3 4)$	1434.021	0.10 <i>I</i>	0.65 <i>3</i>	8.74 <i>3</i>	0.75 3	$I\beta^+: 0.084 \ 7.$ av $E\beta=694 \ 18; \ \varepsilon K=0.722 \ 9; \ \varepsilon L=0.1075 \ 14;$ $\varepsilon M+=0.0311 \ 4$			
$(2.67 \times 10^3 4)$	1318.355	0.47 3	2.26 8	8.24 3	2.73 9	$I\beta^+: 0.041 \ 10.$ av $E\beta=745 \ 18; \ \varepsilon K=0.696 \ 10; \ \varepsilon L=0.1035 \ 15; \ \varepsilon M+=0.0300 \ 5$			
$(2.68 \times 10^3 \ 4)$	1314.638	0.12 <i>I</i>	0.56 4	8.84 4	0.68 5	I $β^+$: 0.76 10. av E $β$ =747 18; εK=0.695 10; εL=0.1034 15; εM+=0.0299 5			
(2.71×10 ³ 4)	1282.25	0.0136 14	0.208 13	$10.72^{1u} 4$	0.222 14	Iβ ⁺ : 0.047 10. av Eβ=773 18; εK=0.783 5; εL=0.1204 8; εM+=0.03506 23			
(2.72×10 ³ 4)	1274.26	<0.0009	< 0.004	>11.0	< 0.005	I β^+ : 0.013 10. av E β =765 18; ε K=0.686 10; ε L=0.1019 15; ε M+=0.0295 5 I β^+ : <0.011.			

ϵ, β^+ radiations (continued)

Continued on next page (footnotes at end of table)

E(decay)	E(level)	Ιβ ⁺ ‡	$I\varepsilon^{\dagger\ddagger}$	Log <i>ft</i>	$I(\varepsilon + \beta^+)^\ddagger$	Comments
$(2.87 \times 10^3 4)$	1123.186	0.38 4	1.29 10	8.54 4	1.67 13	av E β =833 18; ε K=0.649 10; ε L=0.0963 16; ε M+=0.0279 5
(2.88×10 ³ 4)	1109.203	0.64 4	2.15 8	8.33 <i>3</i>	2.79 10	$I\beta^+: 0.60 \ 4.$ av $E\beta=839 \ 18; \ \varepsilon K=0.646 \ 11; \ \varepsilon L=0.0958 \ 16; \ \varepsilon M+=0.0277 \ 5$
(2.94×10 ³ 4)	1047.78	0.128 11	1.22 6	$10.10^{1u} \ 4$	1.35 7	$I\beta^+: 1.09 \ 6.$ av $E\beta=875 \ 18; \ \varepsilon K=0.756 \ 6; \ \varepsilon L=0.1157 \ 9; \ \varepsilon M+=0.0336 \ 3$
$(3.06 \times 10^3 4)$	930.560	2.30 12	5.76 19	7.95 3	8.06 22	$I\beta^+: 0.36 5.$ av $E\beta=920 18; \varepsilon K=0.600 11; \varepsilon L=0.0888 16; \varepsilon M+=0.0257 5$
$(3.23 \times 10^3 4)$	755.3960	0.051 15	0.30 9	$10.9^{1u} 2$	0.35 10	$I\beta^+: 3.59 \ 20.$ av $E\beta=1003 \ 18; \ \varepsilon K=0.713 \ 7; \ \varepsilon L=0.1085 \ 11; \ \varepsilon M+=0.0315 \ 4$
(3.37×10 ³ 4)	615.38	1.20 7	5.65 21	9.67 ¹ <i>u</i> 3	6.85 24	$I\beta^+: <0.016.$ av $E\beta=1065$ 18; $\varepsilon K=0.690$ 7; $\varepsilon L=0.1046$ 12; $\varepsilon M+=0.0304$ 4
$(3.65 \times 10^3 \ 4)$	344.2790	5.9 8	6.8 9	8.03 7	12.7 17	$I\beta^+: 1.90 \ II.$ av $E\beta=1186 \ I9; \ \varepsilon K=0.449 \ I0; \ \varepsilon L=0.0662 \ I5; \ \varepsilon M+=0.0192 \ 5$
$(3.99 \times 10^3 4)$	0	8.0 13	17 3	9.49 ¹ <i>u</i> 8	25 4	$I\beta^+: 11.9 \ II.$ av $E\beta=1337 \ I8; \ \varepsilon K=0.571 \ 8; \ \varepsilon L=0.0859 \ I3;$ $\varepsilon M+=0.0249 \ 4$

ϵ, β^+ radiations (continued)

[†] From an intensity balance at each level.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

 $\gamma(^{152}\text{Gd})$

I γ normalization: From I(γ^{\pm})/I(γ) for each level and theoretical ε/β^+ ratios. the sum of the authors' values for all levels, excluding the g.s., is 75.0% 18, leaving 25.0% 18 for feeding to the g.s. the γ normalization then follows from $\Sigma I(\gamma+ce \text{ to g.s.})=75.0$ 18.

E_{γ}^{\dagger}	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. ^v	$\alpha^{\boldsymbol{\alpha}}$	Comments
^x 113.5 ^u ^x 115.3 ^u 117.25 7	0.0785 22	1047.78	0+	930.560	2+	E2	1.412	α (K)exp>0.64 <i>17</i> α (K)exp>0.71 <i>17</i> α (K)exp=0.64 <i>10</i> α (K)=0.752 <i>11</i> ; α (L)=0.509 <i>8</i> ; α (M)=0.1196 <i>17</i> ; α (N+)=0.0303 <i>5</i> α (N)=0.0267 <i>4</i> ; α (Q)=0.00353 <i>5</i> ; α (P)=3.82×10 ⁻⁵ <i>6</i>
^x 143.8 ^u ^x 155.1 ^u 159.16 <i>16</i>	0.0147 16	1282.25	4+	1123.186	3-	[E1]	0.0835	$\begin{array}{l} \alpha(\text{K}) \exp > 0.52 \ 16 \\ \alpha(\text{K}) \exp > 0.71 \ 20 \\ \alpha(\text{K}) = 0.0705 \ 10; \ \alpha(\text{L}) = 0.01016 \ 15; \ \alpha(\text{M}) = 0.00220 \ 4; \\ \alpha(\text{N}+) = 0.000578 \ 9 \\ \alpha(\text{N}) = 0.000499 \ 8; \ \alpha(\text{O}) = 7.45 \times 10^{-5} \ 11; \ \alpha(\text{P}) = 4.20 \times 10^{-6} \ 6 \end{array}$
^x 160.77 9 ^x 169.50 <i>12</i> 175.14 9	0.0252 <i>15</i> 0.032 <i>3</i> 0.038 <i>4</i>	930.560	2+	755.3960	4+	[E2]	0.347	α (K)exp=0.43 9 α (K)=0.231 4; α (L)=0.0901 13; α (M)=0.0209 3; α (N+)=0.00533 8 α (N)=0.00468 7; α (O)=0.000636 9; α (P)=1.286×10 ⁻⁵ 19
178.58 <i>11</i>	0.0189 <i>16</i>	1109.203	2+	930.560	2+	M1,E2	0.36 4	Mult.: α (K)exp gives mult=M1, but placement from 2 ⁺ to 4 ⁺ requires E2. α (K)exp=1.8 <i>11</i> α (K)=0.27 <i>6</i> ; α (L)=0.065 <i>18</i> ; α (M)=0.015 <i>5</i> ; α (N+)=0.0038 <i>11</i> α (N)=0.0033 <i>10</i> ; α (O)=0.00048 <i>11</i> ; α (P)=1.8×10 ⁻⁵ 7
x181.5 5 x185.07 <i>16</i> x195.17 <i>7</i>	0.0103 23 0.012 3 0.624 14	1318.355	2+	1123.186	3-	E1	0.0484	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.0410 \ 6; \ \alpha(\mathrm{L}) = 0.00582 \ 9; \ \alpha(\mathrm{M}) = 0.001259 \ 18; \\ &\alpha(\mathrm{N}+) = 0.000332 \ 5 \\ &\alpha(\mathrm{N}) = 0.000287 \ 4; \ \alpha(\mathrm{O}) = 4.30 \times 10^{-5} \ 6; \ \alpha(\mathrm{P}) = 2.50 \times 10^{-6} \ 4 \end{aligned} $
×196.34 <i>17</i> 209.14 8	0.047 <i>5</i> 0.0568 <i>21</i>	1318.355	2+	1109.203	2+	M1+E2(+E0)	0.22 4	α (K)exp=0.30 5 α (K)=0.17 4; α (L)=0.037 7; α (M)=0.0083 18; α (N+)=0.0022 4 α (N)=0.0019 4; α (O)=0.00027 4; α (P)=1.2×10 ⁻⁵ 4 Mult.: α (K)=0.214 (M1), 0.135 (E2). For large δ , α (K)exp gives
218.42 9	0.0218 11	1861.89	2+	1643.428	2-	[E1]	0.0360	mult=E0+E2. for small δ , an E0 component is still suggested. $\alpha(K)=0.0305 5$; $\alpha(L)=0.00430 6$; $\alpha(M)=0.000930 13$; $\alpha(N+)=0.000246 4$
248.75 9	0.099 12	1941.17	2+	1692.43	2+,3+	[M1,E2]	0.133 25	$\begin{aligned} &\alpha(N) = 0.000212 \ 3; \ \alpha(O) = 3.19 \times 10^{-5} \ 5; \ \alpha(P) = 1.89 \times 10^{-6} \ 3\\ &\alpha(K) = 0.11 \ 3; \ \alpha(L) = 0.0206 \ 17; \ \alpha(M) = 0.0046 \ 5; \ \alpha(N+) = 0.00121 \ 11\\ &\alpha(N) = 0.00104 \ 10; \ \alpha(O) = 0.000153 \ 7; \ \alpha(P) = 7.E - 6 \ 3 \end{aligned}$

 ∞

			152	Fb ε decay (17.5 1	h) 2004A	.dZZ,2003Ad2	25,1970Ad05 (continued)
						γ ⁽¹⁵² Ge	d) (continued)	
E_{γ}^{\dagger}	I_{γ}^{t}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^v	$\alpha^{\boldsymbol{\alpha}}$	Comments
271.09 7	15.0 3	615.38	0+	344.2790	2+	E2	0.0826	$\begin{aligned} &\alpha(\text{K}) = 0.0620 \ 9; \ \alpha(\text{L}) = 0.01601 \ 23; \ \alpha(\text{M}) = 0.00364 \ 6; \\ &\alpha(\text{N}+) = 0.000942 \ 14 \\ &\alpha(\text{N}) = 0.000823 \ 12; \ \alpha(\text{O}) = 0.0001159 \ 17; \ \alpha(\text{P}) = 3.80 \times 10^{-6} \ 6 \\ &\text{Mult.:} \ \alpha(\text{K}) \exp = 0.060 \ 9. \end{aligned}$
296.31 <i>21</i> 298.06 <i>21</i>	0.0105 <i>21</i> 0.0108 <i>16</i>	1941.17	2+	1643.428	2-	[E1]	0.01619	$\alpha(K)=0.01376\ 20;\ \alpha(L)=0.00191\ 3;\ \alpha(M)=0.000412\ 6;\ \alpha(N+)=0.0001092\ 16$ $\alpha(N)=9.40\times10^{-5}\ 14;\ \alpha(O)=1.428\times10^{-5}\ 21;\ \alpha(P)=8.76\times10^{-7}\ 13$
301.8 <i>3</i>	0.0078 22	2749.23	2+,3+	2448.01	+			$u(1) = 2.70 \times 10^{-1.720 \times 10} = 21, u(1) = 0.70 \times 10^{-1.720 \times 10} = 15$
315.16 7	1.28 3	930.560	2+	615.38	0+	E2	0.0518	α (K)exp=0.052 <i>18</i> α (K)=0.0399 <i>6</i> ; α (L)=0.00924 <i>13</i> ; α (M)=0.00209 <i>3</i> ; α (N+)=0.000543 <i>8</i> α (N)=0.000473 <i>7</i> ; α (O)=6.75×10 ⁻⁵ <i>10</i> ; α (P)=2.52×10 ⁻⁶ <i>4</i> Mult.: α (K)exp allows some M1 admixture but the placement requires Δ J=2.
322.18 <i>13</i> 324.90 7	0.0137 <i>14</i> 0.066 <i>3</i>	1434.021	3+	1109.203	2+	[M1,E2]	0.062 15	$\alpha(K)=0.051$ 15; $\alpha(L)=0.0088$ 5; $\alpha(M)=0.00194$ 7; $\alpha(N+)=0.00051$
								$\alpha(N)=0.000443\ 20;\ \alpha(O)=6.6\times10^{-5}\ 6;\ \alpha(P)=3.6\times10^{-6}\ 13$
334.02 <i>11</i> 335.56 7	0.0374 <i>21</i> 0.093 <i>3</i>	1941.17	2+	1605.60	2+	[M1,E2]	0.057 15	$\alpha(K)=0.047$ 14; $\alpha(L)=0.0079$ 6; $\alpha(M)=0.00175$ 9; $\alpha(N+)=0.00046$
344.2785 ^s 13	100.0 25	344.2790	2+	0	0^+	E2	0.0397	$\alpha(N)=0.000401\ 23;\ \alpha(O)=6.0\times10^{-5}\ 6;\ \alpha(P)=3.3\times10^{-6}\ 12$ $\alpha(K)=0.0310\ 5;\ \alpha(L)=0.00678\ 10;\ \alpha(M)=0.001527\ 22;$ $\alpha(N+)=0.000398\ 6$
351.73 7	0.366 9	1282.25	4+	930.560	2+	E2	0.0373	α (N)=0.000346 5; α (O)=4.97×10 ⁻⁵ 7; α (P)=1.99×10 ⁻⁶ 3 Mult.: α (K)exp=0.031 30. α (K)exp=0.030 10 α (K)=0.0292 4; α (L)=0.00630 9; α (M)=0.001417 20; α (N+)=0.000369 6
353.78 9	0.0448 20	1109.203	2+	755.3960	4+	[E2]	0.0367	$\alpha(N)=0.000321 5; \ \alpha(O)=4.62\times10^{-5} 7; \ \alpha(P)=1.88\times10^{-6} 3$ $\alpha(K)=0.0287 4; \ \alpha(L)=0.00617 9; \ \alpha(M)=0.001389 20; $ $\alpha(N+)=0.000325 5$
362.33 9 364.84 <i>16</i>	0.0309 <i>14</i> 0.0142 <i>17</i>							$\alpha(N)=0.0003155;\alpha(O)=4.53\times10^{-5}7;\alpha(P)=1.85\times10^{-6}3$
366.15 9 367.80 7	0.047 <i>3</i> 0.550 <i>14</i>	1680.75 1123.186	0+ 3-	1314.638 755.3960	1 ⁻ 4 ⁺	E1	0.00964 14	α (K)exp=0.012 4 α =0.00964 14; α (K)=0.00821 12; α (L)=0.001125 16; α (M)=0.000243 4; α (N+)=6.45×10 ⁻⁵ 9 α (N)=5.55×10 ⁻⁵ 8; α (O)=8.47×10 ⁻⁶ 12; α (P)=5.31×10 ⁻⁷ 8 δ : δ =+0.015 19 (1985KrZU), +0.1 2 (1983B107), -0.03 2 (1975He13) =0.04 4 (1970Ba32)

From ENSDF

				152 Tb ε de	cay (17.5 l	h) 2004AdZ	Z,2003Ad25,	1970Ad05	(continued)
						$\gamma(^{152}\text{Gd})$ (continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. ^V	$\alpha^{\boldsymbol{\alpha}}$	$I_{(\gamma+ce)}$ >	Comments
x368.66 21 x381.7 3 x385.5 3 387.80 7	0.042 <i>10</i> 0.0088 22 0.019 6 0.586 20	1318.355	2+	930.560	2+	E0+M1+E2	0.038 11		α (K)exp=0.42 <i>11</i> α (K)=0.032 <i>10</i> ; α (L)=0.0052 7; α (M)=0.00113 <i>12</i> ; α (N+)=0.00030 4 α (N)=0.00026 3; α (O)=3.9×10 ⁻⁵ 6; α (P)=2.2×10 ⁻⁶ 8 X(E0/E2)=36 8. Mult.: The large α (K)exp requires a mult=E0
390.82 15	0.0117 19	1941.17	2+	1550.15	4+				component, but $\partial(E2/M1)$ is not known.
407.12 <i>21</i>	0.022 3	2246.80	2+	1839.71	2+	[M1,E2]	0.034 10		α (K)=0.028 9; α (L)=0.0045 7; α (M)=0.00098 12; α (N+)=0.00026 4 α (N)=0.00023 3; α (Q)=3.4×10 ⁻⁵ 6; α (P)=2.0×10 ⁻⁶ 7
411.1165 <i>^s 13</i>	5.67 14	755.3960	4+	344.2790	2+	E2	0.0238		$\alpha(N)=0.00025$ 3, $\alpha(O)=3.4\times10^{-6}$ 6, $\alpha(P)=2.0\times10^{-6}$ $\alpha(K)\exp=0.0192$ 23 $\alpha(K)=0.0195$ 4; $\alpha(L)=0.0040$ 4; $\alpha(M)=0.00090$ 8; $\alpha(N=0.000204$ 18; $\alpha(O)=3.0\times10^{-5}$ 3; $\alpha(P)=1.37\times10^{-6}$ 15 $\delta: -0.30 \le \delta(M3/E2) \le -0.032$ from $\gamma(\theta)$, and <0.05 from $\alpha(K)\exp$ other ± 0.04 20 (1981Fe01). From the RUI
									limit of B(M3)(W.u.)<10 one expects δ <4.4×10 ⁻⁵ .
421.40 <i>18</i> 427.85 <i>11</i>	0.0122 <i>12</i> 0.0315 <i>21</i>	1861.89	2+	1434.021	3+	[M1,E2]	0.029 9		$\alpha(K)=0.025 \ 8; \ \alpha(L)=0.0039 \ 6; \ \alpha(M)=0.00085 \ 12; \ \alpha(N+)=0.00023 \ 4$
432.5 ^{<i>u</i>}		1047.78	0+	615.38	0+	EO		0.81 8	$\alpha(\text{N})=0.00019\ 3;\ \alpha(\text{O})=3.0\times10^{-5}\ 6;\ \alpha(\text{P})=1.7\times10^{-5}\ 7$ $\alpha(\text{K})\exp>237\ 24$ $I_{\gamma}: <0.003.$ $I_{(\gamma+ce)}:$ From Ice(K)=0.710 75 and Ice(K)/Ice=0.876 (E0 theory). $V(\text{FO}(\text{FO})=2.25\ 22$
441.02 8	0.0715 19	1550.15	4+	1109.203	2+				A(E0/E2) = 2.23/23.
453.26 <i>24</i> 454.8 <i>3</i>	0.0088 20 0.0079 18	2719.64	2+	2264.88	1-,2,3-				
456.92 7	0.065 <i>3</i> 0.0096 <i>21</i>	1771.58	2+	1314.638	1-	[E1]	0.00578 8		$\alpha = 0.00578 \ 8; \ \alpha(K) = 0.00493 \ 7; \ \alpha(L) = 0.000668 \ 10; \alpha(M) = 0.0001440 \ 21; \ \alpha(N+) = 3.84 \times 10^{-5} \ 6 \alpha(N) = 3.30 \times 10^{-5} \ 5; \ \alpha(O) = 5.06 \times 10^{-6} \ 7; \alpha(P) = 3.23 \times 10^{-7} \ 5$
465.68 10 471.98 9	0.0427 21 0.0338 14	1227.36	6+	755.3960	4+	E2	0.0163		α (K)=0.01316 <i>19</i> ; α (L)=0.00242 <i>4</i> ; α (M)=0.000539 <i>8</i> ; α (N+)=0.0001416 <i>20</i>

From ENSDF

 $^{152}_{64}\mathrm{Gd}_{88}\text{--}10$

 $^{152}_{64}\mathrm{Gd}_{88}$ -10

Т

			1	¹⁵² Tb ε deca	y (17.5 h	$\mathbf{D} \qquad \mathbf{2004AdZZ},$	2003Ad25,19	70Ad05 (continued)
						$\gamma(^{152}\text{Gd})$ (co	ntinued)	
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^V	$\alpha^{\boldsymbol{\alpha}}$	Comments
482.34 9	0.0914 23	1605.60	2+	1123.186	3-	[E1]	0.00511 8	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.0001226 \ 18; \ \alpha(\mathrm{O}) = 1.81 \times 10^{-5} \ 3; \ \alpha(\mathrm{P}) = 8.78 \times 10^{-7} \ 13 \\ \alpha = 0.00511 \ 8; \ \alpha(\mathrm{K}) = 0.00436 \ 7; \ \alpha(\mathrm{L}) = 0.000589 \ 9; \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{N}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{N}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{N}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{N}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{M}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{M}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{M}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{M}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{M}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{M}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{M}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{M}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{M}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{M}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{M}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{M}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{M}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{M}+) = 3.38 \times 10^{-5} \ 5 \\ \alpha(\mathrm{M}) = 0.0001270 \ 18; \ \alpha(\mathrm{M}+) = 3.38 \times 10^{-5} \ 18; \ \alpha(\mathrm{M}+) =$
489.59 <i>13</i>	0.038 3	1771.58	2+	1282.25	4+	[E2]	0.01475	$\alpha(N)=2.91\times10^{-5} 4; \ \alpha(O)=4.46\times10^{-6} 7; \ \alpha(P)=2.86\times10^{-7} 4 \\ \alpha(K)=0.01197 17; \ \alpha(L)=0.00217 3; \ \alpha(M)=0.000481 7; \\ \alpha(N+)=0.0001266 18 \\ \alpha(N)=0.0001006 16; \ \alpha(O)=1.618\times10^{-5} 23; \ \alpha(P)=8.01\times10^{-7} 12 \\ \alpha(N)=0.0001006 16; \ \alpha(O)=1.618\times10^{-5} 23; \ \alpha(P)=8.01\times10^{-7} 12 \\ \alpha(N)=0.0001006 16; \ \alpha(O)=1.618\times10^{-5} 23; \ \alpha(P)=8.01\times10^{-7} 12 \\ \alpha(N)=0.0001006 16; \ \alpha(O)=1.618\times10^{-5} 23; \ \alpha(P)=8.01\times10^{-7} 12 \\ \alpha(N)=0.0001006 16; \ \alpha(O)=1.618\times10^{-5} 23; \ \alpha(P)=8.01\times10^{-7} 12 \\ \alpha(N)=0.0001006 16; \ \alpha(O)=1.618\times10^{-5} 23; \ \alpha(P)=8.01\times10^{-7} 12 \\ \alpha(P)=0.0001006 16; \ \alpha(P)=0.00001006 16; \ \alpha(P)=0.00000000000000000000000000000000000$
490.66 9 ^x 491 84 27	0.092 <i>3</i> 0.015 <i>3</i>	1808.92		1318.355	2+			$u(1) = 0.0001090 10, u(0) = 1.010 \times 10 23, u(1) = 0.01 \times 10 12$
493.81 7	0.223 6	1109.203	2+	615.38	0+	[E2] ⁹	0.01442	$\alpha(K)=0.01171 \ 17; \ \alpha(L)=0.00211 \ 3; \ \alpha(M)=0.000469 \ 7; \ \alpha(N+)=0.0001233 \ 18 \ \alpha(N)=0.0001068 \ 15; \ \alpha(O)=1.577\times10^{-5} \ 22; \ \alpha(P)=7.85\times10^{-7} \ 11$
496.37 7	0.230 5	1605.60	2+	1109.203	2+	E0+M1+E2 ⁹	0.074 5	<i>a</i> (1)=0.0001000 15, <i>a</i> (0)=1.577×10 22, <i>a</i> (1)=7.05×10 11
500.23 <i>12</i> 503.43 <i>7</i>	0.0102 <i>16</i> 0.102 <i>3</i>	3099.02 1434.021	1 ⁺ ,2 ⁺ ,3 ⁺ 3 ⁺	2598.80 930.560	1 ⁺ ,2 ⁺ 2 ⁺	[M1,E2]	0.019 6	α (K)=0.016 5; α (L)=0.0025 5; α (M)=0.00054 10; α (N+)=0.00014 3
520.30 8	0.097 4	1643.428	2-	1123.186	3-	[M1,E2]	0.018 6	$\alpha(N)=0.000123 \ 23; \ \alpha(O)=1.9\times10^{-5} \ 4; \ \alpha(P)=1.1\times10^{-6} \ 4 \\ \alpha(K)=0.015 \ 5; \ \alpha(L)=0.0023 \ 5; \ \alpha(M)=0.00049 \ 10; \\ \alpha(N+)=0.00013 \ 3 \\ \alpha(N)=0.000113 \ 22; \ \alpha(O)=1.7\times10^{-5} \ 4; \ \alpha(P)=1.1\times10^{-6} \ 4 \\ \alpha(P)=0.00013 \ 22; \ \alpha(P)=0.00013 \ 4 \\ \alpha(P)=0.00013 $
x522.03 18 526.85 9	0.0146 <i>19</i> 0.414 9	1282.25	4+	755.3960	4+	E0+M1+E2	0.094 10	$\alpha(K) = 0.082.9$
534 21 9	0.0825.20	1643 428	2-	1109 203	2+	IF1]	0.00407.6	X(E0/E2)=24.2 19. $\alpha=0.00407.6$; $\alpha(K)=0.00347.5$; $\alpha(L)=0.000467.7$;
557.217	0.0825 20	1043.420	2	1109.205	2		0.00+07 0	$\alpha(M) = 0.001005 \ I4; \ \alpha(N+) = 2.68 \times 10^{-5} \ 4$ $\alpha(N) = 2.30 \times 10^{-5} \ 4 \cdot \alpha(O) = 3.54 \times 10^{-6} \ 5 \cdot \alpha(P) = 2.29 \times 10^{-7} \ 4$
543.58 7	0.303 7	1861.89	2+	1318.355	2+	E0+M1+E2!	0.016 5	$\alpha(K) \exp = 0.035 \ 6$ $\alpha(K) \exp = 0.035 \ 5; \ \alpha(L) = 0.0020 \ 4; \ \alpha(M) = 0.00044 \ 9;$ $\alpha(N+) = 0.000116 \ 24$ $\alpha(N+) = 0.000116 \ 24$ $\alpha(N) = 0.000120 \ 20 \ (2) \ 15 \ 100^{-5} \ 4 \ (3) \ 0.5 \ 5 \ 4$
								$\alpha(N)=0.000100\ 20;\ \alpha(O)=1.5\times10^{-5}\ 4;\ \alpha(P)=9.E-7\ 4$ $\delta:\ -3\ +8-\infty\ (1981Fe01).$
547.47 7	0.111 3	1862.06	2+	1314.638	1-	[E1] [!]	0.00385 6	$\alpha = 0.00385 \ 6; \ \alpha(K) = 0.00329 \ 5; \ \alpha(L) = 0.000442 \ 7;$ $\alpha(M) = 9.51 \times 10^{-5} \ 14; \ \alpha(N+) = 2.54 \times 10^{-5} \ 4$ $\alpha(N) = 2.18 \times 10^{-5} \ 3; \ \alpha(Q) = 3.35 \times 10^{-6} \ 5; \ \alpha(P) = 2.17 \times 10^{-7} \ 3$
x554.24 21	0.0171 16	1020 51	2+	1000.05	.+	TN	0.01052	
557.43 🖤	0.061 22	1839.71	2*	1282.25	4	(E2) 👻	0.01053	$\alpha(K)=0.00864$ 12; $\alpha(L)=0.001480$ 21; $\alpha(M)=0.000327$ 5; $\alpha(N+)=8.63\times10^{-5}$ 12
557.81 [@]	0.114 [@] 11	1605.60	2+	1047.78	0+	[E2] [@]	0.01052	$\alpha(N)=7.46\times10^{-5} \ 11; \ \alpha(O)=1.111\times10^{-5} \ 16; \ \alpha(P)=5.85\times10^{-7} \ 9$ $\alpha(K)=0.00863 \ 12; \ \alpha(L)=0.001478 \ 21; \ \alpha(M)=0.000327 \ 5; \ \alpha(N+)=8.62\times10^{-5} \ 12 \ \alpha(N)=7.45\times10^{-5} \ 11; \ \alpha(O)=1.109\times10^{-5} \ 16; \ \alpha(P)=5.84\times10^{-7} \ 9$

From ENSDF

				152 Tb ε dec	ay (17.5 h) 2004AdZZ	2,2003A	Ad25,1970Ad0)5 (continue	ed)
						$\gamma(^{152}\text{Gd})$ (c	ontinue			
E_{γ}^{\dagger}	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. ^v	$\delta^{\mathcal{V}}$	α^{α}	$I_{(\gamma+ce)}$ >	Comments
562.98 9 *569.04 20	0.105 <i>3</i>	1318.355	2+	755.3960	4+	[E2]		0.01027		$ \begin{array}{l} \alpha(\mathrm{K}) = 0.00843 \ 12; \ \alpha(\mathrm{L}) = 0.001439 \ 21; \\ \alpha(\mathrm{M}) = 0.000318 \ 5; \ \alpha(\mathrm{N}+) = 8.39 \times 10^{-5} \ 12 \\ \alpha(\mathrm{N}) = 7.25 \times 10^{-5} \ 11; \ \alpha(\mathrm{O}) = 1.081 \times 10^{-5} \ 16; \\ \alpha(\mathrm{P}) = 5.71 \times 10^{-7} \ 8 \end{array} $
^x 571.54 <i>10</i>	0.0248 15									
*575.40 14	0.0129 13	2011.67	1+ 2+	1424 021	2+					
579.63 9	0.0274 14 0.0470 24	1861.89	1,2 2 ⁺	1282.25	3 4 ⁺	[E2]		0.00955 14		α =0.00955 14; α (K)=0.00785 11; α (L)=0.001325 19; α (M)=0.000293 4; α (N+)=7.72×10 ⁻⁵ 11
										$\alpha(N)=6.67\times10^{-5}$ 10; $\alpha(O)=9.96\times10^{-6}$ 14;
583.00.11	0 045 4	3112 53	1+ 2+	2529 43	2+ 3 4+					$\alpha(P)=5.33\times10^{-7} 8$
586.27 7	14.5 3	930.560	2+	344.2790	2+,2,7	E0+M1+E2		0.0236 <i>19</i>		$\begin{aligned} &\alpha(\mathbf{K}) = 0.0202 \ 21; \ \alpha(\mathbf{L}) = 0.00300 \ 22; \\ &\alpha(\mathbf{M}) = 0.000297 \ 1; \ \alpha(\mathbf{N}+) = 7.9 \times 10^{-5} \\ &\alpha(\mathbf{N}) = 6.8 \times 10^{-5}; \ \alpha(\mathbf{O}) = 1.0 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{P}) = 5.7 \times 10^{-7} \\ &\alpha: \ \text{From } \alpha(\mathbf{K}) \text{exp}, \ \delta = -3.05 \ 14, \ \text{and} \\ \ \text{Ice}(\mathbf{E}0)/\text{Ice}(\mathbf{M}1 + \mathbf{E}2) = 2.43 \ 16. \\ &\rho^2 = 0.046 \ 4 \ (2004 \text{AdZZ}, \ 2003 \text{Ad25}). \\ &\alpha(\mathbf{K}) \text{exp} = 0.0202 \ 21. \\ &\delta: \ \delta(\mathbf{E}2/\mathbf{M}1) = -3.05 \ 14 \ (1972 \text{Kr}16). \ \text{Others:} \\ &-5.4 + 15 - 26 \ (1990 \text{Ta}19), \ -4.9 \ 12 \\ &(1981 \text{Fe01}). \end{aligned}$
x595.83 11	0.024 3	1015 76	2+ 2 4+	1210 255	2+					
603.18 14	0.0108 11	1513.70	2,3,4	930.560	$\frac{2}{2^{+}}$					
615.6		615.38	0+	0	0+	EO			2.00 8	E _γ : From 1970Ad05. I _γ : <0.004. I _(γ+ce) : From Ice(K)=1.75 7 and Ice(K)/Ice=0.877 (E0 theory). ρ^2 =0.066 14 (2004AdZZ, 2003Ad25). Mult.: α (K)exp>437 25.

Т

							,	,	
						$\gamma(1)$	⁵² Gd) (continued)		
E_{γ}^{\dagger}	I_{γ}^{t}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^V	$\delta^{\mathcal{V}}$	$\alpha^{\boldsymbol{\alpha}}$	Comments
622.79 7	1.45 3	1941.17	2+	1318.355	2+	M1(+E2)	+0.018 +42-18	0.011 4	$\begin{aligned} &\alpha(\text{K})\exp=0.0109 \ 17 \\ &\alpha(\text{K})=0.009 \ 3; \ \alpha(\text{L})=0.0014 \ 3; \ \alpha(\text{M})=0.00030 \ 7; \\ &\alpha(\text{N}+)=8.1\times10^{-5} \ 18 \\ &\alpha(\text{N})=7.0\times10^{-5} \ 16; \ \alpha(\text{O})=1.1\times10^{-5} \ 3; \ \alpha(\text{P})=6.8\times10^{-7} \\ &23 \\ &\delta: \ \delta=+0.018 \ +42-18 \ \text{or} \ +2.1 \ 3 \ (1990\text{Ta19}), \ +1.0 \ 5 \end{aligned}$
633.60 9	0.0293 11	1915.76	2+,3,4+	1282.25	4+				(1981Fe01), <1.1 from $\alpha(\mathbf{x})$ exp.
638.35 <i>10</i> 641.20 <i>7</i>	0.0171 22 0.0932 22	2964.30 2246.80	2 ⁻ 2 ⁺	2325.68 1605.60	2+	[M1,E2]		0.010 <i>3</i>	$\begin{aligned} &\alpha(\mathbf{K}) = 0.009 \ 3; \ \alpha(\mathbf{L}) = 0.0013 \ 3; \ \alpha(\mathbf{M}) = 0.00028 \ 6; \\ &\alpha(\mathbf{N}+) = 7.5 \times 10^{-5} \ 17 \\ &\alpha(\mathbf{N}) = 6.5 \times 10^{-5} \ 15; \ \alpha(\mathbf{O}) = 9.9 \times 10^{-6} \ 24; \\ &\alpha(\mathbf{P}) = 6.3 \times 10^{-7} \ 21 \end{aligned}$
^x 645.83 <i>14</i> 648.31 7	1.0141 <i>14</i> 0.166 <i>4</i>	1771.58	2+	1123.186	3-	[E1]		0.00268 4	$\alpha = 0.00268 \ 4; \ \alpha(K) = 0.00229 \ 4; \ \alpha(L) = 0.000305 \ 5; \alpha(M) = 6.57 \times 10^{-5} \ 10; \ \alpha(N+) = 1.753 \times 10^{-5} \ 25 \alpha(N) = 1.505 \times 10^{-5} \ 21; \ \alpha(O) = 2.32 \times 10^{-6} \ 4; \alpha(P) = 1.524 \times 10^{-7} \ 22$
x651.06 19 656.42 9 658.83 11 662.02 10	0.0127 <i>12</i> 0.0537 <i>24</i> 0.042 <i>3</i> 0.026 <i>3</i>	2299.66 1274.26 1785.21	2,3 ⁻ 1,2 ⁺ 2 ⁺	1643.428 615.38 1123.186	2 ⁻ 0 ⁺ 3 ⁻	[E1]		0.00257 4	$\alpha = 0.00257 \ 4; \ \alpha(K) = 0.00219 \ 3; \ \alpha(L) = 0.000292 \ 4;$ $\alpha(M) = 6.28 \times 10^{-5} \ 9; \ \alpha(N+) = 1.676 \times 10^{-5} \ 24$ $\alpha(N) = 1.440 \times 10^{-5} \ 21; \ \alpha(O) = 2.22 \times 10^{-6} \ 4;$ $\alpha(P) = 1.460 \times 10^{-7} \ 21$
x667.46 <i>12</i> 675.01 <i>7</i>	0.0218 <i>13</i> 0.835 <i>17</i>	1605.60	2+	930.560	2+	M1+E2	2.2 4		 α(K)exp=0.0060 15 δ: δ≤0.10 or 2.2 4 (1990Ta19). Other 1.8 7 (1981Fe01). α(K)exp gives δ>1.2 which rules out
678.61 7	0.353 8	1434.021	3+	755.3960	4+	M1+E2	+1.4 +17-11	0.009 3	the small solution of 1990Ta19. α (K)exp=0.0074 29 α =0.009 3; α (K)=0.0077 23; α (L)=0.0011 3; α (M)=0.00024 6; α (N+)=6.5×10 ⁻⁵ 15 α (N)=5.6×10 ⁻⁵ 13; α (O)=8.6×10 ⁻⁶ 21; α (P)=5.5×10 ⁻⁷ 18 δ : -19 16 (1981Fe01).
*681.3 3 684.12 9 687.62 14 693.13 16	$\begin{array}{c} 0.017 \ 6 \\ 0.027 \ 3 \\ 0.015 \ 4 \\ 0.042 \ 3 \\ 0.021 \ 6 \end{array}$	2523.81 1915.15 2011.67	2^+ (4) ⁺ 1 ⁺ ,2 ⁺	1839.71 1227.36 1318.355	2 ⁺ 6 ⁺ 2 ⁺	1			
697.20 <i>16</i> 699.25 <i>10</i>	0.024 8 0.126 9	2011.67 1314.638	$1^+, 2^+$ 1^-	1314.638 615.38	1^{-} 0 ⁺	re11		0.00229 4	α =0.00229 4: α (K)=0.00196 3: α (L)=0.000260 4:

From ENSDF

 $^{152}_{64}\text{Gd}_{88}\text{--}13$

 $^{152}_{64}\mathrm{Gd}_{88}$ -13

Т

				152 Tb ε dec	cay (17.5	5 h) 2004AdZ	Z,2003Ad25,	1970Ad05 (continued)
						$\gamma(^{152}\text{Gd})$ (continued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. ^V	α^{α}	Comments
702.98 [‡]	1.34 [‡] 5	1318.355	2+	615.38	0+	E2 [‡]	0.00599 9	$\begin{aligned} &\alpha(\mathbf{M}) = 5.59 \times 10^{-5} \ 8; \ \alpha(\mathbf{N}+) = 1.493 \times 10^{-5} \ 21 \\ &\alpha(\mathbf{N}) = 1.282 \times 10^{-5} \ 18; \ \alpha(\mathbf{O}) = 1.98 \times 10^{-6} \ 3; \ \alpha(\mathbf{P}) = 1.306 \times 10^{-7} \ 19 \\ &\alpha = 0.00599 \ 9; \ \alpha(\mathbf{K}) = 0.00499 \ 7; \ \alpha(\mathbf{L}) = 0.000788 \ 11; \\ &\alpha(\mathbf{M}) = 0.0001727 \ 25; \ \alpha(\mathbf{N}+) = 4.58 \times 10^{-5} \ 7 \end{aligned}$
703.49 [‡] 7	2.37 [‡] 7	1047.78	0+	344.2790	2+	E2 [‡]	0.00598 9	$\alpha(N)=3.95\times10^{-5} 6; \ \alpha(O)=5.96\times10^{-6} 9; \ \alpha(P)=3.42\times10^{-7} 5$ $\alpha=0.00598 9; \ \alpha(K)=0.00498 7; \ \alpha(L)=0.000786 11;$ $\alpha(M)=0.0001724 25; \ \alpha(N+)=4.57\times10^{-5} 7$ $\alpha(N)=3.94\times10^{-5} 6; \ \alpha(O)=5.95\times10^{-6} 9; \ \alpha(P)=3.41\times10^{-7} 5$
708.98 8 712.82 8	0.0576 <i>21</i> 0.177 <i>6</i>	2401.55 1643.428	1 ⁺ ,2,3 ⁻ 2 ⁻	1692.43 930.560	2 ⁺ ,3 ⁺ 2 ⁺	[E1]	0.00220 3	$\alpha(N) = 5.94 \times 10^{-5}, \ \alpha(O) = 5.93 \times 10^{-5}, \ \alpha(P) = 3.41 \times 10^{-5} \text{ s}$ $\alpha(D) = 5.000220 \ 3; \ \alpha(K) = 0.00188 \ 3; \ \alpha(L) = 0.000250 \ 4;$ $\alpha(M) = 5.37 \times 10^{-5} \ 8; \ \alpha(N+) = 1.434 \times 10^{-5} \ 20$
715.19 8	0.0794 20	1470.63	2+	755.3960	4+	[E2]	0.00576 8	$\alpha(N)=1.232\times10^{-5} \ 18; \ \alpha(O)=1.90\times10^{-6} \ 3; \ \alpha(P)=1.257\times10^{-7} \ 18$ $\alpha=0.00576 \ 8; \ \alpha(K)=0.00479 \ 7; \ \alpha(L)=0.000753 \ 11;$ $\alpha(M)=0.0001652 \ 24; \ \alpha(N+)=4.38\times10^{-5} \ 7$ $\alpha(N)=3 \ 78\times10^{-5} \ 6; \ \alpha(Q)=5 \ 70\times10^{-6} \ 8; \ \alpha(P)=3 \ 29\times10^{-7} \ 5$
722.00 <i>12</i> 723.67 <i>10</i>	0.0200 <i>14</i> 0.0322 <i>13</i>	2529.43 1771.58	2 ⁺ ,3,4 ⁺ 2 ⁺	1807.52 1047.78	0+	[E2]	0.00560 8	$\alpha = 0.00560 \ 8; \ \alpha(K) = 0.00467 \ 7; \ \alpha(L) = 0.000731 \ 11; \alpha(M) = 0.0001602 \ 23; \ \alpha(N+) = 4.25 \times 10^{-5} \ 6 \alpha(N) = 3.66 \times 10^{-5} \ 6; \ \alpha(O) = 5.54 \times 10^{-6} \ 8; \ \alpha(P) = 3.21 \times 10^{-7} \ 5$
^x 730.95 <i>11</i> 738.69 <i>9</i>	0.047 9 0.336 9	1861.89	2+	1123.186	3-	[E1]	0.00205 3	$\alpha = 0.00205 \ 3; \ \alpha(K) = 0.001753 \ 25; \ \alpha(L) = 0.000232 \ 4; \ \alpha(M) = 4.99 \times 10^{-5} \ 7; \ \alpha(N+) = 1.332 \times 10^{-5} \ 19 \ \alpha(N) = 1.144 \times 10^{-5} \ 16; \ \alpha(Q) = 1.766 \times 10^{-6} \ 25; \ \alpha(P) = 1.170 \times 10^{-7} \ 17$
747.29 <i>14</i> 750.06 <i>9</i>	0.0157 <i>11</i> 0.0197 <i>20</i>	2880.67 1680.75	2^+ 0^+	2133.38 930.560	1 ⁺ ,2 ⁺ 2 ⁺			$a(n) = 1.144 \times 10^{-10}, a(0) = 1.700 \times 10^{-20}, a(1) = 1.170 \times 10^{-17}$
752.59 9	0.050 4	1861.89	2+	1109.203	2+	[M1,E2]	0.0071 20	α =0.0071 20; α (K)=0.0060 18; α (L)=0.00086 20; α (M)=0.00019 5; α (N+)=5.0×10 ⁻⁵ 12
^x 758.01 11 ^x 758.8 4	0.0361 <i>24</i> 0.028 <i>6</i>							α (N)=4.3×10 ⁻⁵ <i>10</i> ; α (O)=6.6×10 ⁻⁶ <i>16</i> ; α (P)=4.3×10 ⁻⁷ <i>14</i>
764.89 7	4.32 10	1109.203	2+	344.2790	2+	M1+E2(+E0)	0.0070 <i>6</i>	$\begin{aligned} &\alpha(\text{K}) \text{exp} = 0.0057 \ 13 \\ &\alpha(\text{K}) = 0.00429 \ 6; \ \alpha(\text{L}) = 0.000655 \ 10; \ \alpha(\text{M}) = 0.0001432 \ 20; \\ &\alpha(\text{N}+) = 3.81 \times 10^{-5} \ 6 \\ &\alpha(\text{N}) = 3.28 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 4.98 \times 10^{-6} \ 7; \ \alpha(\text{P}) = 2.97 \times 10^{-7} \ 5 \\ &\text{Mult.: 1970Ad05 report a doublet in their ce spectrum, with energies 764.3 and 766.3. Only a single line is seen in the photon spectrum. 2004AdZZ assume there is only a single transition, and deduce \ \alpha(\text{K}) \text{exp}$ by combining the Ice(K) values for the two ce lines. This yields \ \alpha(\text{K}) \text{exp} = 0.0057 \ 13. If one takes Ice(K) for just the 764.3 ce line, one gets \ \alpha(\text{K}) \text{exp} = 0.0039 \ 8, with the 766.3 line presumably \end{aligned}

 $^{152}_{64}\text{Gd}_{88}$ -14

From ENSDF

			152	Fb ε decay (1)	17.5 h)	2004AdZZ	,2003Ad25,197	0Ad05 (continued	1)
					-	$\gamma(^{152}\text{Gd})$ (co	ontinued)		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. ^V	$\delta^{\mathcal{V}}$	$\alpha^{\boldsymbol{lpha}}$	Comments
778.9045 ^{<i>s</i>} 24	8.72 18	1123.186	3-	344.2790	2+	E1		0.00184	corresponding to an E0 transition. From 13-y Eu β^- decay, one has $\alpha(K)\exp=0.0052$ 8, and from $\delta=+4.30 +7-6$ one expects $\alpha(K)=0.00435$ 7. δ : +4.30 +7-6. Others: +3.8 6 (1990Ta19),+3.5 +17-9 (1981Fe01), +4.3 7 (1975Kr16). $\alpha(K)=0.001576$ 22; $\alpha(L)=0.000208$ 3; $\alpha(M)=4.47\times10^{-5}$ 7; $\alpha(N+)=1.195\times10^{-5}$ 17 $\alpha(N)=1.026\times10^{-5}$ 15; $\alpha(O)=1.585\times10^{-6}$ 23; $\alpha(P)=1.054\times10^{-7}$ 15 $\alpha(K)\exp=0.00148$ 24
									δ: 0.01 <i>1</i> (1970Ba32), +0.050 +9-8 (1985KrZU), -0.02 2 (1983Bl07).
x787.18 12 788.88 10 792.56 11	0.0333 <i>15</i> 0.0453 <i>18</i> 0.0315 <i>20</i>	3236.96 1915.76	2 ⁺ ,3,4 ⁺ 2 ⁺ ,3,4 ⁺	2448.01 1123.186	+ 3-				
794.73 7 805.84 9	0.274 7 0.0324 <i>14</i>	1550.15 3105.52	4+ 2+	755.3960 2299.66	4 ⁺ 2,3 ⁻	D(+Q)	-0.4 +7-12		δ : From 1981Fe01.
810.44 <i>23</i> 812.80 <i>8</i>	0.0155 <i>18</i> 0.314 <i>8</i>	3012.37 2246.80	2 ⁺ ,3 ⁺ ,4 ⁺ 2 ⁺	2201.71 1434.021	2+ 3+	[M1,E2]		0.0059 17	α =0.0059 <i>17</i> ; α (K)=0.0050 <i>15</i> ; α (L)=0.00071 <i>17</i> ; α (M)=0.00015 <i>4</i> ; α (N+)=4.1×10 ⁻⁵ <i>10</i> α (N)=3.5×10 ⁻⁵ <i>9</i> ; α (O)=5.5×10 ⁻⁶ <i>14</i> ; α (P)=3.6×10 ⁻⁷ <i>11</i>
813.48 ^b	0.017 <mark>b</mark> 8	2729.17	2+	1915.76	2+,3,4+				
814.12 ^b	0.038 ^b 7	1861.89	2+	1047.78	0+	[E2]		0.00429 6	α =0.00429 6; α (K)=0.00359 5; α (L)=0.000545 8; α (M)=0.0001190 17; α (N+)=3.16×10 ⁻⁵ 5 α (N)=2.72×10 ⁻⁵ 4; α (O)=4.14×10 ⁻⁶ 6; α (P)=2.48×10 ⁻⁷ 4
817.97 ^d	0.150 ^d 25	1941.17	2+	1123.186	3-	[E1]		0.001670 24	$\begin{array}{l} \alpha = 0.001670 \ 24; \ \alpha(\mathrm{K}) = 0.001431 \ 20; \\ \alpha(\mathrm{L}) = 0.000188 \ 3; \ \alpha(\mathrm{M}) = 4.05 \times 10^{-5} \ 6; \\ \alpha(\mathrm{N}+) = 1.082 \times 10^{-5} \ 1 \\ \alpha(\mathrm{N}) = 9.29 \times 10^{-6} \ 13; \ \alpha(\mathrm{O}) = 1.437 \times 10^{-6} \ 21; \\ \alpha(\mathrm{P}) = 9.58 \times 10^{-8} \ 14 \end{array}$
818.76 ^d	$0.010^{d} 4$	2133.38	1+,2+	1314.638	1-				
829.57 26	0.013 4	2999.55	$1^+, 2^+$	2169.65	2+				
831.94 8	0.179 5	1941.17	2+	1109.203	2+	[M1,E2]		0.0056 <i>16</i>	$\begin{split} &\alpha{=}0.0056 \ 16; \ \alpha(\mathrm{K}){=}0.0048 \ 14; \ \alpha(\mathrm{L}){=}0.00067 \\ &16; \ \alpha(\mathrm{M}){=}0.00015 \ 4; \ \alpha(\mathrm{N}{+}){=}3.9{\times}10^{-5} \ 9 \\ &\alpha(\mathrm{N}){=}3.4{\times}10^{-5} \ 8; \ \alpha(\mathrm{O}){=}5.2{\times}10^{-6} \ 13; \\ &\alpha(\mathrm{P}){=}3.4{\times}10^{-7} \ 11 \end{split}$

 $^{152}_{64}\mathrm{Gd}_{88}$ -15

Т

From ENSDF

$\gamma(^{152}\text{Gd})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^π	Mult. ^V	$\alpha^{\boldsymbol{\alpha}}$	Comments
x834.73 18 837.08 11 839.6 4 841.10 9	0.0365 <i>17</i> 0.0323 <i>17</i> 0.021 <i>4</i> 0.072 <i>4</i>	3006.78 2121.05 1771.58	2+ 2+,3-,4+ 2+	2169.65 1282.25 930.560	2+ 4+ 2+	[M1,E2]	0.0055 15	α =0.0055 15; α (K)=0.0046 13; α (L)=0.00065 16; α (M)=0.00014 4; α (N+)=3.8×10 ⁻⁵ 9 α (N)=3.3×10 ⁻⁵ 8; α (O)=5.0×10 ⁻⁶ 13; α (P)=3.3×10 ⁻⁷ 10
x847.62 24 850.5 3	0.0140 <i>20</i> 0.047 <i>4</i>	1605.60	2+	755.3960	4+	[E2]	0.00389 6	$\alpha(1) = 0.00389 \ 6; \ \alpha(K) = 0.00327 \ 5; \ \alpha(L) = 0.000490 \ 7; \\ \alpha(M) = 0.0001069 \ 15; \ \alpha(N+) = 2.84 \times 10^{-5} \ 4 \\ \alpha(N) = 2.45 \times 10^{-5} \ 4; \ \alpha(O) = 3.73 \times 10^{-6} \ 6; \ \alpha(P) = 2.26 \times 10^{-7} \ 4$
^x 852.1 5 854.69 [#]	0.038 8 0.041 [#] 8	1785.21	2+	930.560	2+	E0+M1+E2 [#]	0.0053 15	α =0.0053 <i>15</i> ; α (K)=0.0045 <i>13</i> ; α (L)=0.00063 <i>15</i> ; α (M)=0.00014 <i>3</i> ; α (N+)=3.7×10 ⁻⁵ <i>9</i> α (N)=3.1×10 ⁻⁵ <i>8</i> ; α (O)=4.8×10 ⁻⁶ <i>12</i> ; α (P)=3.2×10 ⁻⁷ <i>10</i>
854.95 [#] 855.24 [#]	0.026 [#] 7 0.036 [#] 7	2169.65 1470.63	2+ 2+	1314.638 615.38	1 ⁻ 0 ⁺	# [E2] [#]	0.00385 6	$\alpha = 0.00385 \ 6; \ \alpha(K) = 0.00323 \ 5; \ \alpha(L) = 0.000484 \ 7;$ $\alpha(M) = 0.0001055 \ 15; \ \alpha(N+) = 2.81 \times 10^{-5} \ 4$ $\alpha(N) = 2.42 \times 10^{-5} \ 4; \ \alpha(Q) = 3.68 \times 10^{-6} \ 6; \ \alpha(R) = 2.23 \times 10^{-7} \ 4$
857.33 11 860.84 14 865.62 8 868.94 11 874.8 3 *874.85 26	0.126 9 0.0163 16 0.0603 24 0.0413 15 0.0067 20 0.0067 20	2772.40 2981.45 2299.66 2880.67 3140.21	2 ⁺ 2 ⁺ ,3,4 ⁺ 2,3 ⁻ 2 ⁺ 1,2 ⁺	1915.15 2121.05 1434.021 2011.67 2264.88	$(4)^+$ $2^+, 3^-, 4^+$ 3^+ $1^+, 2^+$ $1^-, 2, 3^-$			$a(\mathbf{N}) = 2.42 \times 10^{-4}, a(\mathbf{O}) = 5.08 \times 10^{-6}, a(\mathbf{F}) = 2.23 \times 10^{-4}$
878.13 <i>19</i> 880.29 <i>10</i> ^x 883.30 <i>11</i>	0.038 <i>3</i> 0.0649 <i>21</i> 0.0211 <i>20</i>	1808.92 2523.81	2+	930.560 1643.428	2+ 2-			
887.32 ^β 10 893.34 7	0.0515 <i>19</i> 1.009 <i>21</i>	3214? 1941.17	2+	2325.68 1047.78	0+	[E2]	0.00350 <i>5</i>	E _γ : Poor fit. See comment on the 3214 level. $\alpha(K)\exp=0.0073 \ 11$ $\alpha=0.00350 \ 5; \ \alpha(K)=0.00294 \ 5; \ \alpha(L)=0.000436 \ 7;$ $\alpha(M)=9.50\times10^{-5} \ 14; \ \alpha(N+)=2.53\times10^{-5} \ 4$ $\alpha(N)=2.18\times10^{-5} \ 3; \ \alpha(O)=3.32\times10^{-6} \ 5; \ \alpha(P)=2.03\times10^{-7} \ 3$ Mult.: $\alpha(K)\exp$ is larger than the theory values of 0.00511 for M1 and 0.00294 for E2. Placement in the decay scheme requires mult=pure E2 $\alpha(\theta)$ is consistent with $\Delta I=2$
902.46 8 909.15 7	0.225 6 0.195 6	2011.67 1839.71	1 ⁺ ,2 ⁺ 2 ⁺	1109.203 930.560	2^+ 2^+	[M1,E2]	0.0046 12	α =0.0046 <i>12</i> ; α (K)=0.0039 <i>11</i> ; α (L)=0.00054 <i>13</i> ; α (M)=0.00012 <i>3</i> ; α (N+)=3.1×10 ⁻⁵ 8
911.73 <i>13</i> 914.35 7	0.0195 <i>11</i> 0.0819 <i>24</i>	3236.96 2557.87	2 ⁺ ,3,4 ⁺ 2 ⁺	2325.68 1643.428	2-			α (N)=2.7×10 ⁻⁵ 7; α (O)=4.2×10 ⁻⁶ 10; α (P)=2.8×10 ⁻⁷ 8 E _{γ} : Poor fit. The level scheme gives 911.10 13.

¹⁵²₆₄Gd₈₈-16

From ENSDF

				152 Tb ε de	cay (1	17.5 h) 2004	AdZZ,2003A	d25,1970Ad05 ((continued)		
						$\gamma(^{152}$	Gd) (continued	1)			
E_{γ}^{\dagger}	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^V	$\delta^{\mathcal{V}}$	$\alpha^{\boldsymbol{lpha}}$	Comments		
x919.20 9 x923.98 15	0.0177 12 0.0172 18	2246.80	2+	1219 255	2+	M1 E2		0.0042.12	- (K) 0.0027_18		
928.43 /	0.568 12	2246.80	2.	1318.355	2.	M1,E2		0.0043 12	$\begin{aligned} &\alpha(\text{K})\exp=0.003778\\ &\alpha=0.0043\ 12;\ \alpha(\text{K})=0.0037\ 10;\ \alpha(\text{L})=0.00052\ 12;\\ &\alpha(\text{M})=0.00011\ 3;\ \alpha(\text{N}+)=3.0\times10^{-5}\ 7\\ &\alpha(\text{N})=2.6\times10^{-5}\ 6;\ \alpha(\text{O})=4.0\times10^{-6}\ 10;\\ &\alpha(\text{P})=2.6\times10^{-7}\ 8\end{aligned}$		
930.58 7	2.31 8	930.560	2+	0	0+	(E2)/		0.00320 5	$\begin{aligned} &\alpha(\text{K}) \exp = 0.0040 \ 8 \\ &\alpha = 0.00320 \ 5; \ \alpha(\text{K}) = 0.00270 \ 4; \ \alpha(\text{L}) = 0.000396 \ 6; \\ &\alpha(\text{M}) = 8.63 \times 10^{-5} \ 12; \ \alpha(\text{N}+) = 2.30 \times 10^{-5} \ 4 \\ &\alpha(\text{N}) = 1.98 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 3.02 \times 10^{-6} \ 5; \\ &\alpha(\text{P}) = 1.87 \times 10^{-7} \ 3 \end{aligned}$		
932.09 8	0.305 11	2246.80	2+	1314.638	1-	[E1(+M2)]/		0.001297 19	$\begin{array}{l} \alpha = 0.001297 \ 19; \ \alpha(\mathrm{K}) = 0.001112 \ 16; \ \alpha(\mathrm{L}) = 0.0001456 \\ 2I; \ \alpha(\mathrm{M}) = 3.13 \times 10^{-5} \ 5; \ \alpha(\mathrm{N}+) = 8.36 \times 10^{-6} \\ \alpha(\mathrm{N}) = 7.18 \times 10^{-6} \ 10; \ \alpha(\mathrm{O}) = 1.111 \times 10^{-6} \ 16; \\ \alpha(\mathrm{P}) = 7.46 \times 10^{-8} \ 11 \\ \end{array}$		
937.04 9	0.256 10	1692.43	2+,3+	755.3960	4+	[M1,E2]		0.0043 11	$\alpha(I) = 7.40 \times 10^{-11} \text{ and } I1; \ \alpha(K) = 0.0036 \ 10; \ \alpha(L) = 0.00050 \ 12; \ \alpha(M) = 0.000109 \ 25; \ \alpha(N+) = 2.9 \times 10^{-5} \ 7 \ \alpha(N) = 2.5 \times 10^{-5} \ 6; \ \alpha(O) = 3.9 \times 10^{-6} \ 10; \ \alpha(P) = 2.6 \times 10^{-7} \ 8$		
939.84 9 945.26 <i>13</i>	0.0530 <i>18</i> 0.0225 <i>19</i>	2258.14	2+,3,4+	1318.355	2+				$u(1) = 2.0 \times 10^{-10}$		
947.1 <i>3</i> 950.34 <i>16</i>	0.0099 <i>18</i> 0.0227 <i>10</i>	2264.88 2264.88	$1^{-},2,3^{-}$ $1^{-},2,3^{-}$	1318.355 1314.638	2^+ 1^-						
953.07 9	0.0957 24	2267.73	, ,-	1314.638	1-	M1		0.00513 8	$\alpha(K)\exp=0.0056 \ 8$ $\alpha=0.00513 \ 8; \ \alpha(K)=0.00437 \ 7; \ \alpha(L)=0.000594 \ 9;$ $\alpha(M)=0.0001283 \ 18; \ \alpha(N+)=3.44\times10^{-5} \ 5$ $\alpha(N)=2.95\times10^{-5} \ 5; \ \alpha(O)=4.60\times10^{-6} \ 7;$ $\alpha(P)=3.16\times10^{-7} \ 5$		
970.32 7	1.189 25	1314.638	1-	344.2790	2+	E1+M2	-0.021 12	0.001202 17	$\alpha(K) \exp=0.0014 5$ $\alpha=0.001202 \ 17; \ \alpha(K)=0.001031 \ 15; \ \alpha(L)=0.0001347$ $19; \ \alpha(M)=2.89\times10^{-5} \ 4; \ \alpha(N+)=7.74\times10^{-6}$ $\alpha(N)=6.64\times10^{-6} \ 10; \ \alpha(O)=1.029\times10^{-6} \ 15; \ \alpha(P)=6.92\times10^{-8} \ 10$ $\delta_{1} = 0.018 \ 172 \ 21 \ (1081EaO1)$		
974.05 9	4.72 10	1318.355	2+	344.2790	2+	M1+E2	+0.58 7	0.0041 7	α(K)exp=0.0050 6 α=0.0041 7; α(K)=0.0035 6; α(L)=0.00048 8; α(M)=0.000104 16; α(N+)=2.8×10 ⁻⁵ 5 α(N)=2.4×10 ⁻⁵ 4; α(O)=3.7×10 ⁻⁶ 6; α(P)=2.5×10 ⁻⁷ 5 δ: From 1975Kr16. Others: $0.23 ≤ δ ≤ 1.41$ (1990Ta19), +1.5 6 (1981Fe01).		

 $^{152}_{64}\mathrm{Gd}_{88}$ -17

From ENSDF

			152	Tb ε decay (17.5 h)	2004AdZZ,2003A	d25,1970Ad	<mark>05</mark> (continu	ned)
					$\underline{\gamma}$	(¹⁵² Gd) (continue	ed)		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. ^V	$\alpha^{\boldsymbol{\alpha}}$	$I_{(\gamma+ce)}$ >	Comments
979.04 <i>12</i> ×981.18 24	0.0416 <i>24</i> 0.011 <i>4</i>	1734.44		755.3960	4+				
984.90 8 990.19 7	0.093 5 1.124 <i>23</i>	2299.66 1605.60	2,3 ⁻ 2 ⁺	1314.638 615.38	1 ⁻ 0 ⁺	E2	0.00281 4		$\alpha(K)\exp=0.0019 5$ $\alpha=0.00281 4; \ \alpha(K)=0.00237 4; \ \alpha(L)=0.000344$ $5; \ \alpha(M)=7.48\times10^{-5} 11; \ \alpha(N+)=1.99\times10^{-5} 3$ $\alpha(N)=1.714\times10^{-5} 24; \ \alpha(O)=2.62\times10^{-6} 4; $ $\alpha(P)=1.642\times10^{-7} 23$
993.14 <i>11</i> 998.37 <i>11</i> 1000.41 <i>20</i> 1004 2 3	0.099 <i>4</i> 0.0205 <i>11</i> 0.0122 <i>12</i> 0.0099 <i>15</i>	2598.80 2914.19 3012.37 2920.10	1 ⁺ ,2 ⁺ 2 ⁺ 2 ⁺ ,3 ⁺ ,4 ⁺	1605.60 1915.76 2011.67 1915.76	2^+ $2^+,3,4^+$ $1^+,2^+$ $2^+,3,4^+$				
1010.60 7	0.632 13	1941.17	2+	930.560	2+,3,1	M1(+E2+E0)	0.0066 16		α (K)exp=0.0057 <i>14</i> Mult.: α (K)exp=0.0057 <i>14</i> compared with α (K)(M1)=0.00380 suggests the possibility of an E0 admixture, especially if the large δ solution of 1990Ta19 is the correct alternative. δ : +0.03 +3-10 or +2.1 5 (1990Ta19) +1 9 +19-11 (1981Fe01)
1016.60 9 1022.73 <i>11</i> 1027.16 <i>21</i> ×1030 71 <i>11</i>	0.112 <i>3</i> 0.0201 <i>13</i> 0.0167 <i>19</i> 0.031 <i>4</i>	2772.40 3143.97 2719.64	2+ 3 ⁻ 2+	1755.77 2121.05 1692.43	$1^{-} \\ 2^{+}, 3^{-}, 4^{+} \\ 2^{+}, 3^{+}$				
1036.74 7 1040.6 <i>3</i>	0.172 <i>4</i> 0.0100 <i>21</i>	2729.17 2267.73	2+	1692.43 1227.36	2 ⁺ ,3 ⁺ 6 ⁺				
1045.31 ^{<i>B</i>} 23 1047.9 ^{<i>u</i>}	0.0113 15	3214? 1047.78	0+	2169.65 0	2+ 0+	EO		≤0.040	E _γ : Poor fit. See comment on the 3214 level. α (K)exp>2.06 20 I _γ : <0.013. I _(γ+ce) : I(γ+ce)=0.036 4 from Icce(K)=0.0314 34 and Ice(K)/Ice=0.878. A limit is given since the authors show a second placement from the 2989 level, based just on an energy fit; however; from branching in 13-y Eu β ⁻ decay, one deduces I(γ+ce)=0.040 12, suggesting that most, if not all of the intensity belongs with placement from the 1048 level. X(E0/E2)=6.9 7.
1047.9 ^β	< 0.013	2989.03		1941.17	2+				E_{γ} : See comment on placement from the 1047 level.
1052.15 7 1056.79 9 x1061.15 9	0.185 <i>4</i> 0.0356 <i>13</i> 0.095 <i>3</i>	1807.52 2749.23	2+,3+	755.3960 1692.43	4 ⁺ 2 ⁺ ,3 ⁺				

			152	$Fb \ \varepsilon \ decay \ (1$	1 7.5 h)	2004AdZZ,2003	Ad25,1970Ad(05 (continued)	
					<u>)</u>	y(¹⁵² Gd) (continu	ued)		
E_{γ}^{\dagger}	I_{γ}^{t}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^V	$\delta^{\mathcal{V}}$	$\alpha^{\boldsymbol{\alpha}}$	Comments
x1061.6 ^u 1066.2 3 x1069.15 9	<0.016 0.0171 <i>13</i> 0.095 <i>3</i>	2709.43	2+	1643.428	2-	E0(+M1,E2)			α(K)exp>0.084 9
1072.16 <i>15</i> 1075.87 <i>9</i> 1083.14 ^{<i>a</i>}	$0.031 \ 4$ $0.049 \ 6$ $0.052^{a} \ 12$	2386.95 3340.65 2401.55	$(2)^+$ 1 ⁻ ,2,3,4 ⁺ 1 ⁺ ,2,3 ⁻	1314.638 2264.88 1318.355	1^{-} $1^{-},2,3^{-}$ 2^{+}				
1084.31 ^a	0.070 ^{<i>a</i>} 16	1839.71	2+	755.3960	4+	[E2]		0.00233 4	$\alpha = 0.00233 \ 4; \ \alpha(\mathbf{K}) = 0.00197 \ 3; \alpha(\mathbf{L}) = 0.000281 \ 4; \ \alpha(\mathbf{M}) = 6.09 \times 10^{-5} \ 9; \alpha(\mathbf{N}+) = 1.626 \times 10^{-5} \ 23 \alpha(\mathbf{N}) = 1.398 \times 10^{-5} \ 20; \ \alpha(\mathbf{O}) = 2.15 \times 10^{-6} \ 3; \alpha(\mathbf{P}) = 1 \ 365 \times 10^{-7} \ 20$
1085.68 <i>11</i> 1087 12 <i>10</i>	0.215 7	2729.17 2401 55	2^+ 1+ 2 3-	1643.428 1314 638	$2^{-}_{1^{-}}$	D+Q	-0.18 14		δ: From 1981Fe01.
1089.737 ^{\$} 5	1.42 3	1434.021	3+	344.2790	2+	E2(+M1)	+22 +13-6		α (K)exp=0.0027 5 δ : δ <-16, >47 (1990Ta19), >+44, <-7.1 (1981Fe01). The value from 1990Ta19 has been calculated by the evaluator from the data of the authors. They give only the small δ solution which is ruled out by α (K)exp. 1975Kr16 also give only the small solution.
1092.26 <i>14</i> 1096.60 <i>19</i> ×1098 3 3	0.054 <i>3</i> 0.031 <i>3</i> 0.018 <i>3</i>	2201.71 3012.37	2 ⁺ 2 ⁺ ,3 ⁺ ,4 ⁺	1109.203 1915.76	2+ 2+,3,4+				
1106.59 8	0.606 18	1862.06	2+	755.3960	4+	[E2]		0.00223 4	α =0.00223 4; α (K)=0.00189 3; α (L)=0.000269 4; α (M)=5.83×10 ⁻⁵ 9; α (N+)=1.593×10 ⁻⁵ 23 α (N)=1.337×10 ⁻⁵ 19; α (O)=2.05×10 ⁻⁶ 3; α (P)=1.311×10 ⁻⁷ 19; α (IPF)=3.81×10 ⁻⁷ 6
1109.20 7	4.01 9	1109.203	2+	0	0+	(E2)		0.00222 4	α (K)exp=0.0023 4 α =0.00222 4; α (K)=0.00188 3; α (L)=0.000267 4; α (M)=5.80×10 ⁻⁵ 9; α (N+)=1.589×10 ⁻⁵ 23 α (N)=1.330×10 ⁻⁵ 19; α (O)=2.04×10 ⁻⁶ 3; α (P)=1.304×10 ⁻⁷ 19; α (IPF)=4.22×10 ⁻⁷ 6 Mult: α (K)exp is consistent with mult=M1 or E2, but placement in the decay scheme requires Δ I=2
1117.15 <i>11</i>	0.0369 14	2551.14		1434.021	3+				requires $\Delta s = 2$.
1119.42 <i>17</i> 1128.65 <i>10</i> <i>x</i> 1130.98 <i>7</i>	0.0105 15 0.043 5 0.223 5	2772.40	2+	1643.428	2-				

				152 Tb ε dec	ay (17.5	5 h) 200 4	4AdZZ,200	3Ad25,1970A	Ad05 (continued)
						$\gamma(^{152})$	Gd) (contin	ued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{t}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^{π}	Mult. ^V	$\delta^{\mathcal{V}}$	$\alpha^{\boldsymbol{\alpha}}$	Comments
1137.56 7	1.35 3	2246.80	2+	1109.203	2+	M1+E2			$\begin{aligned} \alpha(\text{K}) = 0.0023 \ 6; \ \alpha(\text{L}) = 0.00032 \ 7; \ \alpha(\text{M}) = 6.9 \times 10^{-5} \ 15; \\ \alpha(\text{N}+) = 2.0 \times 10^{-5} \ 4 \\ \alpha(\text{N}) = 1.6 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 2.5 \times 10^{-6} \ 6; \ \alpha(\text{P}) = 1.7 \times 10^{-7} \ 5; \\ \alpha(\text{IPF}) = 1.20 \times 10^{-6} \ 7 \\ \alpha(\text{K}) \exp = 0.0030 \ 6 \\ \delta: \ \delta = -0.40 \ +4-2 \ \text{or} \ +23 \ +72-10 \ (1990\text{Ta19}) \ \text{as calculated} \\ \text{from the authors' data for J} (2246) = 2. \ \text{The authors give a} \\ \text{value for J} = 3. \end{aligned}$
1141.68 <i>10</i> ^x 1144.94 <i>16</i>	0.0523 <i>24</i> 0.0238 <i>20</i>	2264.88	1-,2,3-	1123.186	3-				
1148.99 <i>10</i> 1155.48 <i>13</i> <i>x</i> 1157.18 <i>16</i>	0.067 <i>3</i> 0.033 <i>4</i> 0.024 <i>4</i>	2258.14 2964.30	2 ⁺ ,3,4 ⁺ 2 ⁻	1109.203 1808.92	2+				
1159.82 7 x1164.17 19	0.411 10	1915.15	$(4)^{+}$	755.3960	4+				
1167.0.3	0.019 4	3006.78	2+	1839.71	2+				
1171.2 <i>3</i> ×1173.4 6	0.059 <i>11</i> 0.014 <i>3</i>	3112.53	1+,2+	1941.17	2+				
1176.53 9	0.0432 17	2299.66	2,3-	1123.186	3-				
1185.73 7	0.337 8	1941.17	2+	755.3960	4+	(E2)		0.00195 3	α(K)exp=0.0012 4 α=0.00195 3; α(K)=0.001647 23; α(L)=0.000231 4; $ α(M)=5.01\times10^{-5} 7; α(N+)=1.750\times10^{-5} 25 $ $ α(N)=1.150\times10^{-5} 17; α(O)=1.771\times10^{-6} 25; $ $ α(P)=1.142\times10^{-7} 16; α(IPF)=4.11\times10^{-6} 6 $ Mult: $α(K)exp$ is consistent with mult=E1 or E2; however, placement in the decay scheme requires $Δπ$ =no. δ: δ(O/Q)=-0.3 3 (1981Fe01).
1188.37 <i>11</i> 1190.44 7	0.0562 <i>23</i> 0.604 <i>12</i>	2880.67 2299.66	2+ 2,3 ⁻	1692.43 1109.203	2 ⁺ ,3 ⁺ 2 ⁺	w	w		
~1193.20 21	0.023.3	2140.21	1.2+	1041 17	2+				
1198.97 11 1202 64 <mark>8</mark>	0.030.3	3140.21 2325 68	1,2	1941.17	∠ 3 ⁻				
1202.04 ³ 1202.848	0.0408 10 0.0438 12	2323.08	1+ 2+	930 560	5 2+				
1202.04-	0.176 7	1550.15	$^{1},^{2}$ $^{4+}$	344 2790	2+	(F2)		0.00188	$\alpha(K) = 0.001593.23; \alpha(L) = 0.000223.4; \alpha(M) = 4.84 \times 10^{-5}.7;$
1203.03 11	0.170 /	1550.15	+	J++.2790	2	(E2)		0.00100	
1209.03 9	0.453 10	2523.81	2+	1314.638	1-	E1+M2	+0.06 4	0.00085	$\alpha(K)=0.00071 \ 4; \ \alpha(L)=9.2\times10^{-5} \ 5; \ \alpha(M)=1.98\times10^{-5} \ 11; \ \alpha(N+)=3.38\times10^{-5} \ 5$

From ENSDF

 $^{152}_{64}\mathrm{Gd}_{88}\text{--}20$

				¹⁵² Tb ε deca	y (17.5 h	ı) 2004	AdZZ,2003Ad2	5,1970Ad05 (continued)
						$\gamma(^{152}$	Gd) (continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. ^V	$\alpha^{\boldsymbol{lpha}}$	Comments
						_		$\alpha(N)=4.54\times10^{-6}\ 25;\ \alpha(O)=7.0\times10^{-7}\ 4;\ \alpha(P)=4.8\times10^{-8}\ 3;\ \alpha(IPF)=2.85\times10^{-5}\ 5\ \alpha(K)\exp=0.00049\ 21\ \delta;\ From\ 1990Ta19\ Other;\ -0.20\ 14\ (1981Fe01)$
1215.20 <i>11</i>	0.0166 18	2749.23	2+,3+	1533.92				0. 110m 1950rary. Outer. 0.2014 (15011201).
1221.95 <i>12</i> *1225.86 <i>10</i>	0.0332 22	2540.45	2+,3+	1318.355	2+			
1225.30 10 1235.57 10 ×1237.20 11	0.0220 18 0.0725 25 0.035 3 0.0227 21	2927.86	2+,3+	1692.43	2+,3+			
^x 1239.31 <i>11</i> 1247.07 <i>7</i> ^x 1250.7 <i>4</i>	0.0337 21 0.209 6 0.011 3	2529.43	2+,3,4+	1282.25	4+			
1253.48 9	0.0344 18	3009.23	3-	1755.77	1-			
1258.45 10	0.075 3	2729.17	2+	1470.63	2+			
1261.32 8	1.42 3	1605.60	2+	344.2790	2+	M1	0.00265 4	$\begin{aligned} &\alpha(\text{K})\exp=0.0022\ 4\\ &\alpha=0.00265\ 4;\ \alpha(\text{K})=0.00225\ 4;\ \alpha(\text{L})=0.000303\ 5;\ \alpha(\text{M})=6.54\times10^{-5}\\ &10;\ \alpha(\text{N}+)=3.26\times10^{-5}\ 5\\ &\alpha(\text{N})=1.505\times10^{-5}\ 21;\ \alpha(\text{O})=2.35\times10^{-6}\ 4;\ \alpha(\text{P})=1.620\times10^{-7}\ 23;\\ &\alpha(\text{IPF})=1.508\times10^{-5}\ 22\\ &\delta:\ \delta\leq 0.10\ \text{ or }\ 2.2\ 4\ (1990\text{Ta19}).\ \text{Other:}\ +2.6\ +21-10\ (1981\text{Fe01}).\\ &\text{from }\ \alpha(\text{K})\exp,\ \delta<0.9\ \text{which rules out the large solution of}\\ &1990\text{Ta19}.\ 1981\text{Fe01}\ \text{quote only the large solution.}\end{aligned}$
1205.84 <i>11</i> 1275.04 <i>7</i> *1278 33 9	0.110 <i>4</i> 0.155 <i>4</i>	2380.95 2880.67	(2)* 2 ⁺	1605.60	3 2 ⁺			E_{γ} : Earlier work placed this transition from the 2709 level. placement from the 2880 level is established by 2004AdZZ on the basis of coincidence work.
1284.42 9	0.127 3	2927.86	$2^+.3^+$	1643.428	2^{-}			
1289.64 9	0.0474 15	2604.34	1-,2,3-	1314.638	1-			
1299.140 ^{\$} 9	3.25 7 0.0150 <i>14</i>	1643.428	2-	344.2790	2+	E1	0.000779 11	$\begin{split} &\alpha(\mathbf{K}) \exp[=0.00059 \ 11; \ \delta=0.00 \ 3 \\ &\alpha=0.000779 \ 11; \ \alpha(\mathbf{K})=0.000607 \ 9; \ \alpha(\mathbf{L})=7.85\times10^{-5} \ 11; \\ &\alpha(\mathbf{M})=1.684\times10^{-5} \ 24; \ \alpha(\mathbf{N}+)=7.62\times10^{-5} \ 1 \\ &\alpha(\mathbf{N})=3.87\times10^{-6} \ 6; \ \alpha(\mathbf{O})=6.01\times10^{-7} \ 9; \ \alpha(\mathbf{P})=4.10\times10^{-8} \ 6; \\ &\alpha(\mathbf{IPF})=7.17\times10^{-5} \ 10 \\ &\delta \le 0.10 \ (1990\mathrm{Ta19}), \ -0.10 \ 8 \ (1981\mathrm{Fe01}). \end{split}$
1314.26 ^j	$0.36^{j} 5$	2437.43	2+	1123.186	3-	E1 <i>j</i>	0.000773 11	$\alpha = 0.000773 \ 11; \ \alpha(K) = 0.000595 \ 9; \ \alpha(L) = 7.69 \times 10^{-5} \ 11; \\ \alpha(M) = 1.649 \times 10^{-5} \ 23; \ \alpha(N+) = 8.43 \times 10^{-5} \ 1 \\ \alpha(N) = 3.79 \times 10^{-6} \ 6; \ \alpha(O) = 5.89 \times 10^{-7} \ 9; \ \alpha(P) = 4.01 \times 10^{-8} \ 6; \\ \alpha(PF) = 7.99 \times 10^{-5} \ 12$
1314.64 ^j	1.86 ^j 7	1314.638	1-	0	0^{+}	E1 <i>j</i>	0.000773 11	$\alpha = 0.000773 \ 11; \ \alpha(K) = 0.000595 \ 9; \ \alpha(L) = 7.69 \times 10^{-5} \ 11;$

					¹⁵² Tb ε deca	ay (17	2004 A	dZZ,20	03Ad25,1970Ac	d05 (continued)
							γ (¹⁵² G	d) (conti	nued)	
	${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^V	δ^{V}	$\alpha^{\boldsymbol{lpha}}$	Comments
	1316.32 12	0.310 24	2246.80	2+	930.560	2+	(M1,E2) ^{<}		0.0020 4	$\begin{aligned} &\alpha(M) = 1.649 \times 10^{-5} \ 23; \ \alpha(N+) = 8.45 \times 10^{-5} \ 1 \\ &\alpha(N) = 3.79 \times 10^{-6} \ 6; \ \alpha(O) = 5.88 \times 10^{-7} \ 9; \ \alpha(P) = 4.01 \times 10^{-8} \ 6; \\ &\alpha(IPF) = 8.01 \times 10^{-5} \ 12 \\ &\alpha(K) = 0.0017 \ 4; \ \alpha(L) = 0.00023 \ 5; \ \alpha(M) = 5.0 \times 10^{-5} \ 10; \\ &\alpha(N+) = 3.8 \times 10^{-5} \ 4 \end{aligned}$
	1318.24 <i>13</i>	0.420 17	1318.355	2+	0	0+	[E2] ^{<}		0.001597 <i>23</i>	$\begin{aligned} \alpha(N) &= 1.14 \times 10^{-5} \ 22; \ \alpha(O) &= 1.8 \times 10^{-6} \ 4; \ \alpha(P) &= 1.2 \times 10^{-7} \ 3; \\ \alpha(IPF) &= 2.44 \times 10^{-5} \ 14 \\ \alpha &= 0.001597 \ 23; \ \alpha(K) &= 0.001338 \ 19; \ \alpha(L) &= 0.000185 \ 3; \\ \alpha(M) &= 4.00 \times 10^{-5} \ 6; \ \alpha(N+) &= 3.42 \times 10^{-5} \ 5 \\ \alpha(N) &= 9.19 \times 10^{-6} \ 13; \ \alpha(O) &= 1.419 \times 10^{-6} \ 20; \ \alpha(P) &= 9.28 \times 10^{-8} \end{aligned}$
	1325.86 7	1.24 3	1941.17	2+	615.38	0+	E2		0.001581 23	<i>13</i> ; α (IPF)=2.35×10 ⁻⁵ <i>4</i> Mult.: 2003Ad25 list M1; but 2 ⁺ to 0 ⁺ transition requires E2. α (K)exp=0.0016 <i>4</i> α =0.001581 <i>23</i> ; α (K)=0.001323 <i>19</i> ; α (L)=0.000183 <i>3</i> ; α (M)=3.96×10 ⁻⁵ <i>6</i> ; α (N+)=3.57×10 ⁻⁵ <i>5</i> α (N)=9.08×10 ⁻⁶ <i>13</i> ; α (O)=1.402×10 ⁻⁶ <i>20</i> ; α (P)=9.18×10 ⁻⁸
8	1336.54 8 1338.5 4	0.196 <i>4</i> 0.019 <i>3</i>	1680.75 2772.40	0+ 2+	344.2790 1434.021	2+ 3+				13; α (IPF)=2.51×10 ⁻⁵ 4
	1342.0 ^{<i>u</i>}		3285.17	2+	1941.17	2+	EO		0.00231 4	α=0.00231 4; α(K)=0.00195 3; α(L)=0.000262 4; α(M)=5.64×10 ⁻⁵ 8; α(N+)=4.71×10 ⁻⁵ 7 α(N)=1.299×10 ⁻⁵ 19; α(O)=2.03×10 ⁻⁶ 3; α(P)=1.400×10 ⁻⁷ 20; α(IPF)=3.19×10 ⁻⁵ 5 Mult.: α(K)exp>0.080 8. E _γ : Energy fit is poor. This transition is not included in the least-squares adjustment. From that adjustment one expects E _γ =1344.0. Mult.: The absence of a γ line and the large α(K)exp
	1348.15 9	1.34 3	1692.43	2+,3+	344.2790	2+	M1+E2	>1.9	0.00162 9	require an E0 component. $\alpha(K)=0.00135 \ 8; \ \alpha(L)=0.000186 \ 10; \ \alpha(M)=4.01\times10^{-5} \ 20; \ \alpha(N+)=4.11\times10^{-5} \ 11$ $\alpha(N)=9.2\times10^{-6} \ 5; \ \alpha(O)=1.43\times10^{-6} \ 8; \ \alpha(P)=9.4\times10^{-8} \ 6; \ \alpha(IPF)=3.04\times10^{-5} \ 6$ $\alpha(K)\exp=0.00120 \ 22$ Mult., δ : $\alpha(K)\exp$ gives E2(+M1) with δ >1.9. δ =-13 +4-7
	1352.98 11	0.046 5	2667.56	1-	1314.638	1-	E0+M1+E2		0.022 5	for J=3 and +12 +9-4 for J=2. $\alpha(K)\exp=0.019 4$ Mult : $\alpha(K)=0.0019$ for M1
	1360.43 <i>11</i> 1363.39 <i>14</i> 1365.69 <i>8</i>	0.0463 <i>21</i> 0.0411 <i>25</i> 0.136 <i>3</i>	1975.72 3006.78 2121.05	1 ⁺ ,2 ⁺ 2 ⁺ 2 ⁺ ,3 ⁻ ,4 ⁺	615.38 1643.428 755.3960	0 ⁺ 2 ⁻ 4 ⁺				where $a(\mathbf{K}) = 0.0019$ for with

 $^{152}_{64}\mathrm{Gd}_{88}\text{--}22$

Т

				152 Tb ε decay	y (17.5 h)	2004AdZZ,2	003Ad25,1970A	d05 (continued)	
						$\gamma(^{152}\text{Gd})$ (con	tinued)		
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	${ m J}_f^\pi$	Mult. ^V	$\delta^{\mathcal{V}}$	α^{α}	Comments
1369.04 9 1372.04 9	0.200 5 0.0773 23	2299.66 2495.18	2,3-	930.560 1123.186	2+ 3-	W	W		α (K)exp=0.0026 7 α (K)exp=0.0019 5 Mult.: See comment on J for the 2495 level.
^x 1375.76 21 ^x 1383.5 ^u 1393.86 9	0.0092 <i>21</i> 0.0726 <i>19</i>	2999.55	1+,2+	1605.60	2+	E0(+M1,E2)			α(K)exp>0.07 1
1400.62 ^{<i>l</i>} 1401.32 ^{<i>l</i>}	0.154^{l} 13 0.090^{l} 8	2523.81 2719.64	2+ 2+	1123.186 1318.355	3- 2+				
1406.16 8	0.160 4	2529.43	2+,3,4+	1123.186	3-				α (K)exp=0.0012 5 Mult.: α (K)exp=0.0012 5 compared with 0.000530 (E1) and 0.00118 (E2) suggests mult=E2; however, placement in the decay scheme requires $\Delta \pi$ =yes.
1410.29 <i>13</i> 1410.82 ^{<i>k</i>}	$0.33^k 2$	2729.17	2+	1318.355	2+	M1+E2 ^{<i>k</i>}	+4.3 +9-13	0.00146 <i>4</i>	$\alpha(K)=0.00120 \ 4; \ \alpha(L)=0.000165 \ 5;$ $\alpha(M)=3.56\times10^{-5} \ 9; \ \alpha(N+)=5.62\times10^{-5} \ 10$ $\alpha(N)=8.17\times10^{-6} \ 21; \ \alpha(O)=1.26\times10^{-6} \ 4;$ $\alpha(P)=8.37\times10^{-8} \ 24; \ \alpha(PE)=4.67\times10^{-5} \ 7$
1411.48 ^k	0.68 ^k 4	1755.77	1-	344.2790	2+	E1 ^{<i>k</i>}		0.000754 11	$\alpha(\mathbf{r}) = 6.57 \times 10^{-24}, \alpha(\mathbf{H} \mathbf{r}) = 4.07 \times 10^{-7}$ $\alpha = 0.000754 \ 11; \ \alpha(\mathbf{K}) = 0.000526 \ 8; \\\alpha(\mathbf{L}) = 6.78 \times 10^{-5} \ 10; \ \alpha(\mathbf{M}) = 1.454 \times 10^{-5}$ $21; \ \alpha(\mathbf{N}+) = 0.0001458 \\\alpha(\mathbf{N}) = 3.34 \times 10^{-6} \ 5; \ \alpha(\mathbf{O}) = 5.19 \times 10^{-7} \ 8; \\\alpha(\mathbf{P}) = 3.55 \times 10^{-8} \ 5; \ \alpha(\mathbf{PF}) = 0.0001419 \ 20$
1414.40 <i>14</i> 1417.18 <i>15</i>	0.0591 <i>21</i> 0.0313 <i>16</i>	2964.30 2540.45	2^{-} 2 ⁺ ,3 ⁺	1550.15 1123.186	4 ⁺ 3 ⁻				
1420.76 8 1424.76 <i>19</i>	0.0863 24 0.0192 18	2544.02 3340.65	1-,2,3,4+	1123.186 1915.76	3 ⁻ 2 ⁺ ,3,4 ⁺				
1427.32 7	0.165 4	1771.58	2+	344.2790	2+	[M1,E2]		0.0017 4	$\begin{aligned} &\alpha = 0.0017 \ 4; \ \alpha(\text{K}) = 0.0014 \ 3; \ \alpha(\text{L}) = 0.00019 \\ &4; \ \alpha(\text{M}) = 4.1 \times 10^{-5} \ 8; \ \alpha(\text{N}+) = 6.5 \times 10^{-5} \ 6 \\ &\alpha(\text{N}) = 9.5 \times 10^{-6} \ 18; \ \alpha(\text{O}) = 1.5 \times 10^{-6} \ 3; \\ &\alpha(\text{P}) = 1.00 \times 10^{-7} \ 21; \ \alpha(\text{IPF}) = 5.4 \times 10^{-5} \ 4 \end{aligned}$
1430.76 7 1434.54 <i>11</i> 1436.67 9 1441.91 8	0.148 <i>6</i> 0.0451 22 0.0665 <i>19</i> 0.182 5	2749.23 2557.87 3042.29 2551.14	2 ⁺ ,3 ⁺ 2 ⁺ 2 ⁺	1318.355 1123.186 1605.60 1109.203	2^+ 3^- 2^+ 2^+				
1446.34 ^{<i>i</i>}	0.131 ^{<i>i</i>} 13	2201.71	2+	755.3960	2 4 ⁺	[E2] ^{<i>i</i>}		0.001372 20	$\begin{aligned} &\alpha = 0.001372 \ 20; \ \alpha(\text{K}) = 0.001120 \ 16; \\ &\alpha(\text{L}) = 0.0001531 \ 22; \ \alpha(\text{M}) = 3.31 \times 10^{-5} \ 5; \\ &\alpha(\text{N}+) = 6.58 \times 10^{-5} \\ &\alpha(\text{N}) = 7.60 \times 10^{-6} \ 11; \ \alpha(\text{O}) = 1.175 \times 10^{-6} \ 17; \\ &\alpha(\text{P}) = 7.77 \times 10^{-8} \ 11; \ \alpha(\text{IPF}) = 5.70 \times 10^{-5} \ 8 \end{aligned}$

From ENSDF

 $^{152}_{64}\text{Gd}_{88}$ -23

 $^{152}_{64}\text{Gd}_{88}\text{--}23$

				152 Tb ε decay	(17.5 h)) 2004AdZZ	,2003Ad25,197(OAd05 (continued)
						$\gamma(^{152}\text{Gd})$ (co	ontinued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. ^V	$\alpha^{\boldsymbol{\alpha}}$	Comments
1446.64 ^{<i>i</i>}	0.256 ^{<i>i</i>} 26	2880.67	2+	1434.021	3+	M1,E2 ⁱ	0.0017 3	$\alpha = 0.0017 \ 3; \ \alpha(\text{K}) = 0.0014 \ 3; \ \alpha(\text{L}) = 0.00019 \ 4; \ \alpha(\text{M}) = 4.0 \times 10^{-5} \\ 8; \ \alpha(\text{N}+) = 7.1 \times 10^{-5} \ 6 \\ \alpha(\text{N}) = 9.2 \times 10^{-6} \ 17; \ \alpha(\text{O}) = 1.4 \times 10^{-6} \ 3; \ \alpha(\text{P}) = 9.8 \times 10^{-8} \ 20; \\ \alpha(\text{IPF}) = 6.1 \times 10^{-5} \ 4$
x1449.4 3 1454.08 12 1457.25 11 x1465.85 18 x1471.45 15	0.0184 21 0.0354 20 0.0290 22 0.0068 22 0.024 4	2772.40 2927.86	2+ 2+,3+	1318.355 1470.63	2 ⁺ 2 ⁺			
1475.04 <i>14</i> 1481.18 8	0.015 5 0.098 5 0.0270 25	2749.23 2604.34	2 ⁺ ,3 ⁺ 1 ⁻ ,2,3 ⁻	1274.26 1123.186	1,2 ⁺ 3 ⁻			
1489.60 <i>10</i>	0.103 3	2598.80	1+,2+	1109.203	2+	M1(+E2)	0.0016 <i>3</i>	α (K)exp=0.0022 8 α =0.0016 3; α (K)=0.00129 24; α (L)=0.00017 3; α (M)=3.8×10 ⁻⁵ 7; α (N+)=8.5×10 ⁻⁵ 7 α (N)=8.7×10 ⁻⁶ 15; α (O)=1.35×10 ⁻⁶ 24; α (P)=9.2×10 ⁻⁸ 19; α (IPF)=7.5×10 ⁻⁵ 5
1491.62 22 1495.44 8 1502.62 10	0.0266 <i>19</i> 0.163 <i>6</i> 0.0240 <i>8</i>	2246.80 1839.71 2258.14	2^+ 2^+ 2^+ , 3.4^+	755.3960 344.2790 755.3960	4^+ 2^+ 4^+	E0+M1+E2	0.0054 11	α (K)exp=0.0047 9
1506.90 8 x1514.61 14	0.078 <i>3</i> 0.016 <i>3</i>	2437.43	2+,0,1 2+	930.560	2+	M1(+E0)	0.0031 6	α (K)exp=0.0027 5
1517.78 ^c	0.80 ^c 6	1862.06	2+	344.2790	2+	M1+E2 ^c	0.0015 3	$\alpha(K)=0.00124\ 23;\ \alpha(L)=0.00017\ 3;\ \alpha(M)=3.6\times10^{-5}\ 7;\ \alpha(N+)=9.5\times10^{-5}\ 7$ $\alpha(N)=8.3\times10^{-6}\ 15;\ \alpha(O)=1.29\times10^{-6}\ 23;\ \alpha(P)=8.8\times10^{-8}\ 18;\ \alpha(IPF)=8.5\times10^{-5}\ 6$ $\delta;\ -0.28\ 5\ (1990Ta19),\ -0.21\ 8\ or\ +4.7\ +27-13\ (1981Fe01),$
1518.02 ^c 1518.38 ^c	0.050 ^c 10 0.175 ^c 13	2133.38 2641.59	1 ⁺ ,2 ⁺ 1 ⁻ ,2 ⁻ ,3	615.38 - 1123.186	0+ 3-	с M1,E2 ^с	0.0015 3	$\alpha = 0.0015 \ 3; \ \alpha(\text{K}) = 0.00124 \ 23; \ \alpha(\text{L}) = 0.00017 \ 3; \\ \alpha(\text{M}) = 3.6 \times 10^{-5} \ 7; \ \alpha(\text{N}+) = 9.5 \times 10^{-5} \ 7 \\ \alpha(\text{N}) = 8.3 \times 10^{-6} \ 15; \ \alpha(\text{O}) = 1.29 \times 10^{-6} \ 23; \ \alpha(\text{P}) = 8.8 \times 10^{-8} \ 18; \\ \alpha(\text{IPF}) = 8.6 \times 10^{-5} \ 6$
1521.57 ^β 16 1530.07 15 ×1532.75 10	0.029 <i>3</i> 0.0155 <i>13</i> 0.0567 <i>18</i>	3214? 2964.30	2-	1692.43 1434.021	2 ⁺ ,3 ⁺ 3 ⁺	M1	0.001773 25	E _γ : Poor fit. See comment on the 3214 level. α (K)exp=0.0018 5 α =0.001773 25; α (K)=0.001433 20; α (L)=0.000192 3; α (M)=4.13×10 ⁻⁵ 6; α (N+)=0.0001076 α (N)=9.51×10 ⁻⁶ 14; α (O)=1.484×10 ⁻⁶ 21; α (P)=1.028×10 ⁻⁷
^x 1535.84 <i>16</i> 1544.29 <i>8</i>	0.0206 <i>17</i> 0.0946 <i>23</i>	2667.56	1-	1123.186	3-			15; α (IPF)=9.65×10 ⁻⁵ 14 E _{γ} : Earlier work placed this transition from the 2299 level.

				152 Tb ε dec	cay (1	.7.5 h) 20	04AdZZ,2003A	d25,1970Ad05 (continued)
						$\gamma(1)$	¹⁵² Gd) (continued	<u>l)</u>	
E_{γ}^{\dagger}	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^V	$\delta^{\mathcal{V}}$	$\alpha^{\boldsymbol{lpha}}$	Comments
1547.95 <i>9</i> 1554.04 <i>16</i>	0.0646 <i>18</i> 0.0213 <i>1</i> 9	2862.66 2169.65	$1^{-},2,3^{-}$	1314.638 615.38	1^{-} 0 ⁺				placement from the 2667 level is established by 2004AdZZ on the basis of coincidence work.
x1558.07 <i>12</i> 1562.45 <i>8</i>	0.0215 <i>17</i> 0.129 <i>3</i>	2880.67	2+	1318.355	2+	M1		0.001713 24	α(K)exp=0.0023 10
1565.97 8	0.159 4	2880.67	2+	1314.638	1-				$\alpha = 0.001713 \ 24; \ \alpha(K) = 0.001371 \ 20; \ \alpha(L) = 0.000183 3; \ \alpha(M) = 3.95 \times 10^{-5} \ 6; \ \alpha(N+) = 0.0001194 \alpha(N) = 9.10 \times 10^{-6} \ 13; \ \alpha(O) = 1.420 \times 10^{-6} \ 20; \alpha(P) = 9.83 \times 10^{-8} \ 14; \ \alpha(IPF) = 0.0001088 \ 16 I_{\gamma}: \ 2004AdZZ \ give \ I_{\gamma} = 0.1594 \ 4. \ The uncertainty quoted here is much too small. \ The minimum uncertainty quoted on the strong well-resolved peaks is 2%. \ The evaluator assumes that the correct value should be 0.159 \ 4. \ The uncertainty in the branching for this transition given in 2003Ad25 is also too small.$
1571.25 8 1575 30 9	0.249 5	1915.76 2330.72	$2^+,3,4^+$ $2^+,3,4^+$	344.2790	$2^+_{4^+}$				
1586.22 7	1.45 3	2709.43	2 ,3,4 2+	1123.186	3-	E1+M2	+0.19 +3-14		$\alpha(K)=0.00052 \ 9; \ \alpha(L)=6.8\times10^{-5} \ 12; \ \alpha(M)=1.5\times10^{-5} \ 3; \ \alpha(N+)=0.000265 \ 8 \ \alpha(N)=3.4\times10^{-6} \ 6; \ \alpha(O)=5.2\times10^{-7} \ 10; \ \alpha(P)=3.6\times10^{-8} \ 7; \ \alpha(IPF)=0.000261 \ 8 \ \alpha(K)\exp=0.00045 \ 9 \ \delta; \ Other; \ -0.34 \ 21 \ (1981Fe01).$
1593.37 9	0.145 4	2523.81	2^{+}	930.560	2^{+}				
1596.49 ^e	0.243 ^e 18	2719.64	2+	1123.186	3-	[E1] ^e		0.000773 11	$\begin{aligned} &\alpha = 0.000773 \ 11; \ \alpha(\text{K}) = 0.000427 \ 6; \ \alpha(\text{L}) = 5.49 \times 10^{-5} \\ &\beta; \ \alpha(\text{M}) = 1.176 \times 10^{-5} \ 17; \ \alpha(\text{N}+) = 0.000279 \ 4 \\ &\alpha(\text{N}) = 2.70 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 4.20 \times 10^{-7} \ 6; \\ &\alpha(\text{P}) = 2.89 \times 10^{-8} \ 4; \ \alpha(\text{IPF}) = 0.000276 \ 4 \\ &\delta: \ \delta(\text{Q/D}) = 0.25 \ 9. \end{aligned}$
1596.88 ^e	0.478 ^e 25	1941.17	2+	344.2790	2+	M1+E2 ^e	-0.28 12	0.00162 4	$\alpha = 0.00162 \ 4; \ \alpha(K) = 0.00128 \ 3; \ \alpha(L) = 0.000171 \ 4; \alpha(M) = 3.68 \times 10^{-5} \ 9; \ \alpha(N+) = 0.0001325 \ 22 \alpha(N) = 8.47 \times 10^{-6} \ 20; \ \alpha(O) = 1.32 \times 10^{-6} \ 4; \alpha(P) = 9.14 \times 10^{-8} \ 23; \ \alpha(IPF) = 0.0001227 \ 20 \delta: From 1990Ta19.$
1598.90 <mark>e</mark> 8	0.346 ^e 8	2529.43	$2^+, 3, 4^+$	930.560	2+	e			
1605.58 ^{&}	0.35 ^{&} 5	1605.60	2+	0	0+	E2 ^{&}		0.001190 17	α =0.001190 <i>17</i> ; α (K)=0.000919 <i>13</i> ; α (L)=0.0001243 <i>18</i> ; α (M)=2.68×10 ⁻⁵ <i>4</i> ; α (N+)=0.000119 α (N)=6.16×10 ⁻⁶ <i>9</i> ; α (O)=9.55×10 ⁻⁷ <i>14</i> ; α (P)=6.38×10 ⁻⁸ <i>9</i> ; α (IPF)=0.0001125 <i>16</i>
1605.98 <mark>&</mark>	0.24 ^{&} 3	2729.17	2+	1123.186	3-	(E1) ^{&}		0.000776 11	α =0.000776 11; α (K)=0.000423 6; α (L)=5.43×10 ⁻⁵

From ENSDF

				¹⁵² Tb ε deca	y (17	.5 h) 2004A	dZZ,2003Ad25,	1970Ad05 (continued)
						$\gamma(^{152}\text{Gd}$	l) (continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^v	$\alpha^{\boldsymbol{\alpha}}$	Comments
								$\frac{1}{8; \alpha(M)=1.165\times10^{-5} \ 17; \alpha(N+)=0.000286 \ 4}{\alpha(N)=2.68\times10^{-6} \ 4; \alpha(O)=4.16\times10^{-7} \ 6; \alpha(P)=2.86\times10^{-8} \ 4; \alpha(PF)=0.000283 \ 4}$
1610.11 <i>19</i> 1613.53 <i>9</i>	0.0248 <i>21</i> 0.082 <i>3</i>	2928.68 2544.02		1318.355 930.560	2^+ 2^+			
$^{x}1620.35\ 20$ $^{x}1622.4\ 4$ $1626.39\ 19$	0.041 3 0.015 3 0.0214 18	3232.06		1605.60	2+			
1631.39 <i>f</i>	0.109 ^{<i>f</i>} 8	1975.72	1+,2+	344.2790	2+	M1(+E2) ^{<i>f</i>}	0.00138 22	$ \begin{array}{l} \alpha = 0.00138 \ 22; \ \alpha(\text{K}) = 0.00107 \ 18; \ \alpha(\text{L}) = 0.000143 \ 23; \\ \alpha(\text{M}) = 3.1 \times 10^{-5} \ 5; \ \alpha(\text{N}+) = 0.000139 \ 10 \\ \alpha(\text{N}) = 7.1 \times 10^{-6} \ 12; \ \alpha(\text{O}) = 1.10 \times 10^{-6} \ 18; \ \alpha(\text{P}) = 7.5 \times 10^{-8} \ 14; \\ \alpha(\text{IPF}) = 0.000131 \ 9 \end{array} $
1631.40 ^{<i>f</i>}	0.252 ^f 15	2246.80	2+	615.38	0+	[E2] ^{<i>f</i>}	0.001168 17	$ \begin{array}{l} \alpha = 0.001168 \ 17; \ \alpha(\mathrm{K}) = 0.000892 \ 13; \ \alpha(\mathrm{L}) = 0.0001205 \ 17; \\ \alpha(\mathrm{M}) = 2.60 \times 10^{-5} \ 4; \ \alpha(\mathrm{N}+) = 0.000129 \\ \alpha(\mathrm{N}) = 5.97 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 9.25 \times 10^{-7} \ 13; \ \alpha(\mathrm{P}) = 6.19 \times 10^{-8} \ 9; \\ \alpha(\mathrm{IPF}) = 0.0001226 \ 18 \end{array} $
1634.0 <i>3</i> 1640.08 <i>9</i>	0.0108 25 0.0684 22	2744.04 2749.23	1 ⁻ 2 ⁺ ,3 ⁺	1109.203 1109.203	2+ 2+	M1	0.001579 23	$\begin{aligned} &\alpha(\text{K}) \exp = 0.0021 \ 9 \\ &\alpha = 0.001579 \ 23; \ \alpha(\text{K}) = 0.001227 \ 18; \ \alpha(\text{L}) = 0.0001638 \ 23; \\ &\alpha(\text{M}) = 3.53 \times 10^{-5} \ 5; \ \alpha(\text{N}+) = 0.000152 \\ &\alpha(\text{N}) = 8.13 \times 10^{-6} \ 12; \ \alpha(\text{O}) = 1.269 \times 10^{-6} \ 18; \ \alpha(\text{P}) = 8.79 \times 10^{-8} \ 13; \\ &\alpha(\text{IPF}) = 0.0001433 \ 20 \end{aligned}$
1645.92 8 1663.67 <i>14</i>	0.105 3 0.067 4	2964.30 2772.40	$\frac{2}{2^{+}}$	1318.355	$\frac{2}{2^+}$	E0+M1+E2	0.0084 28	$\alpha(K) \exp = 0.0073 \ 24$
1667.38 8	1.034 24	2011.67	1+,2+	344.2790	2+	M1+E2	0.00134 20	$\alpha(K)=0.00102 \ 17; \ \alpha(L)=0.000137 \ 22; \ \alpha(M)=2.9\times10^{-5} \ 5; \ \alpha(N+)=0.000155 \ 11$
								α (N)=6.8×10 ⁻⁶ <i>11</i> ; α (O)=1.05×10 ⁻⁶ <i>17</i> ; α (P)=7.2×10 ⁻⁸ <i>13</i> ; α (IPF)=0.000147 <i>10</i>
								$\alpha(K)=0.001165 \ 17; \ \alpha(L)=0.0001556 \ 23; \ \alpha(M)=3.35\times10^{-5} \ 5; \ \alpha(N+)=0.0001643 \ 24$
								$\alpha(N) = 7.72 \times 10^{-5} 12; \ \alpha(O) = 1.204 \times 10^{-5} 18; \ \alpha(P) = 8.54 \times 10^{-5} 15; \ \alpha(IPF) = 0.0001552 \ 22 \ \alpha(K) = 0.00130 \ 24$
								Mult., δ : α (K)exp is consistent with M1 or E2. δ =+0.29 +9-8 for J(2011 level)=2 (1981Fe01). 1990Ta19 report δ =+0.26 3 for J=3.
1681.53 8 x1685.28 16 x1687.69 11	0.0657 <i>17</i> 0.0163 <i>12</i> 0.0211 <i>13</i>	2729.17	2+	1047.78	0^{+}			Both works require a mixed M1+E2 mult for $J=1$ also.
1690.68 9 1694.60 <i>13</i> 1711.02 9	0.0211 15 0.0306 13 0.0264 12 0.0336 11	3009.23 3009.23 2641.59	3- 3- 1-,2-,3-	1318.355 1314.638 930.560	2+ 1- 2+			

From ENSDF

				152 Tb ε deca	y (17.5	h) 2004AdZ	Z,2003Ad25,19	ued)	
						$\gamma(^{152}\text{Gd})$ (continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. ^v	$\delta^{\mathcal{V}}$	$\alpha^{\boldsymbol{\alpha}}$	Comments
1714.65 25 1727.72 8 1732.42 11 ^x 1735.8 ^u	0.0066 9 0.116 3 0.0182 16	2989.03 3042.29 3006.78	2+ 2+	1274.26 1314.638 1274.26	$1,2^+$ 1^- $1,2^+$	E0(+M1,E2)			α(K)exp>0.042 7
1737.03 9 1739.46 8 ×1748 34 14	0.0655 <i>17</i> 0.121 <i>3</i> 0.0068 7	2667.56 2862.66	1 ⁻ 1 ⁻ ,2,3 ⁻	930.560 1123.186	2+ 3-	2			α(K)exp=0.00135 30
1748.34 14	1.016 23	2880.67	2+	1123.186	3-	(E1)		0.000820 12	α(K)exp=0.00063 13 α=0.000820 12; α(K)=0.000365 6; $α(L)=4.67 \times 10^{-5} 7; α(M)=1.000 \times 10^{-5} 14;$ α(N+)=0.000399 6 $α(N)=2.30 \times 10^{-6} 4; α(O)=3.58 \times 10^{-7} 5;$ $α(P)=2.46 \times 10^{-8} 4; α(IPF)=0.000396 6$ Mult.: $α(K)exp$ lies between the theoretical values for E1 and E2. The placement in the decay scheme requires $\Delta \pi$ =yes, for which $α(K)=0.000365$.
1761.22 16	0.089 5	3079.66	2+,3,4+	1318.355	2+	E2			$\alpha(K)$ exp=0.00062 <i>19</i> Mult.: $\alpha(K)$ exp=0.0062 <i>19</i> given in 2004AdZZ is a mismit. The correct value is 0.00062 <i>10</i>
1771.43 8 1776.3 <i>3</i>	0.518 11	2880.67	2+ 2+.34+	1109.203 344.2790	2 ⁺	M1		0.001412 20	$\alpha(K)\exp=0.00141\ 27$ $\alpha=0.001412\ 20;\ \alpha(K)=0.001030\ 15;$ $\alpha(L)=0.0001371\ 20;\ \alpha(M)=2.95\times10^{-5}\ 5;$ $\alpha(N+)=0.000216$ $\alpha(N)=6.80\times10^{-6}\ 10;\ \alpha(O)=1.062\times10^{-6}\ 15;$ $\alpha(P)=7.37\times10^{-8}\ 11;\ \alpha(IPF)=0.000208\ 3$
1778.78 9 1785.15 <i>11</i>	0.165 5	2709.43	2 ⁺ ,3 ⁺	930.560 755.3960	2+ 4+	M1+E2		0.00124 17	$\begin{aligned} &\alpha(\mathbf{K}) \exp[=0.0016 \ 4 \\ &\alpha=0.00124 \ 17; \ \alpha(\mathbf{K})=0.00089 \ 13; \\ &\alpha(\mathbf{L})=0.000119 \ 18; \ \alpha(\mathbf{M})=2.6\times10^{-5} \ 4; \\ &\alpha(\mathbf{N}+)=0.000205 \ 15 \\ &\alpha(\mathbf{N})=5.9\times10^{-6} \ 9; \ \alpha(\mathbf{O})=9.2\times10^{-7} \ 14; \\ &\alpha(\mathbf{P})=6.3\times10^{-8} \ 11; \ \alpha(\mathbf{IPF})=0.000198 \ 14 \\ &\delta: \ \delta=-0.26 \ 10 \ \mathrm{or} \ +5.9 \ +70-22. \end{aligned}$
1789.11 ^h	0.755 ^h 20	2133.38	1+,2+	344.2790	2+	M1 ^{<i>h</i>}		0.001394 20	$\alpha = 0.001394 \ 20; \ \alpha(K) = 0.001007 \ 14; \\ \alpha(L) = 0.0001340 \ 19; \ \alpha(M) = 2.89 \times 10^{-5} \ 4; \\ \alpha(N+) = 0.000225 \\ \alpha(N) = 6.65 \times 10^{-6} \ 10; \ \alpha(O) = 1.038 \times 10^{-6} \ 15; \\ \alpha(P) = 7.20 \times 10^{-8} \ 10; \ \alpha(IPF) = 0.000217 \ 3 \\ \alpha(IPF) = $
1789.12 ^h	0.144 ^h 11	2719.64	2+	930.560	2+	M1+E2 ^{<i>h</i>}	+0.26 +9-6	0.00137 3	α (K)=0.000990 <i>19</i> ; α (L)=0.0001319 <i>24</i> ; α (M)=2.84×10 ⁻⁵ <i>6</i> ; α (N+)=0.000223 <i>4</i>

From ENSDF

				152 Tb ε dec	ay (1	7.5 h) 20)4AdZZ,	2003Ad25,1970	Ad05 (continued)
						$\gamma(^{15}$	² Gd) (co	ntinued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^{π}	Mult. ^V	$\delta^{\mathcal{V}}$	$\alpha^{\boldsymbol{lpha}}$	Comments
1792.71 14	0.080 6	3074.85	2+,3,4+	1282.25	4 ⁺				α (N)=6.54×10 ⁻⁶ <i>12</i> ; α (O)=1.021×10 ⁻⁶ <i>19</i> ; α (P)=7.07×10 ⁻⁸ <i>14</i> ; α (IPF)=0.000215 <i>4</i> δ : Other: -0.13 <i>10</i> (1981Fe01).
1796.83 <i>14</i> 1798.45 <i>9</i>	0.083 5 0.158 6	2920.10 2729.17	2+	1123.186 930.560	3 ⁻ 2 ⁺	E2(+M1)	≥14.3	0.001066 15	$\begin{aligned} &\alpha(\text{K}) \exp = 0.00092 \ 4; \ \delta \ge 14.3 \\ &\alpha = 0.001066 \ 15; \ \alpha(\text{K}) = 0.000745 \ 11; \ \alpha(\text{L}) = 9.97 \times 10^{-5} \ 14; \\ &\alpha(\text{M}) = 2.15 \times 10^{-5} \ 3; \ \alpha(\text{N}+) = 0.000200 \ 3 \\ &\alpha(\text{N}) = 4.94 \times 10^{-6} \ 7; \ \alpha(\text{O}) = 7.66 \times 10^{-7} \ 11; \ \alpha(\text{P}) = 5.17 \times 10^{-8} \ 8; \end{aligned}$
1802.67 9 1809.53 10 1811.3 3 1818.56 9	0.102 <i>3</i> 0.127 <i>4</i> 0.025 <i>3</i> 0.093 <i>3</i>	2557.87 2932.71 2920.10 2927.86	2+ 2+ 2+,3+	755.3960 1123.186 1109.203 1109.203	4 ⁺ 3 ⁻ 2 ⁺ 2 ⁺	M1,E2		0.00121 <i>16</i>	α (IPF)=0.000194 3 α (K)exp=0.0016 6
1925 27 0	0.228.5	21/0 /5	2+	244 2700	2+				$ \begin{array}{l} \alpha = 0.00121 \ 16; \ \alpha(\mathrm{K}) = 0.00085 \ 12; \ \alpha(\mathrm{L}) = 0.000113 \ 16; \\ \alpha(\mathrm{M}) = 2.4 \times 10^{-5} \ 4; \ \alpha(\mathrm{N}+) = 0.000224 \ 16 \\ \alpha(\mathrm{N}) = 5.6 \times 10^{-6} \ 8; \ \alpha(\mathrm{O}) = 8.7 \times 10^{-7} \ 13; \ \alpha(\mathrm{P}) = 6.0 \times 10^{-8} \ 10; \\ \alpha(\mathrm{IPF}) = 0.000217 \ 15 \\ \mathrm{S}_{\mathrm{S}} \ \mathrm{s} \ \mathrm{s}_{\mathrm{S}} \ \mathrm{s}_{\mathrm{S}}$
1825.57 9 1841.15 ⁿ	$0.238\ 3$ $0.082^{n}\ 10$	2964.30	2 ⁻	1123.186	2 ⁻ 3 ⁻	M1,E2 ⁿ		0.00120 15	
1841.81 ⁿ	0.041 ⁿ 5	2772.40	2+	930.560	2 ⁺	M1,E2 ⁿ		0.00120 15	$\begin{aligned} &\alpha(\mathbf{M}) = 2.4 \times 10^{-5} \ 4; \ \alpha(\mathbf{N}+) = 0.000235 \ 17 \\ &\alpha(\mathbf{N}) = 5.5 \times 10^{-6} \ 8; \ \alpha(\mathbf{O}) = 8.5 \times 10^{-7} \ 12; \ \alpha(\mathbf{P}) = 5.8 \times 10^{-8} \ 9; \\ &\alpha(\mathbf{IPF}) = 0.000228 \ 16 \\ &\alpha = 0.00120 \ 15; \ \alpha(\mathbf{K}) = 0.00083 \ 12; \ \alpha(\mathbf{L}) = 0.000110 \ 16; \end{aligned}$
^x 1844.83 <i>12</i>	0.0227 11								$\alpha(M)=2.4\times10^{-5} 4; \ \alpha(N+)=0.000235 \ 17$ $\alpha(N)=5.5\times10^{-6} 8; \ \alpha(O)=8.5\times10^{-7} \ 12; \ \alpha(P)=5.8\times10^{-8} 9;$ $\alpha(IPF)=0.000229 \ 16$
1857.48 8	0.272 6	2201.71	2+	344.2790	2+	M1+E2		0.00119 <i>15</i>	$\begin{aligned} &\alpha(\text{K}) \exp[=0.00076\ 28\\ &\alpha=0.00119\ 15;\ \alpha(\text{K})=0.00081\ 12;\ \alpha(\text{L})=0.000108\ 15;\\ &\alpha(\text{M})=2.3\times10^{-5}\ 4;\ \alpha(\text{N}+)=0.000243\ 17\\ &\alpha(\text{N})=5.4\times10^{-6}\ 8;\ \alpha(\text{O})=8.4\times10^{-7}\ 12;\ \alpha(\text{P})=5.7\times10^{-8}\ 9;\\ &\alpha(\text{IPF})=0.000236\ 16\\ &\delta:\ \delta=-0.8\ +2-5\ \text{or}\ -4\ +2-4\ (1990\text{Ta}19)\ \text{as reanalyzed by the}\\ &\text{evaluator for J=2. The authors assumed J=3. Other:}\\ &1981\text{Fe01, also analyzed for J=3.}\end{aligned}$
1861.94 8	0.720 15	1861.89	2+	0	0+	(E2)		0.001040 15	$\begin{array}{l} \alpha(\text{K}) \exp = 0.00085 \ 24 \\ \alpha = 0.001040 \ 15; \ \alpha(\text{K}) = 0.000698 \ 10; \ \alpha(\text{L}) = 9.32 \times 10^{-5} \ 13; \\ \alpha(\text{M}) = 2.01 \times 10^{-5} \ 3; \ \alpha(\text{N}+) = 0.000228 \ 4 \end{array}$

				¹⁵² Tb ε deca	ıy (17	.5 h) 2004A	dZZ,2003A	d25,1970Ad05	(continued)
						γ ⁽¹⁵² Ge	l) (continue	ed)	
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult. ^V	$\delta^{\mathcal{V}}$	$\alpha^{\boldsymbol{lpha}}$	Comments
									$\alpha(N)=4.61\times10^{-6} 7; \ \alpha(O)=7.16\times10^{-7} \ 10;$ $\alpha(P)=4.84\times10^{-8} 7; \ \alpha(IPF)=0.000223 \ 4$ Mult.: $\alpha(K)$ exp is consistent with mult=M1 or E2; however, placement in the decay scheme requires $\Delta I=2$
1870.55 <i>18</i> *1875 35 <i>12</i>	0.0119 <i>16</i> 0.0238 <i>18</i>	3152.89	3-	1282.25	4+				<u> </u>
1886.08 <i>13</i> x1891.45 <i>17</i>	0.046 <i>3</i> 0.062 <i>3</i>	3009.23	3-	1123.186	3-	E0+M1+E2 (M1,E2)		0.00117 14	$\begin{aligned} &\alpha(\text{K}) \exp = 0.0036 \ 11 \\ &\alpha(\text{K}) \exp = 0.0024 \ 10 \\ &\alpha = 0.00117 \ 14; \ \alpha(\text{K}) = 0.00078 \ 11; \ \alpha(\text{L}) = 0.000104 \ 14; \\ &\alpha(\text{M}) = 2.2 \times 10^{-5} \ 3; \ \alpha(\text{N}+) = 0.000259 \ 18 \\ &\alpha(\text{N}) = 5.2 \times 10^{-6} \ 7; \ \alpha(\text{O}) = 8.0 \times 10^{-7} \ 11; \ \alpha(\text{P}) = 5.5 \times 10^{-8} \\ &9; \ \alpha(\text{IPF}) = 0.000253 \ 18 \end{aligned}$
^x 1896.52 21 1902.49 ^m	0.053 <i>4</i> 2.66 ^m 6	2246.80	2+	344.2790	2+	M1+E2 ^m	-0.11 4	0.001297 <i>19</i>	$\begin{aligned} &\alpha(\text{K}) \exp = 0.00092 \ 17 \\ &\alpha = 0.001297 \ 19; \ \alpha(\text{K}) = 0.000874 \ 13; \ \alpha(\text{L}) = 0.0001161 \\ &17; \ \alpha(\text{M}) = 2.50 \times 10^{-5} \ 4; \ \alpha(\text{N}+) = 0.000282 \\ &\alpha(\text{N}) = 5.76 \times 10^{-6} \ 9; \ \alpha(\text{O}) = 8.99 \times 10^{-7} \ 13; \\ &\alpha(\text{P}) = 6.24 \times 10^{-8} \ 9; \ \alpha(\text{IPF}) = 0.000275 \ 4 \\ &\text{Mult: The value of } \alpha(\text{K}) \exp = 0.092 \ 17 \ \text{given in} \\ &2003\text{Ad25 is a misprint. The correct value is given in} \\ &2004\text{AdZZ.} \end{aligned}$
1902.87 ^m ^x 1907.51 <i>18</i>	0.021 ^{<i>m</i>} 4 0.041 3	3012.37	2+,3+,4+	1109.203	2+	m (M1)		0.001297 <i>19</i>	$\begin{aligned} &\alpha(\text{K}) \exp = 0.0036 \ 16 \\ &\alpha = 0.001297 \ 19; \ \alpha(\text{K}) = 0.000871 \ 13; \ \alpha(\text{L}) = 0.0001157 \\ &17; \ \alpha(\text{M}) = 2.49 \times 10^{-5} \ 4; \ \alpha(\text{N}+) = 0.000285 \\ &\alpha(\text{N}) = 5.74 \times 10^{-6} \ 8; \ \alpha(\text{O}) = 8.96 \times 10^{-7} \ 13; \\ &\alpha(\text{P}) = 6.22 \times 10^{-8} \ 9; \ \alpha(\text{IPF}) = 0.000278 \ 4 \end{aligned}$
^x 1914.71 <i>13</i> 1917.55 <i>15</i> 1921.00 8	0.080 <i>3</i> 0.0514 <i>13</i> 0.661 <i>14</i>	3232.06 2265.29	1+,2+,3+	1314.638 344.2790	1 ⁻ 2 ⁺	M1+E2		0.00115 14	α (K)exp=0.00092 21 α =0.00115 14; α (K)=0.00076 10; α (L)=0.000101 14; α (M)=2.2×10 ⁻⁵ 3; α (N+)=0.000274 19 α (N)=5.0×10 ⁻⁶ 7; α (O)=7.8×10 ⁻⁷ 11; α (P)=5.3×10 ⁻⁸ 8; α (IPF)=0.000268 19 δ ; δ =-0.23 +9-13, -0.27 3, +0.22 3 for J ^π =1 ⁺ , 2 ⁺ , and
1932.94 <i>12</i>	0.057 3	3042.29	2+	1109.203	2+	M1,E2		0.00115 14	3 ⁺ , respectively. α (K)exp=0.00083 22 α =0.00115 14; α (K)=0.00075 10; α (L)=0.000100 13; α (M)=2.1×10 ⁻⁵ 3; α (N+)=0.000280 20 α (N)=4.9×10 ⁻⁶ 7; α (O)=7.7×10 ⁻⁷ 11; α (P)=5.3×10 ⁻⁸ 8: α (PE)=0.000274 19
1941.23 8	1.108 23	1941.17	2+	0	0^+	(E2)		0.001016 15	$\alpha(K) \exp[=0.00047 \ 11]$

From ENSDF

				¹⁵² Tb ε dec	ay (1'	7.5 h) 2004Ad	ZZ,200	3Ad25,1970A	Ad05 (continued)
						γ ⁽¹⁵² Gd)	(contir	nued)	
E_{γ}^{\dagger}	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^v	α^{α}	Comments	
1944.8	<0.003	3067.42	3-	1123.186	3-	E0(+M1,E2)	_		
^x 1951.17 <i>19</i>	0.039 3								then ice≈0.0002.
1955.36 8 ^x 1962.9 ^u	0.548 12	2299.66	2,3-	344.2790	2+	w E0			α (K)exp=0.00031 9 α (K)exp>0.030 12
1965.42 <i>19</i> ^x 1967.9 <i>5</i>	0.0241 <i>14</i> 0.0089 <i>13</i>	3074.85	2+,3,4+	1109.203	2+				
1970.49 <i>9</i> 1975.65 8 ^x 1979.93 <i>19</i>	0.0781 <i>21</i> 0.118 <i>3</i> 0.0072 <i>12</i>	3285.17 1975.72	2+ 1+,2+	1314.638 0	1^{-} 0 ⁺				
1983.41 8 1986.8 4 1993.87 8 2004.93 17	0.114 <i>3</i> 0.0075 <i>15</i> 0.144 <i>3</i> 0.0109 9	2598.80 2330.72 2749.23 3232.06	$1^+, 2^+$ $2^+, 3, 4^+$ $2^+, 3^+$	615.38 344.2790 755.3960	0^+ 2^+ 4^+ 6^+				
x2014.48 20	0.0109 9	5252.00		1227.50	0	M1(+E0)	0	0.0074 <i>30</i>	$\alpha(K) \exp = 0.0064\ 26$
^x 2018.09 <i>14</i>	0.0300 12					M1,E2 ⁶	0	0.00112 12	$\begin{aligned} &\alpha = 0.00112 \ 12; \ \alpha(\text{K}) = 0.00069 \ 9; \ \alpha(\text{L}) = 9.1 \times 10^{-5} \ 11; \\ &\alpha(\text{M}) = 1.96 \times 10^{-5} \ 24; \ \alpha(\text{N}+) = 0.000323 \ 23 \\ &\alpha(\text{N}) = 4.5 \times 10^{-6} \ 6; \ \alpha(\text{O}) = 7.0 \times 10^{-7} \ 9; \ \alpha(\text{P}) = 4.8 \times 10^{-8} \ 7; \\ &\alpha(\text{IPF}) = 0.000317 \ 23 \end{aligned}$
2020.67 <i>14</i>	0.0190 11	3143.97	3-	1123.186	3-	M1,E2 ⁶	0	0.00112 12	$\alpha = 0.00112 \ 12; \ \alpha(\text{K}) = 0.00068 \ 9; \ \alpha(\text{L}) = 9.1 \times 10^{-5} \ 11; \alpha(\text{M}) = 1.95 \times 10^{-5} \ 24; \ \alpha(\text{N}+) = 0.000324 \ 23 \alpha(\text{N}) = 4.5 \times 10^{-6} \ 6; \ \alpha(\text{O}) = 7.0 \times 10^{-7} \ 9; \ \alpha(\text{P}) = 4.8 \times 10^{-8} \ 7; \alpha(\text{IPF}) = 0.000319 \ 23 (K) = 0.00219 \ 25 $
~2029.5** 2033.89 9	0.216 5	2964.30	2-	930.560	2+	EU E1	0	0.000934 <i>13</i>	$\begin{array}{l} \alpha(K)\exp>0.012 \ 5\\ \alpha(K)\exp=0.00036 \ 9\\ \alpha=0.000934 \ 13; \ \alpha(K)=0.000288 \ 4; \ \alpha(L)=3.68\times10^{-5} \ 6;\\ \alpha(M)=7.87\times10^{-6} \ 11; \ \alpha(N+)=0.000601 \ 9\\ \alpha(N)=1.81\times10^{-6} \ 3; \ \alpha(O)=2.82\times10^{-7} \ 4; \ \alpha(P)=1.95\times10^{-8} \ 3;\\ \alpha(IPF)=0.000599 \ 9\\ \delta; \ \delta\leq 0.37 \ \text{from } \alpha(K)\exp. \ \text{Other: } <5.9 \ (1990Ta19). \end{array}$
2042.67 ⁰	0.1100 8	2386.95	$(2)^{+}$	344.2790	2^+	$M1 + E2(+E0)^{o}$			- · · · · · · · · · · · · · · · · · · ·
2043.63 ⁰	0.016 ⁰ 4	3358.27	2+	1314.638	1-	[E1] ⁰⁷	0	0.000938 14	α =0.000938 <i>14</i> ; α (K)=0.000286 <i>4</i> ; α (L)=3.65×10 ⁻⁵ <i>6</i> ;

 $^{152}_{64}\text{Gd}_{88}\text{--}30$

From ENSDF

 $^{152}_{64}\mathrm{Gd}_{88}\mathrm{-30}$

				¹⁵² Τb ε d	ecay	(17.5 h) 2004 A	dZZ,2003Ad25,	1970Ad05 (continued)
						γ (¹⁵² Gd	l) (continued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^v	α^{α}	Comments
2043.79 ⁰	0.030 ⁰ 4	3152.89	3-	1109.203	2+	[E1] ⁰	0.000938 14	$\begin{aligned} &\alpha(\mathrm{M}) = 7.81 \times 10^{-6} \ 11; \ \alpha(\mathrm{N}+) = 0.000608 \ 9 \\ &\alpha(\mathrm{N}) = 1.79 \times 10^{-6} \ 3; \ \alpha(\mathrm{O}) = 2.80 \times 10^{-7} \ 4; \ \alpha(\mathrm{P}) = 1.93 \times 10^{-8} \ 3; \\ &\alpha(\mathrm{IPF}) = 0.000606 \ 9 \\ &\alpha = 0.000938 \ 14; \ \alpha(\mathrm{K}) = 0.000286 \ 4; \ \alpha(\mathrm{L}) = 3.65 \times 10^{-5} \ 6; \\ &\alpha(\mathrm{M}) = 7.81 \times 10^{-6} \ 11; \ \alpha(\mathrm{N}+) = 0.000608 \ 9 \\ &\alpha(\mathrm{N}) = 1.79 \times 10^{-6} \ 3; \ \alpha(\mathrm{O}) = 2.80 \times 10^{-7} \ 4; \ \alpha(\mathrm{P}) = 1.93 \times 10^{-8} \ 3; \\ &\alpha(\mathrm{IPF}) = 0.000606 \ 9 \end{aligned}$
x2051.26 11 2058.47 9 x2064.90 16	0.0406 <i>14</i> 0.0148 <i>13</i> 0.0124 <i>16</i>	2989.03		930.560	2+	(M1+E2+E0)	0.00111 12	$\alpha(K)\exp=0.011 \ 4$ $\alpha=0.00111 \ 12; \ \alpha(K)=0.00065 \ 8; \ \alpha(L)=8.7\times10^{-5} \ 11;$ $\alpha(M)=1.86\times10^{-5} \ 22; \ \alpha(N+)=0.000346 \ 25$ $\alpha(N)=4.3\times10^{-6} \ 5; \ \alpha(O)=6.7\times10^{-7} \ 8; \ \alpha(P)=4.6\times10^{-8} \ 6;$
2069.00 8	0.145 3	2999.55	1+,2+	930.560	2+	M1,E2	0.00110 12	$\alpha(\text{IPF})=0.000341\ 25$ $\alpha(\text{K})\exp=0.00075\ 17$ $\alpha=0.00110\ 12;\ \alpha(\text{K})=0.00065\ 8;\ \alpha(\text{L})=8.6\times10^{-5}\ 10;$ $\alpha(\text{M})=1.86\times10^{-5}\ 22;\ \alpha(\text{N}+)=0.000348\ 25$ $\alpha(\text{N})=4.3\times10^{-6}\ 5;\ \alpha(\text{O})=6.7\times10^{-7}\ 8;\ \alpha(\text{P})=4.6\times10^{-8}\ 6;$ $\alpha(\text{IPF})=0.000343\ 25$
^x 2073.51 <i>17</i> 2076.21 <i>10</i>	0.0179 <i>21</i> 0.0593 <i>23</i>	3006.78	2+	930.560	2+	M1 ³	0.00110 <i>12</i>	$\alpha = 0.00110 \ 12; \ \alpha(K) = 0.00065 \ 8; \ \alpha(L) = 8.6 \times 10^{-5} \ 10; \\ \alpha(M) = 1.84 \times 10^{-5} \ 22; \ \alpha(N+) = 0.00035 \ 3 \\ \alpha(N) = 4.2 \times 10^{-6} \ 5; \ \alpha(O) = 6.6 \times 10^{-7} \ 8; \ \alpha(P) = 4.6 \times 10^{-8} \ 6; \\ \alpha(IPF) = 0.000347 \ 25 \\ Mult.: \ \alpha(K) exp \ is \ somewhat \ larger \ than \ \alpha(K) \ for \ M1, \ suggesting$
2078.63 <i>9</i> *2082.22 <i>18</i>	0.0521 24	3009.23	3-	930.560	2+	[E1] ³	0.000953 14	a possible E0 component. α =0.000953 <i>14</i> ; α (K)=0.000278 <i>4</i> ; α (L)=3.55×10 ⁻⁵ <i>5</i> ; α (M)=7.60×10 ⁻⁶ <i>11</i> ; α (N+)=0.000632 <i>9</i> α (N)=1.746×10 ⁻⁶ <i>25</i> ; α (O)=2.72×10 ⁻⁷ <i>4</i> ; α (P)=1.88×10 ⁻⁸ <i>3</i> ; α (IPF)=0.000630 <i>9</i>
^x 2086.20 <i>10</i> 2093.16 ^p 2094.05 ^p	0.0447 <i>15</i> 0.211 ^{<i>p</i>} <i>18</i> 0.122 ^{<i>p</i>} <i>11</i>	2437.43 2709.43	2+ 2+	344.2790 615.38	2+ 0+	M1+E2(+E0) ^{<i>p</i>} [E2] ^{<i>p</i>}	0.0018 <i>4</i> 0.000990 <i>14</i>	$\alpha = 0.000990 \ I4; \ \alpha(K) = 0.000564 \ 8; \ \alpha(L) = 7.46 \times 10^{-5} \ II; \\ \alpha(M) = 1.604 \times 10^{-5} \ 23; \ \alpha(N+) = 0.000336 \\ \alpha(N) = 3.69 \times 10^{-6} \ 6; \ \alpha(O) = 5.73 \times 10^{-7} \ 8; \ \alpha(P) = 3.91 \times 10^{-8} \ 6; \\ \alpha(PE) = 0.000331 \ 5$
2103.54 ^{<i>q</i>}	0.047 ^{<i>q</i>} 10	2448.01	+	344.2790	2+	M1,E2 ^{<i>q</i>}	0.00110 11	$\alpha(M) = 0.000551 \ \beta$ $\alpha = 0.00110 \ 11; \ \alpha(K) = 0.00063 \ 7; \ \alpha(L) = 8.3 \times 10^{-5} \ 10; \alpha(M) = 1.79 \times 10^{-5} \ 21; \ \alpha(N+) = 0.00037 \ 3 \alpha(N) = 4.1 \times 10^{-6} \ 5; \ \alpha(O) = 6.4 \times 10^{-7} \ 8; \ \alpha(P) = 4.4 \times 10^{-8} \ 6; \alpha(PF) = 0.00036 \ 3$
2104.30 ⁹	0.054 ^{<i>q</i>} 12	2719.64	2+	615.38	0^+	[E2] ^{<i>q</i>}	0.000989 14	$\alpha = 0.000989 \ 14; \ \alpha(K) = 0.000559 \ 8; \ \alpha(L) = 7.39 \times 10^{-5} \ 11;$

			1	52 Tb ε decay	(17.5	h) 200	4AdZZ,2003Ad	125,1970Ad05 (continued)
						$\gamma(^{152}$	Gd) (continued)	<u>)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult. ^v	$\alpha^{\boldsymbol{\alpha}}$	Comments
2113.70 9	0.136 <i>3</i>	2729.17	2+	615.38	0+	(E2)	0.000988 14	$\alpha(M)=1.589\times10^{-5} 23; \ \alpha(N+)=0.000341$ $\alpha(N)=3.65\times10^{-6} 6; \ \alpha(O)=5.68\times10^{-7} 8; \ \alpha(P)=3.87\times10^{-8} 6;$ $\alpha(IPF)=0.000336 5$ $\alpha(K)\exp=0.00070 17$ $\alpha=0.000988 14; \ \alpha(K)=0.000554 8; \ \alpha(L)=7.33\times10^{-5} 11;$ $\alpha(M)=1.576\times10^{-5} 22; \ \alpha(N+)=0.000345$ $\alpha(N)=3.62\times10^{-6} 5; \ \alpha(O)=5.63\times10^{-7} 8; \ \alpha(P)=3.84\times10^{-8} 6;$
2118.66 9	0.0874 23	2734.07		615.38	0+	M1	0.00120	α(IPF)=0.000341 5 Mult.: $α(K)exp$ allows mult=M1 or E2; however, placement in the decay scheme requires $ΔJ=2$. $α(K)=0.000688 10; α(L)=9.12×10^{-5} 13; α(M)=1.96×10^{-5} 3; α(N+)=0.000400 6$ $α(N)=4.52×10^{-6} 7; α(O)=7.06×10^{-7} 10; α(P)=4.91×10^{-8} 7; α(IPF)=0.000394 6$ $α(K)exp=0.0010 4$
^x 2127.99 <i>11</i> ^x 2140.35 <i>16</i> 2150.85 <i>8</i>	0.0530 <i>21</i> 0.0260 <i>14</i> 0.352 <i>7</i>	2495.18		344.2790	2+			$\alpha(K)\exp=0.00066$ 12 Mult - See comment on L for the 2405 level
2158.72 10	0.110 3	2914.19	2+	755.3960	4+	(E2)	0.000986 14	α(K) exp=0.00054 18 α=0.000986 14; α(K)=0.000534 8; α(L)=7.04×10-5 10; α(M)=1.515×10-5 22; α(N+)=0.000366 α(N)=3.48×10-6 5; α(O)=5.42×10-7 8; α(P)=3.70×10-8 6; α(IPF)=0.000362 5 Mult.: α(K)exp gives mult=M1 or E2. Placement in the decay
2162.05.15	0.0511.24	3285 17	2+	1123 186	3-			scheme requires $\Delta J=2$.
2162.05 15 2168.44 ^r	$0.082^r 20$	3099.02	1 ⁺ ,2 ⁺ ,3 ⁺	930.560	2^{+}	r		
2169.16 ^r 2172.45 ^r 11 ×2176.44 11	0.064 ^r 18 0.0494 ^r 17 0.0575 18	2513.9 2927.86	1,2 ⁺ 2 ⁺ ,3 ⁺	344.2790 755.3960	2+ 4+	r r		
2179.42 11	0.0930 25	2523.81	2+	344.2790	2+	M1 ^{<i>x</i>}	0.001183 17	α =0.001183 <i>17</i> ; α (K)=0.000646 <i>9</i> ; α (L)=8.56×10 ⁻⁵ <i>12</i> ; α (M)=1.84×10 ⁻⁵ <i>3</i> ; α (N+)=0.000433 <i>6</i> α (N)=4.24×10 ⁻⁶ <i>6</i> ; α (O)=6.62×10 ⁻⁷ <i>10</i> ; α (P)=4.61×10 ⁻⁸ <i>7</i> ; α (PE)=0.000428 <i>6</i>
2182.10 15	0.0394 19	3112.53	1+,2+	930.560	2+	M1 ^{<i>x</i>}	0.001183 17	$\alpha(\text{M} \text{I}) = 0.000426 \alpha(\text{M}) = 0.000645 \alpha(\text{L}) = 8.53 \times 10^{-5} $
2185.24 9	0.358 7	2529.43	2+,3,4+	344.2790	2+	M1	0.00118	$\alpha(\mathbf{M}) = 0.000425 \ 0 \\ \alpha(\mathbf{K}) = 0.00058 \ 17 \\ \alpha(\mathbf{K}) = 0.000642 \ 9; \ \alpha(\mathbf{L}) = 8.51 \times 10^{-5} \ 12; \ \alpha(\mathbf{M}) = 1.83 \times 10^{-5} \ 3; \\ \alpha(\mathbf{N}+) = 0.000436 \ 7$

From ENSDF

Т

				¹⁵² Tb ε decay	y (17.	5 h) 200	94AdZZ,2003Ad	125,1970Ad05 (continued)
						$\gamma(^{15})$	² Gd) (continued)	<u>)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^V	$\alpha^{\boldsymbol{\alpha}}$	Comments
Y2102 22 10	0.0157.11				_			$\begin{aligned} &\alpha(\text{N})=4.22\times10^{-6}\ 6;\ \alpha(\text{O})=6.58\times10^{-7}\ 10;\ \alpha(\text{P})=4.58\times10^{-8}\ 7;\\ &\alpha(\text{IPF})=0.000431\ 6\\ &\text{Mult.,}\delta:\ \alpha(\text{K})\text{exp gives mult}=\text{M1,E2.}\ \gamma(\theta,\text{H,t})\ \text{gives}\ \delta=-0.06\ 9\\ &(1990\text{Ta19}). \end{aligned}$
2192.22 <i>10</i> 2196.20 <i>10</i>	0.0137 11	2540.45	2+,3+	344.2790	2+	M1	0.001180 <i>17</i>	$\begin{aligned} &\alpha(\text{K})\exp=0.00101\ 29\\ &\alpha=0.001180\ 17;\ \alpha(\text{K})=0.000635\ 9;\ \alpha(\text{L})=8.41\times10^{-5}\ 12;\\ &\alpha(\text{M})=1.81\times10^{-5}\ 3;\ \alpha(\text{N}+)=0.000442\ 7\\ &\alpha(\text{N})=4.17\times10^{-6}\ 6;\ \alpha(\text{O})=6.51\times10^{-7}\ 10;\ \alpha(\text{P})=4.53\times10^{-8}\ 7;\\ &\alpha(\text{IPF})=0.000437\ 7 \end{aligned}$
2201.65 26	0.0199 20	2201.71	2^+	0	0^+			
2209.71 13	0.050 3	3140.21	1,2*	930.560	2+	(E0)		E : From as spectrum (1070 Ados) . The energy fit is peer. The level
2211.02		2557.87	2.	344.2790	2.	(E0)		E_{γ} : From ce spectrum (1970Ad05). The energy fit is poor. The level energy difference gives 2213.56. The evaluator notes further that a comparison of the E_{γ} values of 2004AdZZ with the E(ce) of 1970Ad05 for 16 transitions around E=2212 shows deviations of +0.1 to +2.0 keV with an average of +1.0 keV for the ce energies. the deviation of -1.9 for the 2211.7 line thus seems unlikely, suggesting that the placement from the 2557 level May not be correct. The evaluator thus shows this transition as tentative. Mult.: Absence of photon line and α (K)exp>0.03 <i>1</i> suggests mult=E0.
2217.40 9	0.0749 19	3340.65	1 ⁻ ,2,3,4 ⁺	1123.186	3-	y v		
^x 2220.81 21 ^x 2223 71 19	0.0237 14 0.0141 19					, , , , , , , , , , , , , , , , , , ,		
2226.01 23	0.0271 18	2981.45	2+,3,4+	755.3960	4+			
^x 2232.76 14	0.0337 12							
^x 2239.13 24	0.0118 13	2006 79	2+	755 2060	4+			
2251.419	0.126 3	3006.78	2.	/55.3960	4 ·			
2254.44	0 150 3	2609.647	1+ 2+	015.58 344 2790	2^+	M1 F2 ⁷	0.00108.70	α_{γ} . See comment on the 2809 level. $\alpha_{\gamma} = 0.00108 \ 10^{\circ} \ \alpha(K) = 0.00055 \ 6^{\circ} \ \alpha(L) = 7.2 \times 10^{-5} \ 8^{\circ} \ \alpha(M) = 1.55 \times 10^{-5}$
2204.04 9	0.150 5	2398.80	1,2	344.2790	2	WI1,E2	0.00108 10	$a = 0.00108 \ 10, \ \alpha(\text{N}) = 0.00053 \ 0, \ \alpha(\text{E}) = 7.2 \times 10^{-8} \ 3, \ \alpha(\text{M}) = 1.55 \times 10^{-10} \ 16; \ \alpha(\text{N}) = 3.6 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 5.6 \times 10^{-7} \ 6; \ \alpha(\text{P}) = 3.8 \times 10^{-8} \ 5; \ \alpha(\text{IPF}) = 0.00044 \ 4$
2257.22 22	0.0236 15	3012.37	$2^+, 3^+, 4^+$	755.3960	4^{+}			
2260.05 11	0.1043 25	2604.34	1-,2,3-	344.2790	2+			
*2262.9 4	0.0158 18	2880.67	2+	615 38	0^{+}			
x2269.68 25 x2269.68 25 x2275.07 19 x2276.87 17 x2281.44 11 x2287.66 27	0.0099 <i>17</i> 0.0268 <i>22</i> 0.0257 <i>25</i> 0.0252 <i>10</i> 0.0049 <i>10</i>	2000.07	2	013.50	0			

				¹⁵² Tb ε dec	ay (1	.7.5 h) 2004Ad	ZZ,2003Ad	125,1970Ad05 (continued)
						$\gamma(^{152}\text{Gd})$	(continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. ^v	$\delta^{\mathcal{V}}$	$\alpha^{\boldsymbol{\alpha}}$	Comments
x2291.46 <i>19</i> 2306.15 <i>10</i> 2312.00 <i>10</i> 2317.61 24 x2322.3 <i>4</i> 2324.32 <i>17</i> 2335.00 <i>16</i> 2342.57 <i>9</i>	0.0124 <i>I2</i> 0.0422 <i>I3</i> 0.0487 <i>I4</i> 0.0103 <i>I0</i> 0.014 <i>3</i> 0.055 <i>3</i> 0.0142 <i>8</i> 0.203 <i>4</i>	3236.96 3067.42 2932.71 3079.66 3090.42 2686.87	2 ⁺ ,3,4 ⁺ 3 ⁻ 2 ⁺ 2 ⁺ ,3,4 ⁺ 2 ⁺	930.560 755.3960 615.38 755.3960 755.3960 344.2790	2^+ 4^+ 0^+ 4^+ 4^+ 2^+	4 4 M1+E2+(E0)		0.00107 9	$\alpha(K) \exp = 0.00132.26$ $\alpha = 0.00107.9; \alpha(K) = 0.00051.5; \alpha(L) = 6.7 \times 10^{-5}.7;$
^x 2347.53 11	0.0438 16		24		4.4				
2350.30 <i>15</i> <i>x</i> 2354.19 <i>14</i>	$0.0230 \ 14$ $0.0261 \ 16$	3105.52	2*	755.3960	4-				
*2357.0 2365.13 9	<0.003 0.570 <i>14</i>	2709.43	2+	344.2790	2+	E0(+M1,E2) E0+M1+E2		0.00107 <i>9</i>	$\begin{array}{l} \alpha(\text{K})\exp > 0.040 \ 10 \\ \alpha(\text{K})\exp = 0.0012 \ 3 \\ \alpha = 0.00107 \ 9; \ \alpha(\text{K}) = 0.00050 \ 5; \ \alpha(\text{L}) = 6.5 \times 10^{-5} \ 6; \\ \alpha(\text{M}) = 1.41 \times 10^{-5} \ 13; \ \alpha(\text{N}+) = 0.00050 \ 4 \\ \alpha(\text{N}) = 3.2 \times 10^{-6} \ 3; \ \alpha(\text{O}) = 5.0 \times 10^{-7} \ 5; \ \alpha(\text{P}) = 3.5 \times 10^{-8} \\ 4; \ \alpha(\text{IPF}) = 0.00050 \ 4 \\ \delta; \ \delta(\text{E2/M1}) < 0.25 \ \text{or} \ +1.8 \ +6-5. \end{array}$
2375.34 9	1.225 26	2719.64	2+	344.2790	2+	M1+E2	+0.15 8	0.00116 2	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000532 \ 8; \ \alpha(\mathbf{L}) = 7.03 \times 10^{-5} \ 11; \\ &\alpha(\mathbf{M}) = 1.513 \times 10^{-5} \ 23; \ \alpha(\mathbf{N}+) = 0.000539 \ 8 \\ &\alpha(\mathbf{N}) = 3.48 \times 10^{-6} \ 6; \ \alpha(\mathbf{O}) = 5.44 \times 10^{-7} \ 8; \\ &\alpha(\mathbf{P}) = 3.79 \times 10^{-8} \ 6; \ \alpha(\mathbf{IPF}) = 0.000535 \ 8 \\ &\alpha(\mathbf{K}) \exp = 0.00079 \ 18 \\ &\delta: \ \text{Other:} \ + 0.10 \ + 27 - 18 \ (1981\text{Fe01}). \end{aligned}$
-2382.27 16	0.0215 <i>14</i> 0.145 <i>3</i>	2729.17	2+	344.2790	2+	M1+E2(+E0) ¹		0.00108 9	$\begin{aligned} &\alpha = 0.00108 \ 9; \ \alpha(\text{K}) = 0.00049 \ 5; \ \alpha(\text{L}) = 6.4 \times 10^{-5} \ 6; \\ &\alpha(\text{M}) = 1.38 \times 10^{-5} \ 13; \ \alpha(\text{N}+) = 0.00051 \ 4 \\ &\alpha(\text{N}) = 3.2 \times 10^{-6} \ 3; \ \alpha(\text{O}) = 5.0 \times 10^{-7} \ 5; \ \alpha(\text{P}) = 3.4 \times 10^{-8} \\ &4; \ \alpha(\text{IPF}) = 0.00051 \ 4 \\ &\delta: \ \delta = -0.22 \ 8 \text{ or } 4.8 \ +28 - 13. \\ &\delta: \ \text{Other:} \ -0.52 \leq \delta \leq \infty \ (1981\text{Fe01}). \end{aligned}$
2388.72 <i>11</i>	0.0380 12	3143.97	3-	755.3960	4+	$\frac{1}{M1(+E0)}$		0.0022.8	$\alpha(K) = 0.0010.7$
2398.33 20 2405.00 9	2.07 4	2749.23	2+,3+	344.2790	2+	(E2)		0.00022 8	$\alpha(K) \exp = 0.00197$ $\alpha(K) \exp = 0.000329$ $\alpha = 0.000992$ 14; $\alpha(K) = 0.000440$ 7; $\alpha(L) = 5.76 \times 10^{-5}$

From ENSDF

¹⁵²₆₄Gd₈₈-34

 $^{152}_{64}\text{Gd}_{88}\text{--}34$

				152 Tb ε dec	cay (1	.7.5 h) 2004Ad	ZZ,2003Ad25,1	970Ad05 (continued)
						$\gamma(^{152}\text{Gd})$	(continued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. ^v	$\alpha^{\boldsymbol{lpha}}$	Comments
								8; $\alpha(M)=1.239\times10^{-5}$ 18; $\alpha(N+)=0.000483$ 7 $\alpha(N)=2.85\times10^{-6}$ 4; $\alpha(O)=4.44\times10^{-7}$ 7; $\alpha(P)=3.04\times10^{-8}$ 5; $\alpha(IPF)=0.000479$ 7 Mult.: $\alpha(K)$ exp is consistent with mult=E1 or E2; however, the decay scheme requires $\Delta\pi$ =no.
^x 2411.45 <i>18</i>	0.0081 9							
^x 2420.43 20	0.0087 9							
*2428.36 11	0.0927 25					M1(+E0)	0.001160 17	$ \begin{aligned} &\alpha(\text{K})\exp=0.0027~9 \\ &\alpha=0.001160~17;~\alpha(\text{K})=0.000509~8;~\alpha(\text{L})=6.72\times10^{-5}~10; \\ &\alpha(\text{M})=1.446\times10^{-5}~21;~\alpha(\text{N}+)=0.000569 \\ &\alpha(\text{N})=3.33\times10^{-6}~5;~\alpha(\text{O})=5.20\times10^{-7}~8;~\alpha(\text{P})=3.62\times10^{-8}~5; \\ &\alpha(\text{IPF})=0.000565~8 \end{aligned} $
2437.11 21 x2440.3 4	0.0132 10	2437.43	2+	0	0^{+}			
x2440.5 4	0.0050 9							
^x 2450.24 15	0.0080 7							
^x 2462.73 21	0.0077 8							
^x 2465.5 ^u						E0(+M1,E2)		α (K)exp>0.010 3
x2469.72 14	0.0145 9							
x2472.44 13	0.0178.9							
2481.8 3	0.0076 11	3236.96	$2^+, 3, 4^+$	755.3960	4+			
^x 2488.97 12	0.0389 16							
^x 2491.4	< 0.003		(+	<1 7 0 0	0.±		0.00100.0	$\alpha(K) \exp > 0.050 \ 10$
2495.53 9	0.138 3	3110.93	1+,2+	615.38	0+	M1,E2	0.00108 9	$\begin{aligned} &\alpha(\text{K})\exp=0.00065\ 27\\ &\alpha=0.00108\ 9;\ \alpha(\text{K})=0.00045\ 4;\ \alpha(\text{L})=5.9\times10^{-5}\ 5;\\ &\alpha(\text{M})=1.26\times10^{-5}\ 11;\ \alpha(\text{N}+)=0.00057\ 5\\ &\alpha(\text{N})=2.90\times10^{-6}\ 24;\ \alpha(\text{O})=4.5\times10^{-7}\ 4;\ \alpha(\text{P})=3.1\times10^{-8}\ 3;\\ &\alpha(\text{IPF})=0.00056\ 4 \end{aligned}$
*2503.06.22	0.0083.10							E_{γ},δ : Earlier work placed this transition from the 2495 level. placement from the 3110 level is established by 2004AdZZ on the basis of coincidence work. 1990Ta19 report $-2.7 \le \delta \le -0.06$, analyzed as a 1 ⁺ to 0 ⁺ transition from the 2495 level.
^x 2506.3 ^u	0.0083 10					(E0+M1+E2)	0.00108 9	$\alpha(K)\exp>0.010 \ 4$ $\alpha=0.00108 \ 9; \ \alpha(K)=0.00044 \ 4; \ \alpha(L)=5.8\times10^{-5} \ 5;$ $\alpha(M)=1.25\times10^{-5} \ 11; \ \alpha(N+)=0.00057 \ 5$ $\alpha(N)=2.87\times10^{-6} \ 24; \ \alpha(O)=4.5\times10^{-7} \ 4; \ \alpha(P)=3.1\times10^{-8} \ 3;$ $\alpha(IPF)=0.00057 \ 5$
x2507.8.4	0.0045 10							
2507.0 4								

From ENSDF

 $^{152}_{64}\mathrm{Gd}_{88}$ -35

 $^{152}_{64}\mathrm{Gd}_{88}$ -35

Т

				152 Tb ε decay ((17.5 h) 2004	AdZZ,2003Ad2	5,1970Ad05 (continued)
					$\gamma(^{152}C)$	Gd) (continued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{t}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. ^v	α^{α}	Comments
2518.42 9 2523.92 9	0.179 <i>4</i> 0.131 <i>3</i>	2862.66 2523.81	1 ⁻ ,2,3 ⁻ 2 ⁺	$\begin{array}{c} 344.2790 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} 2^+ \\ 0^+ \end{array}$	2 (E2)	0.001006 14	$\begin{aligned} &\alpha(\text{K})\exp=0.00050 \ 9 \\ &\alpha(\text{K})\exp=0.00051 \ 10 \\ &\alpha=0.001006 \ 14; \ \alpha(\text{K})=0.000403 \ 6; \ \alpha(\text{L})=5.28\times10^{-5} \ 8; \\ &\alpha(\text{M})=1.134\times10^{-5} \ 16; \ \alpha(\text{N}+)=0.000538 \ 8 \end{aligned}$
2525.43 ^β		2869.84?		344.2790 2+			$\alpha(N)=2.61\times10^{-6} 4; \ \alpha(O)=4.06\times10^{-7} 6; \ \alpha(P)=2.79\times10^{-8} 4; \\ \alpha(IPF)=0.000535 8$ Mult.: $\alpha(K)$ exp is consistent with mult=M1 or E2. Placement in the decay scheme requires $\Delta J=2$. E _{γ} : See comment on the 2869 level.
2536.30 7	0.395 11	2880.67	2+	344.2790 2+	M1	0.001165 <i>17</i>	$\alpha(K) \exp = 0.00064 \ 12$ $\alpha = 0.001165 \ 17; \ \alpha(K) = 0.000463 \ 7; \ \alpha(L) = 6.10 \times 10^{-5} \ 9;$ $\alpha(M) = 1.313 \times 10^{-5} \ 19; \ \alpha(N+) = 0.000628 \ 9$ $\alpha(N) = 3.02 \times 10^{-6} \ 5; \ \alpha(O) = 4.72 \times 10^{-7} \ 7; \ \alpha(P) = 3.29 \times 10^{-8} \ 5;$ $\alpha(PE) = 0.000624 \ 9$
^x 2544.58 <i>18</i> ^x 2548.10 <i>25</i> ^x 2551.48 <i>11</i>	0.0074 9 0.0088 8 0.0482 12				M1,E2	0.00109 8	$\alpha(K) \exp = 0.00050 \ 13$ $\alpha = 0.00109 \ 8; \ \alpha(K) = 0.00043 \ 4; \ \alpha(L) = 5.6 \times 10^{-5} \ 5; \ \alpha(M) = 1.20 \times 10^{-5} \ 10; \ \alpha(N+) = 0.00059 \ 5$
^x 2555.34 <i>18</i> 2557.91 <i>12</i> 2569.85 <i>10</i>	0.0192 <i>10</i> 0.0389 <i>12</i> 0.253 <i>6</i>	2557.87 2914.19	2+ 2+	$\begin{array}{ccc} 0 & 0^+ \\ 344.2790 & 2^+ \end{array}$	(M1,E2)	0.00109 8	$\alpha(N)=2.77\times10^{-6}\ 22;\ \alpha(O)=4.3\times10^{-7}\ 4;\ \alpha(P)=3.0\times10^{-8}\ 3;$ $\alpha(IPF)=0.00059\ 5$ $\alpha(K)\exp=0.00030\ 6$ $\alpha=0.00109\ 8;\ \alpha(K)=0.00042\ 3;\ \alpha(L)=5.5\times10^{-5}\ 5;\ \alpha(M)=1.19\times10^{-5}\ 9;\ \alpha(N+)=0.00060\ 5$
^x 2572.6.4	0.0231.22						$\alpha(N)=2.73\times10^{-6} 21$; $\alpha(O)=4.3\times10^{-7} 4$; $\alpha(P)=2.95\times10^{-6} 25$; $\alpha(IPF)=0.00060 5$ Mult.: $\alpha(K)$ exp lies between the theoretical values for E1 and M1 or E2. placement in the decay scheme requires $\Delta\pi$ =no.
2575.82 <i>17</i>	0.0446 19	2920.10		344.2790 2+			
2583.0 4	0.0327 22 0.047 8	2927.86	2+,3+	344.2790 2+			
2584.89 27 2588.36 8	0.087 8 0.571 <i>12</i>	2928.68 2932.71	2+	344.2790 2 ⁺ 344.2790 2 ⁺	M1,E2(+E0)	0.00109 8	$\begin{aligned} &\alpha(\text{K}) \exp = 0.00062 \ 11 \\ &\alpha = 0.00109 \ 8; \ \alpha(\text{K}) = 0.00041 \ 3; \ \alpha(\text{L}) = 5.4 \times 10^{-5} \ 4; \ \alpha(\text{M}) = 1.17 \times 10^{-5} \\ &9; \ \alpha(\text{N}+) = 0.00061 \ 5 \\ &\alpha(\text{N}) = 2.69 \times 10^{-6} \ 21; \ \alpha(\text{O}) = 4.2 \times 10^{-7} \ 4; \ \alpha(\text{P}) = 2.91 \times 10^{-8} \ 24; \end{aligned}$
X2507 04 16	0.0102.10				7		α (IPF)=0.00061 5
x2600.69 18	0.0192 10				7		

 $^{152}_{64}\mathrm{Gd}_{88}$ -36

From ENSDF

				¹⁵² Tb ε decay (1	17.5 h) 200	4AdZZ,2	2003Ad25,1970A	Ad05 (continued)
					$\gamma(^{152}$	² Gd) (con	tinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. ^v	$\delta^{\mathcal{V}}$	α^{α}	Comments
2602.85 <i>11</i> *2619.61 9	0.100 <i>3</i> 0.412 <i>9</i>	3358.27	2+	755.3960 4+	(E2) ⁷ M1,E2		0.00110 8	$\begin{aligned} &\alpha(\text{K}) \exp = 0.00047 \ 9 \\ &\alpha = 0.00110 \ 8; \ \alpha(\text{K}) = 0.00040 \ 3; \ \alpha(\text{L}) = 5.3 \times 10^{-5} \ 4; \\ &\alpha(\text{M}) = 1.14 \times 10^{-5} \ 9; \ \alpha(\text{N}+) = 0.00063 \ 5 \\ &\alpha(\text{N}) = 2.62 \times 10^{-6} \ 20; \ \alpha(\text{O}) = 4.1 \times 10^{-7} \ 3; \ \alpha(\text{P}) = 2.84 \times 10^{-8} \\ &23; \ \alpha(\text{IPF}) = 0.00062 \ 5 \\ &\text{E}_{\gamma}: \text{ Placed in earlier work from the 2964 level. Not placed} \\ &\text{by 2004AdZZ.} \end{aligned}$
^x 2629.74 <i>13</i> 2636 93 <i>10</i>	0.0079 6 0.0425 10	2981 45	2+ 3 4+	344 2790 2+				
2644.74 <i>16</i> 2655.29 <i>10</i>	0.0271 <i>17</i> 0.0872 <i>25</i>	2989.03 2999.55	1 ⁺ ,2 ⁺	344.2790 2 ⁺ 344.2790 2 ⁺	M1,E2		0.00110 8	$\begin{aligned} &\alpha(\text{K})\exp=0.00041 \ 12 \\ &\alpha=0.00110 \ 8; \ \alpha(\text{K})=0.00039 \ 3; \ \alpha(\text{L})=5.2\times10^{-5} \ 4; \\ &\alpha(\text{M})=1.11\times10^{-5} \ 8; \ \alpha(\text{N}+)=0.00065 \ 5 \\ &\alpha(\text{N})=2.55\times10^{-6} \ 19; \ \alpha(\text{O})=4.0\times10^{-7} \ 3; \ \alpha(\text{P})=2.76\times10^{-8} \end{aligned}$
2662.55 10	0.269 5	3006.78	2+	344.2790 2 ⁺	M1+E2		0.001027 15	22; α (IPF)=0.00064 5 α (K)exp=0.00028 13 α =0.001027 15; α (K)=0.000367 6; α (L)=4.79×10 ⁻⁵ 7; α (M)=1.028×10 ⁻⁵ 15; α (N+)=0.000602 9 α (N)=2.36×10 ⁻⁶ 4; α (O)=3.68×10 ⁻⁷ 6; α (P)=2.54×10 ⁻⁸ 4; α (IPF)=0.000599 9 Mult.: α (K)exp is consistent with E1 or E2. $\gamma(\theta,H,t)$ gives δ =-0.74 +11-50 or -4.6 +18-24, which rules out mult=E1+M2.
2668.13 <i>10</i>	0.205 4	3012.37	2+,3+,4+	344.2790 2+	M1,E2		0.00110 8	$\begin{aligned} &\alpha(\text{K}) \exp[=0.00051 \ 19 \\ &\alpha=0.00110 \ 8; \ \alpha(\text{K})=0.00039 \ 3; \ \alpha(\text{L})=5.1\times10^{-5} \ 4; \\ &\alpha(\text{M})=1.10\times10^{-5} \ 8; \ \alpha(\text{N}+)=0.00065 \ 5 \\ &\alpha(\text{N})=2.53\times10^{-6} \ 18; \ \alpha(\text{O})=3.9\times10^{-7} \ 3; \ \alpha(\text{P})=2.74\times10^{-8} \\ &21; \ \alpha(\text{IPF})=0.00065 \ 5 \end{aligned}$
^x 2678.03 <i>17</i> ^x 2680.88 <i>11</i> ^x 2687.39 <i>12</i> ^x 2694.48 <i>11</i>	0.0175 <i>11</i> 0.0602 <i>16</i> 0.0260 <i>8</i> 0.0784 <i>23</i>				M1(+E0)		0.001182 <i>17</i>	$\alpha(K)\exp=0.0010 \ 2$ $\alpha=0.001182 \ 17; \ \alpha(K)=0.000406 \ 6; \ \alpha(L)=5.34\times10^{-5} \ 8; \ \alpha(M)=1.149\times10^{-5} \ 16; \ \alpha(N+)=0.000712 \ 1$ $\alpha(N)=2.64\times10^{-6} \ 4; \ \alpha(O)=4.13\times10^{-7} \ 6; \ \alpha(P)=2.88\times10^{-8} \ 4; \ \alpha(IPF)=0.000709 \ 10$
2697.99 <i>10</i> ^x 2702.98 <i>10</i>	0.280 <i>6</i> 0.0993 <i>24</i>	3042.29	2+	344.2790 2+	M1(+E2) M1,E2	≤0.22	0.00111 8	α (K)exp=0.00053 <i>10</i> α (K)exp=0.00045 <i>18</i>

From ENSDF

				¹⁵² Tb ε dec	ay (1	7.5 h) 2	004AdZZ,2003Ad	25,1970Ad05 (continued)
						<u> </u>	¹⁵² Gd) (continued)	2
E_{γ}^{\dagger}	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. ^v	$\alpha^{\boldsymbol{lpha}}$	Comments
2709.47 9	0.274 6	2709.43	2+	0	0+	E2	0.001036 15	$ \begin{array}{l} \alpha = 0.00111 \; 8; \; \alpha(\mathrm{K}) = 0.000380 \; 24; \; \alpha(\mathrm{L}) = 5.0 \times 10^{-5} \; 4; \\ \alpha(\mathrm{M}) = 1.07 \times 10^{-5} \; 8; \; \alpha(\mathrm{N}+) = 0.00067 \; 5 \\ \alpha(\mathrm{N}) = 2.46 \times 10^{-6} \; 17; \; \alpha(\mathrm{O}) = 3.8 \times 10^{-7} \; 3; \; \alpha(\mathrm{P}) = 2.67 \times 10^{-8} \; 20; \\ \alpha(\mathrm{IPF}) = 0.00067 \; 5 \\ \alpha(\mathrm{K}) \exp = 0.00027 \; 8 \\ \alpha = 0.001036 \; 15; \; \alpha(\mathrm{K}) = 0.000356 \; 5; \; \alpha(\mathrm{L}) = 4.64 \times 10^{-5} \; 7; \\ \alpha(\mathrm{M}) = 9.96 \times 10^{-6} \; 14; \; \alpha(\mathrm{N}+) = 0.000623 \; 9 \end{array} $
2719.61 8	0.401 9	2719.64	2+	0	0+	(E2)	0.001038 <i>15</i>	$\begin{aligned} &\alpha(N)=2.29\times10^{-6}\ 4;\ \alpha(O)=3.57\times10^{-7}\ 5;\ \alpha(P)=2.46\times10^{-8}\ 4;\\ &\alpha(IPF)=0.000621\ 9\\ &\alpha(K)\exp=0.00037\ 11\\ &\alpha=0.001038\ 15;\ \alpha(K)=0.000354\ 5;\ \alpha(L)=4.61\times10^{-5}\ 7;\\ &\alpha(M)=9.89\times10^{-6}\ 14;\ \alpha(N+)=0.000628\ 9\\ &\alpha(N)=2.28\times10^{-6}\ 4;\ \alpha(O)=3.55\times10^{-7}\ 5;\ \alpha(P)=2.45\times10^{-8}\ 4;\\ &\alpha(IPF)=0.000625\ 9\end{aligned}$
^x 2722.45 <i>15</i> 2729.25 <i>11</i> 2734.06 <i>10</i>	0.095 <i>4</i> 0.0261 <i>9</i> 0.142 <i>3</i>	2729.17 2734.07	2+	0 0	0+ 0+	E1	0.00126	 Mult.: α(K)exp allows mult=M1 or E2; however, placement in the decay scheme requires ΔJ=2. α(K)=0.000182 3; α(L)=2.31×10⁻⁵ 4; α(M)=4.94×10⁻⁶ 7; α(N+)=0.001048 15 α(N)=1.137×10⁻⁶ 16; α(O)=1.773×10⁻⁷ 25; α(P)=1.233×10⁻⁸ 18;
^x 2740.93 <i>12</i> 2744.10 <i>10</i>	0.0392 <i>12</i> 0.122 <i>3</i>	2744.04	1-	0	0+	M1(+E0) E1	0.0011 <i>4</i> 0.001263 <i>18</i>	$\alpha(\text{IPF})=0.001046 \ 15$ $\alpha(\text{K})\text{exp}=0.00025 \ 5$ $\alpha(\text{K})\text{exp}=0.00094 \ 30$ $\alpha(\text{K})\text{exp}=0.00012 \ 5$ $\alpha=0.001263 \ 18; \ \alpha(\text{K})=0.000181 \ 3; \ \alpha(\text{L})=2.30\times10^{-5} \ 4;$ $\alpha(\text{M})=4.92\times10^{-6} \ 7; \ \alpha(\text{N}+)=0.001053 \ 15$
2754.70 10	0.155 <i>3</i>	3099.02	1+,2+,3+	344.2790	2+	M1,E2	0.00112 8	$\begin{aligned} &\alpha(\text{N})=1.130\times10^{-6} \ 16; \ \alpha(\text{O})=1.763\times10^{-7} \ 25; \ \alpha(\text{P})=1.226\times10^{-8} \ 18; \\ &\alpha(\text{IPF})=0.001052 \ 15 \\ &\alpha(\text{K})\exp=0.00041 \ 9 \\ &\alpha=0.00112 \ 8; \ \alpha(\text{K})=0.000366 \ 22; \ \alpha(\text{L})=4.8\times10^{-5} \ 3; \\ &\alpha(\text{M})=1.03\times10^{-5} \ 7; \ \alpha(\text{N}+)=0.00069 \ 5 \\ &\alpha(\text{N})=2.37\times10^{-6} \ 16; \ \alpha(\text{O})=3.70\times10^{-7} \ 25; \ \alpha(\text{P})=2.57\times10^{-8} \ 18; \\ &\alpha(\text{M})=1.000060 \ 5 \\ &\alpha(\text{M})=2.57\times10^{-8} \ 18; \\ &\alpha(\text{M})=2.57\times10^{-6} \ 16; \ \alpha(\text{O})=3.70\times10^{-7} \ 25; \ \alpha(\text{P})=2.57\times10^{-8} \ 18; \\ &\alpha(\text{M})=2.57\times10^{-6} \ 16; \ \alpha(\text{O})=3.70\times10^{-7} \ 25; \ \alpha(\text{P})=2.57\times10^{-8} \ 18; \end{aligned}$
2761.15 <i>12</i> 2768.27 <i>10</i> 2772.44 <i>18</i> <i>x</i> 2776.04 <i>27</i>	0.0174 7 0.0413 10 0.0080 5 0.0128 11	3105.52 3112.53 2772.40	2 ⁺ 1 ⁺ ,2 ⁺ 2 ⁺	344.2790 344.2790 0	2+ 2+ 0+			I_{γ} : The uncertainty in the value 0.0080 50 given by 2004AdZZ is probably a misprint. The uncertainty given in 2003Ad25 is 5.
^x 2778.28 12	0.0395 12					M1,E2	0.00112 8	$\begin{array}{l} \alpha(\text{K}) \exp = 0.00046 \ 10 \\ \alpha = 0.00112 \ 8; \ \alpha(\text{K}) = 0.000360 \ 21; \ \alpha(\text{L}) = 4.7 \times 10^{-5} \ 3; \\ \alpha(\text{M}) = 1.01 \times 10^{-5} \ 7; \ \alpha(\text{N}+) = 0.00070 \ 6 \end{array}$

From ENSDF

				¹⁵² Τb ε	e dec	ay (17.5 h)	2004AdZZ,200	03Ad25,1970Ad05 (continued)
							$\gamma(^{152}\text{Gd})$ (contin	nued)
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^v	$\alpha^{\boldsymbol{lpha}}$	Comments
*2787.86 <i>11</i>	0.0356 9					M1,E2	0.00112 8	$\begin{aligned} &\alpha(\mathrm{N})=2.33\times10^{-6}\ 15;\ \alpha(\mathrm{O})=3.64\times10^{-7}\ 24;\ \alpha(\mathrm{P})=2.53\times10^{-8}\ 18;\\ &\alpha(\mathrm{IPF})=0.00070\ 6\\ &\alpha(\mathrm{K})\exp=0.00029\ 10\\ &\alpha=0.00112\ 8;\ \alpha(\mathrm{K})=0.000358\ 20;\ \alpha(\mathrm{L})=4.7\times10^{-5}\ 3;\ \alpha(\mathrm{M})=1.01\times10^{-5}\\ &7;\ \alpha(\mathrm{M}+)=0.00071\ 6\\ &\alpha(\mathrm{N})=2.32\times10^{-6}\ 15;\ \alpha(\mathrm{O})=3.61\times10^{-7}\ 23;\ \alpha(\mathrm{P})=2.51\times10^{-8}\ 17;\\ &\alpha(\mathrm{IPF})=0.00071\ 6 \end{aligned}$
^x 2793.27 14	0.0308 11					5		
2795.92 11	0.1040 23	3140.21	1,2+	344.2790	2+	5		
2799.81 <i>14</i> 2808.61 <i>10</i> *2816.84 <i>15</i>	0.0178 7 0.0696 <i>16</i>	3143.97 3152.89	3- 3-	344.2790 344.2790	2+ 2+	E1	0.001291 18	$ \begin{aligned} &\alpha(\text{K}) \exp = 0.00020 \ 8 \\ &\alpha = 0.001291 \ 18; \ \alpha(\text{K}) = 0.0001752 \ 25; \ \alpha(\text{L}) = 2.22 \times 10^{-5} \ 4; \\ &\alpha(\text{M}) = 4.75 \times 10^{-6} \ 7; \ \alpha(\text{N}+) = 0.001089 \ 1 \\ &\alpha(\text{N}) = 1.091 \times 10^{-6} \ 16; \ \alpha(\text{O}) = 1.702 \times 10^{-7} \ 24; \ \alpha(\text{P}) = 1.184 \times 10^{-8} \ 17; \\ &\alpha(\text{IPF}) = 0.001088 \ 16 \end{aligned} $
x2820.43 12	0.0328 9					M1,E2	0.00113 8	$\begin{aligned} &\alpha(\text{K}) \text{exp} = 0.00037 \ 11 \\ &\alpha = 0.00113 \ 8; \ \alpha(\text{K}) = 0.000350 \ 19; \ \alpha(\text{L}) = 4.6 \times 10^{-5} \ 3; \ \alpha(\text{M}) = 9.8 \times 10^{-6} \ 6; \\ &\alpha(\text{N}+) = 0.00072 \ 6 \\ &\alpha(\text{N}) = 2.26 \times 10^{-6} \ 14; \ \alpha(\text{O}) = 3.53 \times 10^{-7} \ 22; \ \alpha(\text{P}) = 2.45 \times 10^{-8} \ 16; \\ &\alpha(\text{IPF}) = 0.00072 \ 6 \end{aligned}$
x2833.50 12	0.0184 5					(M1)	0.001205 17	$\begin{aligned} &\alpha(\text{K})\exp=0.0007 \ 4 \\ &\alpha=0.001205 \ 17; \ \alpha(\text{K})=0.000364 \ 5; \ \alpha(\text{L})=4.79\times10^{-5} \ 7; \\ &\alpha(\text{M})=1.029\times10^{-5} \ 15; \ \alpha(\text{N}+)=0.000783 \ 1 \\ &\alpha(\text{N})=2.37\times10^{-6} \ 4; \ \alpha(\text{O})=3.70\times10^{-7} \ 6; \ \alpha(\text{P})=2.58\times10^{-8} \ 4; \\ &\alpha(\text{IPF})=0.000780 \ 11 \end{aligned}$
^x 2838.15 11	0.0372 8					E2(+M1)	0.00113 8	$ \begin{aligned} &\alpha(\text{K}) \exp[=0.00028 \ 9 \\ &\alpha=0.00113 \ 8; \ \alpha(\text{K})=0.000345 \ 18; \ \alpha(\text{L})=4.5\times10^{-5} \ 3; \ \alpha(\text{M})=9.7\times10^{-6} \ 6; \\ &\alpha(\text{N}+)=0.00073 \ 6 \\ &\alpha(\text{N})=2.23\times10^{-6} \ 13; \ \alpha(\text{O})=3.49\times10^{-7} \ 21; \ \alpha(\text{P})=2.42\times10^{-8} \ 16; \\ &\alpha(\text{IPF})=0.00073 \ 6 \end{aligned} $
^x 2845.25 <i>12</i> ^x 2859.06 <i>13</i> ^x 2861.75 <i>11</i> ^x 2869.24 <i>11</i>	0.0143 5 0.0325 10 0.0650 15 0.0751 16					M1	0.001212 17	$\alpha(K)\exp=0.00046 \ 7$ $\alpha=0.001212 \ 17; \ \alpha(K)=0.000354 \ 5; \ \alpha(L)=4.66\times10^{-5} \ 7;$ $\alpha(M)=1.001\times10^{-5} \ 14; \ \alpha(N+)=0.000801 \ 1$ $\alpha(N)=2.31\times10^{-6} \ 4; \ \alpha(O)=3.60\times10^{-7} \ 5; \ \alpha(P)=2.51\times10^{-8} \ 4;$ $\alpha(HE)=0.000700 \ 12$
^x 2873.2 4	0.0040 6							<i>u</i> (1FF)=0.00079972

From ENSDF

				¹⁵² T	$b \varepsilon de$	ecay(17.5 h) = 2	004AdZZ,2003A	Ad25,1970Ad05 (continued)
						<u> </u>	¹⁵² Gd) (continue	<u>ed)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{t>}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^v	$\alpha^{\boldsymbol{\alpha}}$	Comments
^x 2878.0 ^u			-		<u> </u>	E0(+M1,E2)	0.00114 8	$\begin{aligned} &\alpha(\text{K})\exp > 0.0050 \ 9 \\ &\alpha = 0.00114 \ 8; \ \alpha(\text{K}) = 0.000336 \ 17; \ \alpha(\text{L}) = 4.39 \times 10^{-5} \ 24; \\ &\alpha(\text{M}) = 9.4 \times 10^{-6} \ 6; \ \alpha(\text{N}+) = 0.00075 \ 6 \\ &\alpha(\text{N}) = 2.17 \times 10^{-6} \ 13; \ \alpha(\text{O}) = 3.39 \times 10^{-7} \ 20; \ \alpha(\text{P}) = 2.36 \times 10^{-8} \ 15; \\ &\alpha(\text{IPE}) = 0.00075 \ 6 \end{aligned}$
^x 2882.39 11	0.1147 25					8		
2887.52 13	0.0243 8	3232.06		344.2790	2^{+}	8		
2890.21 12	0.0475 11	0202100		0.112770	-	8		
2893.15 11	0.0599 13					8		
x2902.0 ^u						(E0+M1+E2)	0.00115 8	$\begin{aligned} &\alpha(\text{K})\exp > 0.0070 \ 23 \\ &\alpha = 0.00115 \ 8; \ \alpha(\text{K}) = 0.000331 \ 16; \ \alpha(\text{L}) = 4.32 \times 10^{-5} \ 23; \\ &\alpha(\text{M}) = 9.3 \times 10^{-6} \ 5; \ \alpha(\text{N}+) = 0.00076 \ 6 \\ &\alpha(\text{N}) = 2.14 \times 10^{-6} \ 12; \ \alpha(\text{O}) = 3.34 \times 10^{-7} \ 19; \ \alpha(\text{P}) = 2.32 \times 10^{-8} \ 14; \end{aligned}$
X2006 49 15	0.0700.02					E1	0.001220.10	α (IPF)=0.00076 6
~2906.48 13	0.0722 23					EI	0.001329 19	α (K)exp=0.00019 5 α =0.001329 <i>19</i> ; α (K)=0.0001664 <i>24</i> ; α (L)=2.11×10 ⁻⁵ <i>3</i> ; α (M)=4.51×10 ⁻⁶ <i>7</i> ; α (N+)=0.001137 <i>1</i>
X2010.0 C	0.0020 (α (N)=1.036×10 ⁻⁶ <i>15</i> ; α (O)=1.616×10 ⁻⁷ <i>23</i> ; α (P)=1.125×10 ⁻⁸ <i>16</i> ; α (IPF)=0.001136 <i>16</i>
2910.0 8 2914.42 <i>14</i>	0.0038 8	2914.19	2+	0	0+			α (K)exp=0.0009 4 Mult.: α (K)exp is slightly larger than the theoretical values for M1 or E2. placement in the decay scheme requires mult=E2, for which α (K)=0.00031.
^x 2918.46 <i>21</i>	0.0108 5							
^x 2921.85 <i>14</i>	0.0212 7					M1 E2	0.00115 0	$\alpha(K)_{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,$
2921.29 11	0.0337 13					WI1,EZ	0.00115 8	$\alpha(\text{K}) \exp -0.00029 \ I2$ $\alpha = 0.00115 \ 8; \ \alpha(\text{K}) = 0.000325 \ I5; \ \alpha(\text{L}) = 4.25 \times 10^{-5} \ 22;$ $\alpha(\text{M}) = 9.1 \times 10^{-6} \ 5; \ \alpha(\text{N}+) = 0.00078 \ 6$ $\alpha(\text{N}) = 2.10 \times 10^{-6} \ I2; \ \alpha(\text{O}) = 3.28 \times 10^{-7} \ I8; \ \alpha(\text{P}) = 2.28 \times 10^{-8} \ I4;$ $\alpha(\text{PE}) = 0.00077 \ 6$
^x 2936.0 ^u						(E0+M1+E2)		$\alpha(K) \exp > 0.0050 \ 12$
2940.75 11	0.1140 24	3285.17	2+	344.2790	2+	M1,E2	0.00116 8	$\begin{array}{l} \alpha(\mathrm{K}) \exp = 0.00039 \ 11 \\ \alpha = 0.00116 \ 8; \ \alpha(\mathrm{K}) = 0.000322 \ 15; \ \alpha(\mathrm{L}) = 4.21 \times 10^{-5} \ 22; \\ \alpha(\mathrm{M}) = 9.0 \times 10^{-6} \ 5; \ \alpha(\mathrm{N}+) = 0.00078 \ 6 \\ \alpha(\mathrm{N}) = 2.08 \times 10^{-6} \ 11; \ \alpha(\mathrm{O}) = 3.25 \times 10^{-7} \ 18; \ \alpha(\mathrm{P}) = 2.26 \times 10^{-8} \ 13; \\ \alpha(\mathrm{IPF}) = 0.00078 \ 6 \end{array}$
								E_{γ} : From table 2 of 2004AdZZ. The value of 2940.15 <i>11</i> given in table 1 appears to be a typo. From the level scheme one expects $E\gamma$ =2940.88.

Т

			15	2 Tb ε deca	y (17	.5 h) 2004Ad	IZZ,2003Ad2	5,1970Ad05 (continued)	
						γ (¹⁵² Gd) (continued)		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{t>}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. ^v	$\alpha^{\boldsymbol{\alpha}}$		Comments
E _γ *2950.5 3 *2961.00 12 *2971.46 14 *2980.07 11 *2983.78 11 *2993.14 15 2996.26 12 2999.69 16 3006.63 14 *3014.77 13 *3018.13 15 *3022.50 14 *3024.93 17 *3037.62 22 *3042.64 12 *3054.51 12 *3059.53 20 *3068.25 15 *3088.60 17 *3094.73 12 3107.48 14	$\frac{1}{\gamma}$ 0.0049 6 0.0261 7 0.0123 5 0.0478 10 0.0275 7 0.0282 8 0.0432 10 0.0499 8 0.0118 4 0.0220 5 0.0111 4 0.0220 8 0.0124 6 0.0087 5 0.1099 23 0.0315 8 0.0095 5 0.0127 5 0.0148 5 0.0091 4 0.0210 6 0.0172 7 0.0252 8	3340.65 2999.55 3006.78 3105.52	J _i ⁻ ,2,3,4 ⁺ 1 ⁺ ,2 ⁺ 2 ⁺	E _f 344.2790 0 0	$\frac{2^{+}}{0^{+}}$	E0+M1+E2	α ^α	α(K)exp=0.0033 9	Comments
3112.3 3 ×3115.6 3 ×3122.25 18 ×3132.3 4 ×3135.0 3	0.0040 3 0.00286 25 0.0043 3 0.0041 4 0.0069 5	3112.53	1+,2+	0	0+				
3140.20 12 ^x 3147.2 6 ^x 3154.42 14 ^x 3158.87 12 ^x 3162.3 4 ^x 3164.54 18 ^x 3166.90 21 ^x 3174.02 12 ^x 3180.51 22 ^x 3190.1 3 ^x 3194.5 3 ^x 3205.60 21	0.0288 7 0.0018 3 0.0186 5 0.0526 12 0.0760 23 0.0202 17 0.0316 8 0.00309 25 0.0242 18 0.0047 3 0.0483 11	3140.21	1,2+	0	0+				

$^{152}_{64}\mathrm{Gd}_{88}$ -41

From ENSDF

 $^{152}_{64}\mathrm{Gd}_{88}\text{--}41$

¹⁵² Tb ε decay (17.5 h)	2004AdZZ,2003Ad25,197	OAd05 (continued)
--	-----------------------	--------------------------

$\gamma(^{152})$	Gd)	(contin	ued

$\frac{E_{\gamma}^{\dagger}}{x_{3211.7} 3}$ $x_{3223.80} 17$ $x_{3228.75} 13$ $x_{3232.48} 16$ $x_{3236.76} 18$ $x_{3244.90} 22$ $x_{3251.04} 17$ $x_{3261.0} 5$ $x_{3265.88} 22$ $x_{3268.70} 16$ $x_{3272} 34 21$	$\frac{I_{\gamma}^{t>}}{0.0050\ 4}$ 0.0381 16 0.0209 5 0.0086 3 0.00500 25 0.00361 26 0.0060 3 0.0013 3 0.0070 4 0.0162 5 0.0073 3	E _i (level)	<u>Mult.^v</u>	$\frac{E_{\gamma}^{\dagger}}{x_{3276.00} 19}$ $x_{3284.24} 15$ $x_{3309.75} 14$ $x_{3324.22} 11$ $x_{3328.24} 15$ $x_{3338.12} 16$ $x_{3359.86} 25$ $x_{3366.46} 15$ $x_{3380.23} 15$ $x_{3391.1} 4$ $x_{3401} 45 20$	$\begin{array}{c} \underline{I_{\gamma}}^{t>} \\ \hline 0.0120 \ 3 \\ 0.0090 \ 3 \\ 0.0154 \ 4 \\ 0.0510 \ 12 \\ 0.0134 \ 4 \\ 0.00593 \ 22 \\ 0.00192 \ 14 \\ 0.00735 \ 24 \\ 0.00774 \ 24 \\ 0.00127 \ 14 \\ 0.00297 \ 16 \end{array}$	<u>E_i(level)</u>	<u>Mult.^v</u>	E _γ [†] x3406.89 23 x3411.90 15 x3459.7 3 x3479.14 14 x3493.32 18 x3508.7 3 x3534.74 24 x3565.85 24 x3572.44 18 x3595.3 3 x3621 7 4	$\begin{array}{c} I_{\gamma}^{\ t>} \\ \hline 0.00233 \ 14 \\ 0.00842 \ 24 \\ 0.00133 \ 12 \\ 0.0190 \ 5 \\ 0.00359 \ 14 \\ 0.00131 \ 12 \\ 0.00152 \ 10 \\ 0.00388 \ 14 \\ 0.00158 \ 12 \\ 0.00093 \ 11 \end{array}$	E _i (level)	<u>Mult.^v</u>
^x 3272.34 21	0.0073 3			^x 3401.45 20	0.00297 16			^x 3621.7 4	0.00093 11		

[†] From 2004AdZZ, unless noted otherwise. No uncertainties are given in 2003Ad25.

42

 \pm 2004AdZZ report E=703.39 7 with I γ =3.71 7 placed from the 1048 and 1318 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$. $\alpha(K)$ exp for the doublet is consistent only with mult=E2 for both components.

[#] 2004AdZZ report E=855.00 9 with I γ =0.103 12 placed from the 1471, 1785, and 2170 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$. from the strong ce line at this energy, and known placements, one can deduce a probable E0 component in the branch from the 1785 level.

[@] 2004AdZZ report E=557.67 7 with I γ =0.175 5 placed from the 1606 and 1840 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$. $\alpha(K)\exp\approx 0.012$ for the doublet is consistent with mult=E2 for both placements, both of which are $\Delta J=2$ transitions in the decay scheme.

& 2004AdZZ report E=1605.72 7 with Iy=0.585 11 placed from the 1606 and 2729 levels. The Ey are the authors' rounded-off values from their level scheme, and the I_Y are from $\gamma\gamma$. Note that Ice(K) for the doublet, with placements as 2⁺ to 0⁺ and 2⁺ to 3⁻, is deduced to be 0.29 3 compared with the measured value of 0.17 4. the experimental Ice(K) suggests mult=E1 for both placements, in disagreement with the proposed spin of the 1606 level; however, $\alpha(K)$ exp in 13-y Eu β^- decay is consistent with mult=E2 for the component from the 1606 level.

^a 2004AdZZ report E=1083.96 10 with I γ =0.122 5 placed from the 1840 and 2401 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$.

^b 2004AdZZ report E=814.38 16 with Iγ=0.055 5 placed from the 1861.9 and 2729 levels. The Eγ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$.

^c 2004AdZZ report E=1517.78 7, I γ =1.025 21 placed from the 1862, 2133, and 2642 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$. From Ice(K) one can deduce α (K)exp=0.0016 3 for the component from the 1862 level, consistent with mult=M1+E2 as suggested by the δ values.

^d 2004AdZZ report E=818.25 8 with I γ =0.160 4 placed from the 1941 and 2133 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$.

^e 2004AdZZ report E=1596.75 7, Iy=0.721 15 placed from the 1941 and 2720 levels. The Ey are the authors' rounded-off values from their level scheme, and the Iy are from $\gamma\gamma$. $\alpha(K)exp=0.00101 23$ for this doublet and for the 1598.9y from the 2529 level, unresolved in the ce spectrum. The placement from the 2720 level requires mult=E1, and δ is known for the placement from the 1941 level. from these observations, one can deduce $\alpha(K) \exp(-0.0011/8)$ for the 1598.9 γ ,

$\gamma(^{152}\text{Gd})$ (continued)

consistent with E1, E2, or M1.

- ^{*f*} 2004AdZZ report E=1631.42 8, I γ =0.361 8 placed from the 1976 and 2247 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$. From α (K)exp=0.00107 21, and given a 2⁺ to 0⁺ placement for the component from the 2247 level, one gets mult=M1(+E2) for the component from the 1976 level.
- ^g 2004AdZZ report E=1202.64 9 with I γ =0.090 3 placed from the 2133 and 2326 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$.
- ^h 2004AdZZ report E=1789.20 8, I γ =0.899 17 placed from the 2133 and 2720 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$. From Ice(K) for the doublet and with δ =+0.26 for the component from the 2720 level, both components must be mainly M1.
- ^{*i*} 2004AdZZ report E=1446.43 7, I γ =0.387 8 placed from the 2202 and 2881 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$. From α (K)exp=0.0013 3 for the doublet, and given mult=E2 required for the placement from the 2202 level, one gets mult=M1 or E2 for the placement from the 2881 level.
- ^{*j*} 2004AdZZ report E=1314.66 9, I γ =2.22 5 placed from the 1315 and 2437 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$. α (K)exp for the doublet is consistent only with mult=E1 for both components.
- ^k 2004AdZZ report E=1411.48 9, I γ =1.01 3 placed from the 1756 and 2729 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$. δ =+4.3 +9-13 for the component from the 2729 level. From this, and α (K)exp=0.00083 14 for the doublet, one can deduce mult=E1 for the component from the 1756 level.
- ¹ 2004AdZZ report E=1400.60 7 with I γ =0.244 5 placed from the 2524 and 2720 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$.
- ^{*m*} 2004AdZZ report E=1902.45 8, I γ =2.68 5 placed from the 2247 and 3012 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$. α (K)exp for the doublet can be attributed entirely to the much stronger component from the 2247 level, and along with δ gives mult=M1+E2 for this component. Nothing can be said about mult for the component from the 3012 level.
- ^{*n*} 2004AdZZ report E=1841.15 9, I γ =0.123 3 placed from the 2772 and 2964 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$. α (K)exp is consistent only with mult=M1,E2 for each component.
- ^o 2004AdZZ report E=2043.65 10, I γ =0.156 4 placed from the 2387, 3153, and 3358 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$. From α (K)exp=0.0019 8, and given that mult is probably E1 for the 2043.63 and 2043.79 γ 's, based on their placements, the placement from the 2387 level requires an E0 component.
- ^{*p*} 2004AdZZ report E=2093.51 8, I γ =0.333 7 placed from the 2437 and 2709 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$. From α (K)exp=0.00125 24 for the doublet, and given mult=E2 for the placement from the 2709 level, one gets α (K)exp=0.0016 3 for the placement from the 2437 level. Compared with α (K)=0.000706 for M1, this α (K)exp suggests an E0 component for that placement.
- ^{*q*} 2004AdZZ report E=2103.54 9, I γ =0.101 3 placed from the 2448 and 2720 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$. From α (K)exp=0.00060 14, given that the placement from the 2720 level is 2⁺ to 0⁺, one gets mult=M1 or E2 for the placement from the 2448 level.
- ^{*r*} 2004AdZZ report E=2169.16 9, I γ =0.146 3 placed from the 2514 and 3099 levels. The E γ are the authors' rounded-off values from their level scheme, and the I γ are from $\gamma\gamma$. α (K)exp=0.00056 13 for the doublet plus the 2172.45 γ from the 2928 level. From the J^{π} assignments, the placements from the 2928 and 3099 levels require $\Delta\pi$ =no. J^{π}(1514)=1,2⁺, allowing mult= M1,E2 or E1 if J^{π}=1⁻. α (K)=0.00053 for E2, so α (K)exp is reasonably consistent with $\Delta\pi$ =no for all three transitions; however, if J^{π}(2514)were 1⁻, requiring mult=E1, then α (K)exp would be 0.00050 11 for the other two components, giving better agreement with α (K) for E2, and also allowing for some M1 admixture.
- ^s Calibration value used by 2003Ad25, consistent with 2000He14.
- ^t From 2004AdZZ, unless noted otherwise. 2003Ad25 report only branching ratios.
- ^{*u*} From ce spectrum of 1970Ad05. Not seen in the photon spectrum.

$\gamma(^{152}\text{Gd})$ (continued)

^{ν} From Adopted Gammas. α (K)exp values from 2004AdZZ, δ values from $\gamma(\theta, H, t)$ of 1990Ta19, and δ values from $\gamma(\theta, t)$ of 1981Fe01 are given in comments, as are earlier δ data as given in the evaluation of 1975Kr16. The α (K)exp values given by 2004AdZZ are based on the authors relative I γ data along with Ice(K) data of 1970Ad05 and are normalized in the region E γ <1000 to α (K) for the 344 (E2), 411 (E2), and 778 (E1) transitions, and in the higher-energy region, where a different detector was used, to α (K) for the 970 (E1), 990 (E2), 1185 (E2), 1209 (E1), 1299 (E1), 1314 (E1), 1941 (E2), 2033 (E1), and 2113 (E2) transitions.

^{*w*} For mult for the 1369 and 1955 γ 's, see the comment on J^{π} for the 2299 level. for J^{π}=3⁻, 1990Ta19, from their $\gamma(\theta)$ work, deduce $\delta(M2/E1)$ =+0.28 5, +0.35 6, and +0.27 4 for the 1190, 1369, and 1955 γ 's, respectively, and 1981Fe01 report δ =+0.28 +17-14 and +0.30 +9-8 for the 1190 and 1955 γ 's, respectively.

^x α (K)exp for the 2179+2182 γ 's is consistent only with mult=M1 for both transitions.

 $y \alpha$ (K)exp=0.0021 8 for the 2217.40+2220.81 γ 's requires an E0 component in one or both of these transitions. the 2220 γ is unplaced and the 2217 γ deexcites the 3340 *3*- level to the 1123 3⁻ level.

^z α (K)exp=0.00059 *10* for the 2251.4+2254.4 γ 's is consistent only with mult=M1 or E2 for both transitions.

¹ α (K)exp=0.00144 *19* for the 2384.9+2388.7 γ 's, compared with α (K)=0.00053 for mult=M1, suggests an E0 component in one or both transitions.

² α (K)exp for the 1739 γ to the 1123 level with π =- and for the 2518 γ to the 344 level with π =+ give mult=M1,E2 for both transitions. This mult discrepancy does not allow π (2862) to be determined. From $\gamma(\theta)$, 1990Ta19 give δ (2518 γ)=-0.29 8 or +7 +9-3 for J=2, and +0.21 6 or -30 +20 -*INF* for J=3.

³ α (K)exp=0.00078 *15* for E γ =2076.21+2078.63. Placement of the 2078 γ requires mult=E1, leading to α (K)exp=0.0012 *3* for the 2076 γ . compared with theory values of 0.00072 for M1 and 0.00057 for E2 this α (K)exp value gives mult=M1 or E0+M1+E2.

- ⁴ α (K)exp=0.0024 5 for E γ =2322.3+2324.32, compared with theory values of 0.00056 and 0.00047 for mult=M1 and E2, respectively, requires an E0 admixture in one or both transitions. The 2322 γ is unplaced.
- ⁵ α (K)exp=0.00024 4 for E γ =2793.27+2795.92, compared with theory values of 0.00018, 0.00034, and 0.00037 for E1, E2, and M1, respectively, suggest mult=E1 for one of the components, and mult=M1,E2 for the other. The 2793.27 γ is unplaced.

⁶ α (K)exp=0.00082 20 for E γ =2018.09+2020.67 is consistent only with mult=M1,E2 for both components.

⁷ α (K)exp for the triplet 2597.04+2600.69+2602.85 is consistent only with mult=M1 or E2 for the 2602.85 γ . Placement in the level scheme requires Δ J=2. The 2597 and 2600 γ 's are unplaced, but α (K)exp for the triplet is consistent with mult=M1 for both transitions.

⁸ ce lines are reported at 2885.0 and 2894. E γ =2882.39, 2887.51, 2890.2, and 2893.15 for transitions close to these energies. 2004AdZZ deduce mult=E1 for the 2882 γ by assigning the entire Ice for the 2885 ce line to this transition, giving α (K)exp=0.00026 6; however, the associations do not seem to be unambiguous. Only the 2887 γ is placed, and nothing can be deduced about its mult.

- ⁹ α (K)exp=0.038 *3* for the doublet 493.81+496.37 γ . Given mult=E2 for the 493.8 γ , placed as 2⁺ to 0⁺ from the 1109.2 level, one gets α (K)exp=0.063 *4* for the 496.37 γ from the 1605.6 level compared with α (K)=0.022 for mult=M1, α (K)exp requires an E0 component.
- $\alpha(K) \exp = 0.025 5$ for the doublet 543.58+547.47. Given mult=E1 for the 547.47 γ , placed as 2⁺ to 1⁻ from the 1862.06 level, one gets $\alpha(K) \exp = 0.033 6$ for the 543.58 γ from the 1861.89 level compared with $\alpha(K) = 0.0174$ for mult=M1. $\alpha(K) \exp requires an E0$ component.

 α (K)exp=0.030 4 for the 195.17+196.34 γ 's, unresolved in the ce spectrum, is consistent only with mult=E1 for the strong 195.17 component. mult is undetermined for the unplaced 196.34 γ .

 α (K)exp=0.018 4 for E γ =697.20+699.25 placed from the 2011 and 1314 levels, respectively. From these placements, mult must be E1, with α (K)=0.00197. If the placements are correct, there May be a third transition at this energy with mult=E0 and Ice=0.0026 6.

 $^{/} \alpha$ (K)exp=0.0036 6 for E γ =930.58+932.09 with placements from the 930 and 2247 levels, requiring mult=pure E2 and E1(+M2), respectively, suggests an M2 admixture for the 932.09 γ .

 $< \alpha(K)\exp=0.0018 \ 3$ for E $\gamma=1316.32+1318.24$ with placements from the 2246 and 1318 levels. From the placement, mult(1318.24 γ) must be E2. The remaining Ice(K) gives mult(1316.32 γ)=M1 or E2, consistent with its placement as a 2⁺ to 2⁺ transition.

[>] For absolute intensity per 100 decays, multiply by 0.635 6.

4

 $\gamma(^{152}\text{Gd})$ (continued)

 $^{\alpha}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{β} Placement of transition in the level scheme is uncertain. ^{*x*} γ ray not placed in level scheme.

 $^{152}_{64}\text{Gd}_{88}\text{--}47$

Decay Scheme (continued)

 $^{152}_{64}Gd_{88}$

Decay Scheme (continued)

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

Decay Scheme (continued)

 $^{152}_{\ 64}\text{Gd}_{88}$

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

Decay Scheme (continued)

