¹⁵⁰Sm(α ,2n γ), ¹⁵²Sm(α ,4n γ) 2006ShZY,1980Zo02,1980Gu13

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin	NDS 114, 1497 (2013)	31-Aug-2013

2006ShZY: 152 Sm(α ,4n γ) E=45 MeV. 1980Zo02: 150 Sm(α ,2n γ) E=28 MeV, 152 Sm(α ,4n γ) E=50 MeV; measured E γ , I γ , Ice, $\gamma\gamma$, $\gamma(\theta)$, excit. Earlier publication: 1975Zo01. 1980Gu13: 150 Sm(α ,2n γ) E=19, 27 MeV; measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, excit (I γ (19 MeV)/I γ (27 MeV)).

1972Lo04: ¹⁵²Sm(α ,4n γ) E=32-43 MeV; measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$.

Other: 1968Ej01.

The level scheme and band structure are from 2006ShZY. These authors added to the g.s. band, the quasi- β band, and the negative parity band built on the 3⁻ 1121.9 level proposed by 1980Zo02, and introduced seven new bands.

E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$
0.0^{\ddagger}	0^{+}	2070		3061		4142.3 [‡]	16+
344.0 [‡]	2+	2138.6 [#]	8+	3157.5 ^a	10-	4195 ^c	16+
615.1 [#]	0^{+}	2174 <mark>&</mark>	6-	3227 d	10-	4247 <mark>b</mark>	15-
756.2 [‡]	4+	2300.4 [‡]	10^{+}	3250 ^c	12^{+}	4247.2 ^d	15-
930.2 [#]	2^{+}	2301 ^{<i>f</i>}	7+	3295 f	11^{+}	4363	
1109 ^e	2^{+}	2331.6 [@]	9-	3318 ^b	11-	4526 <mark>&</mark>	16-
1121.9 [@]	3-	2394	7+	3338.4 [@]	13-	4540 ^a	16-
1227.5 [‡]	6+	2460 ^e	8+	3346.0 <mark>&</mark>	12-	4609.5 [@]	17^{-}
1281.6 [#]	4+	2537.1 <mark>&</mark>	8-	3499.2 [‡]	14^{+}	4746 ^C	18^{+}
1433 ^f	3+	2692.0 [#]	10^{+}	3508 ^a	12^{-}	4835 [‡]	18^{+}
1470.7 [@]	5-	2698 ^d	8-	3587 <mark>d</mark>	13-	4853 ^b	17^{-}
1549 ^e	4+	2775	9+	3700 ^C	14^{+}	5011 ^d	17^{-}
1667.4 [#]	6+	2814.6 [@]	11-	3728 ^b	13-	5213 ^{&}	18-
1747.6 [‡]	8+	2875 ^a	8-	3830 ^{<i>f</i>}	13+	5334 [@]	19-
1808		2884.1 [‡]	12^{+}	3898 <mark>&</mark>	14-	5385 ^C	20^{+}
1861 ^{<i>f</i>}	5+	2889.9 <mark>&</mark>	10^{-}	3938.9 [@]	15-	5923 ^{&}	20^{-}
1880.4 [@]	7-	3011 ^b	9-	3975 ^a	14-	6082 [@]	21-
1995 <mark>e</mark>	6+	3034 ^d	(11)	4104			

152Gd Levels

[†] From Adopted Levels.

[‡] Band(A): g.s. band.

[#] Band(B): Quasi- β band.

[@] Band(C): Negative-parity odd-spin band.

& Band(D): Negative-parity even-spin band.

^a Band(E): Negative-parity even-spin band.

^b Band(F): Negative-parity odd-spin band.

^c Band(G): Positive-parity even-spin band.

^d Band(H): Possible negative parity band.

^{*e*} Band(I): Even-spin γ -vibrational band.

^{*f*} Band(J): Odd-spin γ vibrational band.

From ENSDF

¹⁵⁰Sm(α,2nγ), ¹⁵²Sm(α,4nγ) **2006ShZY**,1980Zo02,1980Gu13 (continued)

 $\gamma(^{152}\text{Gd})$

 α (K)exp are from Ice(K)/I γ (1980Zo02) normalized to α (K)(344 γ)=0.0311 (E2). All A₂ and A₄ are from 1980Zo02. DCO results are from 1980Gu13.

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	α^{a}	Comments
146		3157.5	10-	3011 0-			
150		12916	10 4+	112102^{-1}			
150		3318	11-	$1121.9 \ 3$ $3157 \ 5 \ 10^{-1}$			
100		2509	12-	$2210 11^{-1}$			
191		3308	12	3318 11 1470 7 5-			
197		1007.4	12-	14/0./ 3			
220		3728	13	3308 12 2728 12-			
247		3975	14	3/28 13			
258		2138.6	8	1880.4 /			
2/1		4247	15	39/5 14			
271.1 ^{x}		615.1	0^{+}	344.0 2+			
282		3157.5	10-	2875 8-			
293		4540	16-	4247 15-			
307		3318	11-	3011 9-			
312		4853	17-	4540 16-			
315.1 [@] 2		930.2	2^{+}	615.1 0+			
344.3	100	344.0	2^{+}	$0.0 \ 0^+$	E2	0.0399	Mult.: $A_2 = +0.22 4$, $A_4 = -0.08 5$; $\Delta J = 2$ from DCO.
345 ^b		1470.7	5-	1121.9 3-			
351		3508	12^{-}	3157.5 10-			
351.8	6.5	1281.6	4+	930.2 2+	E2	0.0375	Mult.: $A_2 = +0.25$ 7, $A_4 = -0.13$ 10; $\Delta J = 2$ from DCO.
353.6	2.8	2889.9	10-	2537.1 8-	E2	0.0370	Mult.: $A_2 = +0.38 \ 11$, $A_4 = -0.01 \ 15$.
361		2692.0	10^{+}	2331.6 9-			2
363		1121.9	3-	756.2 4+			
363		2537.1	8-	2174 6-			
385.9	7.8	1667.4	6+	1281.6 4+	E2	0.0286	Mult.: $A_2 = +0.19 4$, $A_4 = -0.14 6$; $\Delta J = 2$ from DCO.
410		1880.4	7-	1470.7 5-			
411		3728	13-	3318 11-			
411.1	90.6	756.2	4+	344.0 2+	E2	0.0239	Mult.: α (K)exp=0.0202 17; A ₂ =+0.23 4, A ₄ =-0.10 6;
407		10/1	<u>-</u> +	1 422 2+			$\Delta J=2$ from DCO; theory: $\alpha(K)=0.00191$.
427		1861	5'	1433 3			
439.8 ^w 2		1667.4	6+	1227.5 6+	D+Q		Mult.: from DCO ratio (1980Gu13).
440		1549	4+	1109 2+			
440		2301	7+	1861 5+			
447		1995	6+	1549 4+			
450		3700	14+	3250 12+			
451.1	3.9	2331.6	9-	1880.4 /-	E2	0.0185	Mult.: $A_2 = +0.274$, $A_4 = -0.156$; $\Delta J = 2$ from DCO.
454.5	2.8	3338.4	13-	2884.1 12+	D	0.0170	Mult.: $A_2 = -0.21$ 7, $A_4 = +0.03$ 9.
456.0	5.0	3346.0	12	2889.9 10	(E2)	0.0179	Mult.: $A_2 = +0.18$ 7, $A_4 = -0.21$ 10.
462		3346.0	12	2884.1 12			
464		2460	8'	1995 6'			
467	11.0	3975	14	3508 12	50	0.0165	
470.5	11.3	2138.6	8.	1667.4 6	E2	0.0165	Mult.: α (K)exp(4/0.5 γ +4/1.8 γ)=0.0130 18; A ₂ =+0.50 15, A ₄ =-0.02 16; Δ J=2 from DCO; theory: α (K)=0.0133
471.8	76.0	1227.5	6+	756.2 4+	E2	0.0164	Mult.: $\alpha(K) \exp(471.8\gamma + 470.5\gamma) = 0.0133$ 18; A ₂ =+0.21 4, A ₄ =-0.13 5; ΔJ =2 from DCO; theory: $\alpha(K)$ =0.0132.
476		2775	9+	2301 7 ⁺			-
483.1	6.3	2814.6	11-	2331.6 9-	E2	0.0154	Mult.: $A_2 = +0.24 4$, $A_4 = -0.16 6$; $\Delta J = 2$ from DCO.
495		4195	16^{+}	3700 14+			
503		1433	3+	930.2 2+			
503		3318	11-	2814.6 11-			

Continued on next page (footnotes at end of table)

150 Sm(α ,2n γ), 152 Sm(α ,4	$(1n\gamma)$ 2006ShZY	,1980Zo02,1980Gu13	(continued)
--	------------------------------	--------------------	-------------

γ ⁽¹⁵² Gd) (continued)									
E_{γ}^{\dagger}	Iγ [‡]	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.#	δ	α^{a}	Comments	
514.3 518 519	11.6	2814.6 3295 4247	11 ⁻ 11 ⁺ 15 ⁻	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ D			Mult.: $A_2 = -0.17 6$, $A_4 = +0.14 8$.	
519.6	65.8	1747.6	8 ⁺	1227.5 6 ⁺	E2		0.0128	Mult.: α (K)exp=0.0105 <i>10</i> ; A ₂ =+0.25 <i>3</i> , A ₄ =-0.05 <i>4</i> ; Δ J=2 from DCO; theory: α (K)=0.0103	
523.6 526.7 533 534 549 550 552	12.1 4.1	3338.4 1281.6 2394 3830 5385 4746 3898	13 ⁻ 4 ⁺ 7 ⁺ 13 ⁺ 20 ⁺ 18 ⁺ 14 ⁻	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- E2 D+Q		0.0125	Mult.: $A_2 = +0.22$ 9, $A_4 = -0.02$ 13. Mult.: $A_2 = -0.34$ 6, $A_4 = -0.09$ 8.	
552.4 553	8.9	2692.0 3587	10^+ 13^-	2138.6 8 ⁺ 3034 (11	E2		0.0109	Mult.: A ₂ =+0.54 <i>13</i> , A ₄ =-0.12 <i>16</i> .	
553.6 557 558 565	47.3	2300.4 3250 2889.9	10^{+} 10^{+} 12^{+} 10^{-} 16^{-}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3034 (11) 1747.6 8 ⁺ 2692.0 10 ⁺ 2331.6 9 ⁻ 2075 14 ⁻	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0108	Mult.: $A_2 = +0.21 4$, $A_4 = -0.11 4$.
583.4 584.6 586.3	20.6 14.0 3.6	2884.1 2331.6 930.2	10 12 ⁺ 9 ⁻ 2 ⁺	2300.4 10 1747.6 8 ⁺ 344.0 2 ⁺	+ E2 D D+Q		0.00948	Mult.: $A_2 = +0.29 \ 8$, $A_4 = -0.08 \ 10$. Mult.: $A_2 = -0.25 \ 7$, $A_4 = +0.16 \ 10$. Mult.: $A_2 = -0.37 \ 18$, $A_4 = -0.10 \ 25$.	
589.9	4.5	2889.9	10-	2300.4 10+	* (E1+M2)	0.33 +8-10		Mult., δ : From α (K)exp=0.0067 <i>19</i> one gets mult=M1+E2 with δ >2.6, or E1+M2 with δ =0.33 +8-10. 1980Zo02 assigned mult=M1+E2, which gives positive parity for the 2890 level. 2006ShZY propose negative parity and thus $\Delta\pi$ =yes. The revised J ^{π} assignment is supported by 2007Ca25 in (³⁶ S, α 4n γ). A ₂ =+0.24 6, A ₄ =-0.03 10 are consistent with either mult assignment.	
600.5 604	6.7	3938.9 4746	15 ⁻ 18 ⁺	3338.4 13 4142.3 16	- E2		0.00882	Mult.: $\alpha(K)\exp=0.0072 \ 11$; A ₂ =+0.20 4, A ₄ =-0.07 6; theory: $\alpha(K)=0.00722$.	
606 615.4 628 633 639	11.1	4853 3499.2 4526 1861 5385	17^{-} 14^{+} 16^{-} 5^{+} 20^{+}	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	- + E2 -		0.00831	Mult.: A ₂ =+0.23 <i>4</i> , A ₄ =-0.09 <i>6</i> .	
643.5	4.4	4142.3	16 ⁺	3499.2 14	+ E2		0.00745	Mult.: α (K)exp=0.0055 11; A ₂ =+0.21 4, A ₁ =-0.07 5: theory: α (K)=0.00613	
652.9	4.8	1880.4	7-	1227.5 6+	E1		0.00266	Mult: $\alpha(K)$ exp=0.0022 4; A ₂ =-0.31 5, A ₄ =+0.06 8: theory: $\alpha(K)$ =0.00226	
657 660 670.6	3.4	2537.1 4247.2 4609.5	8 ⁻ 15 ⁻ 17 ⁻	1880.4 7 ⁻ 3587 13 3938.9 15	- - E2		0.00675	$\alpha(K)=0.00556; \alpha(L)=0.000893$	
678 679 687 693 696 703 710		1433 3011 5213 4835 4195 3587 5923	3 ⁺ 9 ⁻ 18 ⁻ 18 ⁺ 16 ⁺ 13 ⁻ 20 ⁻	756.2 4 ⁺ 2331.6 9 ⁻ 4526 16 4142.3 16 3499.2 14 2884.1 12 5213 18	- + + -			Mult.: α (K)exp=0.0041 21; A ₂ =+0.19 7, A ₄ =+0.03 10; theory: α (K)=0.00556.	

Continued on next page (footnotes at end of table)

			¹⁵⁰ Sı	$\mathbf{m}(\alpha, 2\mathbf{n}\gamma), {}^{152}\mathbf{S}$	$\mathbf{m}(\alpha, 4\mathbf{n}\gamma)$	2006ShZY,1980Zo02,1980Gu13 (continued)	
γ ⁽¹⁵² Gd) (continued)							
E_{γ}^{\dagger}	Iγ [‡]	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	Comments	
715.0 725 726 729 733 748 764 765 770 772	1.9	1470.7 5334 2394 3061 3034 6082 5011 1109 1995 2587	5^{-} 19^{-} 7^{+} (11) 21^{-} 17^{-} 2^{+} 6^{+} 12^{-}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D+Q	Mult.: A ₂ =-0.27 10, A ₄ =+0.24 15.	
778.9 ^{&} 790.2	2.9	1121.9 2537.1	3 ⁻ 8 ⁻	344.0 2 ⁺ 1747.6 8 ⁺	(E1+M2)	Mult.: A_2 =+0.31 7, A_4 =+0.11 9 and DCO (1980Gu13) give mult=D+Q with a large Q component, interpreted as M1+E2 by 1980Zo02, but required to be E1+M2 by the revised spin assignment of 2006ShZY and of 2007Ca25 in (³⁶ S, α 4n γ).	
794 816 826 843 864 895 909 ^b		1549 3700 3157.5 3728 4363 3227 4247 2	4 ⁺ 14 ⁺ 10 ⁻ 13 ⁻ 10 ⁻ 15 ⁻	756.2 4 ⁺ 2884.1 12 ⁺ 2331.6 9 ⁻ 2884.1 12 ⁺ 3499.2 14 ⁺ 2331.6 9 ⁻ 3338.4 13 ⁻			
930 941 946 950 987 995 995		930.2 3830 2174 2698 3318 2875 3295	2^+ 13^+ 6^- 8^- 11^- 8^- 11^+	0.0 0 ⁺ 2889.9 10 ⁻ 1227.5 6 ⁺ 1747.6 8 ⁺ 2331.6 9 ⁻ 1880.4 7 ⁻ 2300.4 10 ⁺			
1018 1025 1052 1074 1090 1106		3293 3318 2775 1808 2301 1433 1861	7^{+} 7^{+} 3^{+} 5^{+}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
1109 1131 1167 1206 1220 1232 1236		1109 3011 2394 1549 4104 2460 1995	2^+ 9^- 7^+ 4^+ 8^+ 6^+	$\begin{array}{c} 0.0 & 0^+ \\ 1880.4 & 7^- \\ 1227.5 & 6^+ \\ 344.0 & 2^+ \\ 2884.1 & 12^+ \\ 1227.5 & 6^+ \\ 756.2 & 4^+ \end{array}$			
1314		2070	0	756.2 4+			

[†] Energies quoted to tenths of keV are from 1980Zo02, except where noted otherwise. Energies quoted to the nearest keV are from 2006ShZY. No uncertainties are given in either of these works. the evaluator has lowered the energies of 2006ShZY by 1 keV in order to improve the correlation between the level energies from this work and those from other reaction and decay datasets.

[‡] From 152 Sm(α ,4n γ) at E=50 MeV, 125° (1980Z002).

[#] Deduced from $\gamma(\theta)$ (1980Zo02) and DCO ratio (DCO ratio >2 for $\Delta J=2$, Q and DCO ratio <2 for D or D+Q) (1980Gu13), except where noted otherwise.

^(a) From 1980Gu13. & Seen only in 150 Sm(α ,2n γ) reaction.

¹⁵⁰Sm(α ,2n γ), ¹⁵²Sm(α ,4n γ) **2006**ShZY,1980Zo02,1980Gu13 (continued)

$\gamma(^{152}\text{Gd})$ (continued)

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

₆₄ Gu₈

6

 $^{152}_{\ 64}\text{Gd}_{88}$

8

150 Sm(α ,2n γ), 152 Sm(α ,4n γ) 2006ShZY,1980Zo02,1980Gu13

 $^{152}_{64}\text{Gd}_{88}$

 $^{152}_{64}{
m Gd}_{88}$