$^{152}_{68}\mathrm{Er}_{84}$ -1

(HI,xnγ) 1992Ku13,1981Ba33,1980Ba33

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin	NDS 114, 1497 (2013)	31-Aug-2013

1992Ku13: ¹¹⁶Sn(⁴⁰Ar,4n γ) E=180 MeV, also ¹⁴⁴Sm(¹²C,4n γ) and ¹⁴⁴Sm(¹³C,5n γ). Measured: E γ , I γ , $\gamma\gamma$, $\gamma(ce)$, $\gamma\gamma(\theta)$, $\gamma\gamma\gamma(t)$, $\gamma(ce)(t)$; high energy resolution array with 21 Ge detectors, Si(Li) detectors.

1981Ba33: ¹⁰⁸Pd(⁴⁸Ti,4n γ) E=225 MeV; measured E γ , I γ , γ (t). Delayed transitions from the 32 ns isomeric state.

1981Ho05: ¹⁴⁴Sm(¹²C,4n γ) E=65-95 MeV; ¹⁴⁴Sm(¹¹B,3n γ) E=40-70 MeV; ¹²⁴Te(³²S,4n γ) E=125-155 MeV; measured: E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$.

1980Ba33: ¹⁴⁴Sm(¹²C,4n γ) E=86 MeV; measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, $\gamma\gamma(t)$.

1984AdZZ: 144 Sm(12 C,4n γ) E=80-90 MeV.

¹⁵²Er Levels

The level scheme is that proposed by 1992Ku13 and agrees, in general, with those proposed by earlier investigators. The configurations are also those proposed by 1992Ku13 and are deduced from shell model and comparison with ¹⁴⁸Gd and ¹⁵⁰Dy.

E(level) [†]	J ^{π#}	T _{1/2}	Comments
0.0&	0^{+}		
808.2 % 1	2+		
1490.9 $\frac{8}{2}$ 2	2 4+		
1480.8 2	4		
1903.3 2	6^+	1.0.2	
2183.2 2	8'	1.8 ns 3	g = -0.07 8 (1984 AdZZ)
			Configuration= $(v, 1_{7/2})(v, 1_{9/2})$. There from 1084A dZZ. Otherer all no (1081Pa22): 1.2 no 2 (1090Pa22)
			$1_{1/2}$: Itolli 1964AuZZ. Ollets: ≈ 2 its (1961Da55); 1.2 its 5 (1960Da55).
2047 5 2	10+		$C_{\text{onfiguration}} = (\pi h_{\text{orb}})^{+2}$
2947.55 2724.0 ^{<i>a</i>} 2	10		$\operatorname{Connguration} = (\pi, n_{11/2})$.
12801^{a}	$12 \\ 14^+$		
4519.2^{a} 3	1 4 16 ⁺	1 2 ns 3	$g = \pm 0.29 13 (1984 \Delta d77)$
1317.2 5	10	1.2 115 5	$T_{1/2}$: from 1984AdZZ. Others: ≈ 1.5 ns (1992Ku13 1981Ba33) 0.8 ns 3 (1980Ba33)
			g-factor: from $\gamma(\theta, H)$ with paramagnetic correction.
4536.0 4	15^{+}		
4685.0 4	16^{+}	4.6 ns 14	$T_{1/2}$: from 1980Ba33. Other: ≈ 6 ns (1992Ku13).
5080.4 <i>3</i>	18^{+}		Configuration= $(\pi, h_{11/2})^{+2}_{10}$, $(\nu, f_{7/2})(\nu, h_{9/2}))8^+$.
5414.7 4			
5459.8 <i>4</i>	17^{-}		
5635.2 4	18-		
5810.8 4	19-		
5966.6 4			
6036.7 4	19-		
6176.3 4	20-		
6407.3 4	20-		
6486.0 4	20		
6555 0 4	21^{-21}		
$(7240^{\pm}11)$	21		
0/34.2* 11			
6/56.8?*	22		
6837.5 4	22		
7011.8 4	22		
/118./4 744864	23 24-		
811295	24		
0112.7 5			

$^{152}_{68}\mathrm{Er}_{84}\text{-}2$

(HI,xnγ) 1992Ku13,1981Ba33,1980Ba33 (continued)

¹⁵²Er Levels (continued)

E(level) [†]	$J^{\pi \#}$	T _{1/2}	Comments
8233.2 <i>4</i> 8350.3 <i>5</i> 8489.8 6	26-		
8514.6 7	25		
8527.8 5	27		
8659.8 6 8691.0 7 8863.4 5	26-		Configuration= $((\pi, h_{11/2})^{+4}(\nu, f_{7/2})(\nu, i_{13/2}))26^{-}$.
9679.8 7			
9711.7 5	28+	35 ns 4	$T_{1/2}$: from 1992Ku13. Other: possibly the 32 ns 3 isomer at E(exc.)=8.5 4 MeV seen by 1980Bo07. Configuration= $((\pi h_{11/2})^{+4} (y_1 h_{12/2})^{+2})28^+$
9725.5 7			= ((1, 11/2) + (1, 13/2) + (
10082.8 7			
10306.5 6			
10394.2 6			
10548.2 6			
11121.4 7			
11399.8 6			
12121.2 7			
13029.4 7		0	
13387.2 <i>9</i> 14944.9 <i>12</i>		11 [@] ns <i>1</i>	

 † From a least-squares fit to the $E\gamma$ data, and rounded off by the evaluator to one decimal digit.

[‡] Using the uncorrected energies of 1992Ku13, the authors' level scheme shows transitions 256.0 and 278.0 connecting levels at 7001.4 and 6466.8; however, the sum, 534.0 is somewhat inconsistent with the energy of the crossover transition, 533.4. In table 1, these transitions are shown deexciting levels at 6722.8 and 6745.4, respectively. The 256 γ from the 6722.8 level yields a final level at 6466.8, as shown in the authors' level scheme; however, the 278.0 γ from a 6745.4 level yields a final level at 6466.4, and no such level is listed by the authors. There thus appears to be a misprint in either the E γ or E(level) value. The 6745.4 level (corrected energy 6756.8) is shown As questionable.

[#] Proposed by 1992Ku13, based on angular correlation and conversion coefficient measurements.

[@] From 1992Ku13. Other: <10 ns for E(exc.)>12.2 MeV (1980Bo07).

& Band(A): Configuration: ν ,2f⁺²_{7/2}.

^{*a*} Band(B): Configuration: π ,1h⁺²_{11/2} 10+ ν ,2f⁺²_{7/2}.

$\gamma(^{152}\text{Er})$

E_{γ}^{\dagger}	Ιγ ^{&}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π} Mult. ^{<i>a</i>}	α^{d}	Comments
(13.3)	174	9725.5	21-	9711.7 2	28 ⁺	9 42 16	E_{γ} : from level scheme.
08.0 3	1./ 4	0555.0	21	0480.9 2	I WH	8.45 10	$\begin{array}{l} \alpha(\mathbf{N}) = 1.06 \ 14, \ \alpha(\mathbf{L}) = 1.069 \ 21, \ \alpha(\mathbf{M}) = 0.237 \ 3, \\ \alpha(\mathbf{N}+) = 0.0637 \ 13 \\ \alpha(\mathbf{N}) = 0.0553 \ 11; \ \alpha(\mathbf{O}) = 0.00799 \ 16; \ \alpha(\mathbf{P}) = 0.000439 \ 9 \end{array}$
120.4 3	1.5 4	8233.2	26-	8112.9			
140.4 4	0.6 2	6176.3	20-	6036.7 1	9- M1	1.082 18	$\alpha(K)=0.908$ 15; $\alpha(L)=0.1356$ 22; $\alpha(M)=0.0301$ 5; $\alpha(N+)=0.00808$ 13
							α (N)=0.00701 <i>12</i> ; α (O)=0.001014 <i>17</i> ; α (P)=5.59×10 ⁻⁵ 9
147.5 4	0.5 2	6555.0	21^{-}	6407.3			
149.1 <i>3</i>	3.8 4	4685.0	16+	4536.0 1	5 ⁺ M1	0.913	α (K)=0.766 <i>12</i> ; α (L)=0.1144 <i>18</i> ; α (M)=0.0254 <i>4</i> ;

Continued on next page (footnotes at end of table)

$\gamma(^{152}\text{Er})$ (continued)

E_{γ}^{\dagger}	Ι _γ &	E _i (level)	\mathbf{J}_i^{π}	E _f J	$\frac{\pi}{f}$	Mult. ^a	δ	α^{d}	Comments
154.2 <i>3</i> 165.8 <i>3</i>	4.2 <i>4</i> 2.3 2	10548.2 4685.0	16 ⁺	10394.2 4519.2 16	6+ 1	M1+E2		0.50 2	$ \begin{array}{c} \alpha(\mathrm{N}+)=0.00682 \ 1l \\ \alpha(\mathrm{N})=0.00591 \ 9; \ \alpha(\mathrm{O})=0.000855 \ 13; \\ \alpha(\mathrm{P})=4.72\times10^{-5} \ 8 \\ \mathrm{Mult.: from } \ \alpha(\mathrm{K})\mathrm{exp}=0.63 \ 19 \ (1992\mathrm{Ku13}). \\ \mathrm{Mult.: } \ \Delta J=1 \ (1992\mathrm{Ku13}). \\ \alpha(\mathrm{K})=0.42 \ 15; \ \alpha(\mathrm{L})=0.12 \ 4; \ \alpha(\mathrm{M})=0.028 \\ 9; \ \alpha(\mathrm{N}+)=0.0071 \ 2l \\ \alpha(\mathrm{N})=0.0063 \ 20; \ \alpha(\mathrm{O})=0.00082 \ 19; \\ \alpha(\mathrm{P})=2.4\times10^{-5} \ 12 \\ \mathrm{Mult.: from } \ \alpha(\mathrm{K})\mathrm{exp}=1.0 \ 8 \ (1992\mathrm{Ku13}). \\ \delta: \ \delta=+2.0 \ \mathrm{or} \ -3.5 \ (1992\mathrm{Ku13}). \\ \alpha: \ \alpha=0.516 \ \mathrm{for} \ \delta=2.0 \ \mathrm{and} \ 0.491 \ \mathrm{for} \\ \delta=3.5. \end{array} $
175.5 2	20.1 10	5635.2	18-	5459.8 17	7- 1	M1+E2 ^b	+0.2	0.571 9	α(K)=0.476 7; α(L)=0.0740 11; α(M)=0.01650 24; α(N+)=0.00442 7 α(N)=0.00384 6; α(O)=0.000550 8; α(P)=2.91×10-5 5 Mult.: from α(K)exp=0.536 4 (1992Ku13). δ: other solution δ=7 (1992Ku13).
176.3 <i>3</i>	6.1 6	5810.8	19-	5635.2 18	8- 1	M1 ^b		0.571	$\begin{aligned} &\alpha(\mathbf{K}) = 0.479 \ 7; \ \alpha(\mathbf{L}) = 0.0713 \ 11; \\ &\alpha(\mathbf{M}) = 0.01582 \ 24; \ \alpha(\mathbf{N}+) = 0.00425 \ 7 \\ &\alpha(\mathbf{N}) = 0.00369 \ 6; \ \alpha(\mathbf{O}) = 0.000534 \ 8; \\ &\alpha(\mathbf{P}) = 2.95 \times 10^{-5} \ 5 \end{aligned}$
177.4 4	0.7 3	8527.8	27	8350.3					
209.6 <i>3</i> 226.2 <i>3</i>	4.8 <i>5</i> 7.9 8	6176.3 6036.7	20 ⁻ 19 ⁻	5966.6 5810.8 19	9- :	M1+E2	1.0	0.227	$\alpha(K)=0.177 \ 3; \ \alpha(L)=0.0388 \ 6;$ $\alpha(M)=0.00893 \ 14; \ \alpha(N+)=0.00234 \ 4$ $\alpha(N)=0.00206 \ 3; \ \alpha(O)=0.000275 \ 4;$ $\alpha(P)=1.013\times10^{-5} \ 15$ $\delta: \ -1.0 \ or \ +1.5 \ (1992Ku13).$ $\alpha:$ For the possible δ values with a 20% uncertainty in δ assumed by the evaluator
230.1 1	65 <i>3</i>	4519.2	16+	4289.1 14	4+]	E2 ^b		0.1588	$\alpha(K)=0.1079 \ I6; \ \alpha(L)=0.0392 \ 6; \ \alpha(M)=0.00299 \ I4; \ \alpha(N+)=0.00239 \ 4 \ \alpha(N)=0.00212 \ 3; \ \alpha(O)=0.000265 \ 4; \ \alpha(P)=5.25\times10^{-6} \ 8 \ Mult.: \ from \ \alpha(K)exp=0.138 \ 21 \ (1992Ku13)$
247.0 3	3.8 4	4536.0	15+	4289.1 14	4+ 1	M1		0.225	$\alpha(K)=0.190 \ 3; \ \alpha(L)=0.0280 \ 4; \\ \alpha(M)=0.00620 \ 9; \ \alpha(N+)=0.001668 \ 24 \\ \alpha(N)=0.001446 \ 21; \ \alpha(O)=0.000209 \ 3; \\ \alpha(P)=1.160\times10^{-5} \ 17 $
256.5 [#] 256.9 278.4	8.8 [#] 9	8489.8 6734.2 11399.8		8233.2 20 6477.3 20 11121.4	6- 0-				E_{γ} : Doublet. I_{γ} : The transition is a doublet. No intensity is given by 1992Ku13.
278.9 ^e 279.9 [#] 1	101 [#] 5	6756.8? 2183.2	8+	6477.3 20 1903.3 6 ⁻	0- +]	Е2 ^{bc}		0.0854	E _γ : Multiplet. See comment on 6757 level. $\alpha(K)=0.0615 \ 9; \ \alpha(L)=0.0185 \ 3; \ \alpha(M)=0.00433 \ 6; \ \alpha(N+)=0.001121 \ 16 \ \alpha(N)=0.000991 \ 14; \ \alpha(O)=0.0001264 \ 18;$
281.3 <i>3</i>	5.7 6	7118.7	23-	6837.5 22	2	M1		0.1585	$\alpha(P)=3.12\times10^{-6} 5$ $\alpha(K)=0.1334 \ 19; \ \alpha(L)=0.0196 \ 3;$ $\alpha(M)=0.00435 \ 7; \ \alpha(N+)=0.001169 \ 17$ $\alpha(N)=0.001014 \ 15; \ \alpha(O)=0.0001468 \ 21;$ $\alpha(P)=8.15\times10^{-6} \ 12$
				Contin	med c	n nevt nag	e (footn	otes at end	of table)

ontinue Р (noomote ena 01 $(HI,xn\gamma)$

1992Ku13,1981Ba33,1980Ba33 (continued)

$\gamma(^{152}\text{Er})$ (continued) $I_{\gamma}^{\&}$ α^{d} E_{γ}^{\dagger} Mult.^a E_i(level) \mathbf{J}_i^{π} J_f^{π} δ Comments E_f 294.6 2 8527.8 27 8233.2 26-18.19 M1^b 21^{-} 6176.3 20- $\alpha(K)=0.1022$ 15; $\alpha(L)=0.01500$ 22; 310.7 2 16.08 6486.9 0.1214 $\alpha(M)=0.00332$ 5; $\alpha(N+..)=0.000893$ 13 α (N)=0.000774 *11*; α (O)=0.0001122 *16*; $\alpha(P)=6.23\times10^{-6}$ 9 0.1035 $\alpha(K)=0.0871 \ 13; \ \alpha(L)=0.01276 \ 18;$ 329.9 1 47.2 24 7448.6 24^{-} 7118.7 23-M1α(M)=0.00283 4; α(N+..)=0.000760 11 α (N)=0.000659 *10*; α (O)=9.55×10⁻⁵ *14*; $\alpha(P)=5.31\times10^{-6} 8$ Mult.: $\gamma(\theta)$ indicates a dipole transition (1980Ba33); $\gamma\gamma(\theta)$ indicates $\delta=0$ (1992Ku13) (mult.=E2 in table I of 1992Ku13 is possibly a misprint). 331.3 3 5.5 6 5966.6 5635.2 18-334.3 3 5414.7 5080.4 18+ 1.2 3 335.5 3 7.78 8863.4 8527.8 27 358.2[#] 4.8[#] 5 10082.8 9725.5 358.9 13387.2 13029.4 I_{γ} : The transition is a doublet. No intensity is given by 1992Ku13. M1+E2^b 365.5 2 16.2 8 6176.3 20^{-} 5810.8 19-+4.00.0409 $\alpha(K)=0.0316~5; \alpha(L)=0.00726~11;$ α(M)=0.001676 24; α(N+..)=0.000438 7 $\alpha(N)=0.000385~6; \alpha(O)=5.09\times10^{-5}~8;$ $\alpha(P)=1.710\times10^{-6}\ 24$ Mult.: from α (K)exp=0.034 8 (1992Ku13). 373.63 6.97 8863.4 8489.8 378.7 3 21^{-} 6176.3 20-0.0718 $\alpha(K)=0.0605 9; \alpha(L)=0.00883 13;$ 8.4 9 6555.0 M1 α(M)=0.00195 3; α(N+..)=0.000525 8 $\alpha(N)=0.000456$ 7; $\alpha(O)=6.60\times10^{-5}$ 10; $\alpha(P)=3.68\times10^{-6}$ 6 10.5[#] 11 395.3[#] $\alpha(K)=0.0238 4; \alpha(L)=0.00546 8;$ 4685.0 16^{+} 4289.1 14+ E2 0.0309 $\alpha(M)=0.001260$ 18; $\alpha(N+..)=0.000329$ 5 α (N)=0.000290 4; α (O)=3.83×10⁻⁵ 6; $\alpha(P)=1.284\times10^{-6}$ 18 395.9[#] 6.0[#] 6 $\alpha(K)=0.0237 4; \alpha(L)=0.00544 8;$ 5080.4 18^{+} 4685.0 16+ E2 0.0308 α(M)=0.001254 18; α(N+..)=0.000328 5 α (N)=0.000288 4; α (O)=3.81×10⁻⁵ 6; $\alpha(P)=1.279\times10^{-6}$ 18 Mult.: from α (K)exp=0.052 *17* (1992Ku13). 19-0.0617 $\alpha(K)=0.0520 \ 8; \ \alpha(L)=0.00757 \ 11;$ 401.4 2 14.3 14 6036.7 5635.2 18-M1 α(M)=0.001674 24; α(N+..)=0.000450 7 $\alpha(N)=0.000390 6; \alpha(O)=5.66\times 10^{-5} 8;$ $\alpha(P)=3.15\times10^{-6}$ 5 422.5 1 94 5 1903.3 6^{+} 1480.8 4+ E2^{bc} 0.0257 $\alpha(K)=0.0200 \ 3; \ \alpha(L)=0.00440 \ 7;$ α(M)=0.001011 15; α(N+..)=0.000265 4 $\alpha(N)=0.000233$ 4; $\alpha(O)=3.10\times10^{-5}$ 5; $\alpha(P)=1.089\times10^{-6}$ 16 Mult.: Other: K/L=5.2 14 (1992Ku13). Theory values are 6.88 (M1) and 4.56 (E2). 436.7 2 9.7 10 7448.6 24^{-} 7011.8 22-E2 0.0235 $\alpha(K)=0.0184 \ 3; \ \alpha(L)=0.00395 \ 6;$ α(M)=0.000908 13; α(N+..)=0.000238 4 $\alpha(N)=0.000209 \ 3; \ \alpha(O)=2.79\times10^{-5} \ 4;$ $\alpha(P)=1.004\times10^{-6}$ 14 5.2 5 7011.8 22^{-} 0.0440 $\alpha(K)=0.0371$ 6; $\alpha(L)=0.00538$ 8; 456.9 3 6555.0 21-M1

Continued on next page (footnotes at end of table)

$\gamma(^{152}\text{Er})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\&}$	E _i (level)	\mathbf{J}_i^{π}	E_f J	\int_{f}^{π} Mult. ^{<i>a</i>}	δ	α^{d}	Comments
								$\begin{array}{l} \alpha(\mathrm{M}) = 0.001190 \ 17; \ \alpha(\mathrm{N}+) = 0.000320 \ 5\\ \alpha(\mathrm{N}) = 0.000278 \ 4; \ \alpha(\mathrm{O}) = 4.03 \times 10^{-5} \ 6; \\ \alpha(\mathrm{P}) = 2.25 \times 10^{-6} \ 4 \end{array}$
465.6 <i>3</i> 518.1 <i>2</i>	3.7 <i>4</i> 28.5 <i>15</i>	10548.2 6555.0	21-	10082.8 6036.7 19	9 ⁻ E2		0.01502	$\alpha(K)=0.01200 \ 17; \ \alpha(L)=0.00234 \ 4;$ $\alpha(M)=0.000533 \ 8; \ \alpha(N+)=0.0001404 \ 20$ $\alpha(N)=0.0001230 \ 18; \ \alpha(O)=1.670\times10^{-5} \ 24;$
524.8 <i>3</i>	3.6 4	7011.8	22-	6486.9 2	1 ⁻ M1+E2	+1.0	0.0227	$\alpha(P)=6.66\times10^{-10}$ $\alpha(K)=0.0188 \ 3; \ \alpha(L)=0.00300 \ 5;$ $\alpha(M)=0.000671 \ 10; \ \alpha(N+)=0.000179 \ 3$ $\alpha(N)=0.0001559 \ 22; \ \alpha(O)=2.21\times10^{-5} \ 4;$ $\alpha(D)=0.0001559 \ 22; \ \alpha(O)=2.21\times10^{-5} \ 4;$
534.3 3	3.0 3	7011.8	22-	6477.3 20	0 ⁻ E2		0.01389	$\alpha(P)=1.108\times10^{\circ} \ 76$ $\alpha(K)=0.01114 \ 16; \ \alpha(L)=0.00214 \ 3;$ $\alpha(M)=0.000486 \ 7; \ \alpha(N+)=0.0001282 \ 18$ $\alpha(N)=0.0001123 \ 16; \ \alpha(O)=1.528\times10^{-5} \ 22;$ $\alpha(P)=6.20\times10^{-7} \ 9$
554.2 1	94 5	4289.1	14+	3734.9 12	2+ E2 ^b		0.01268	$\alpha(\mathbf{K})=0.01020 \ 15; \ \alpha(\mathbf{L})=0.00192 \ 3;$ $\alpha(\mathbf{M})=0.000437 \ 7; \ \alpha(\mathbf{N}+)=0.0001152 \ 17$ $\alpha(\mathbf{N})=0.0001009 \ 15; \ \alpha(\mathbf{O})=1.377\times10^{-5} \ 20;$ $\alpha(\mathbf{P})=5.69\times10^{-7} \ 8$ $\alpha(\mathbf{L})=0.00193$
561.1 <i>1</i>	49.0 25	5080.4	18+	4519.2 10	5 ⁺ E2 ^b		0.01230	$\alpha(K)=0.00991 \ 14; \ \alpha(L)=0.00186 \ 3; \\ \alpha(M)=0.000421 \ 6; \ \alpha(N+)=0.0001112 \ 16 \\ \alpha(N)=9.73\times10^{-5} \ 14; \ \alpha(O)=1.330\times10^{-5} \ 19; \\ \alpha(P)=5.53\times10^{-7} \ 8 \\ Mult: \ \alpha(K)exp=0.012 \ 2 \ (1992Ku13) \ stretched \\ E2 \ form \ cre(0) \ (1002Ku12) \ 1080Pa^{-22})$
563.8 1	47.5 24	7118.7	23-	6555.0 2	1 ⁻ Ε2 ^b		0.01215	E2 from γγ(θ) (1992Ku13,1980Ba33). $\alpha(K)=0.00980$ 14; $\alpha(L)=0.00183$ 3; $\alpha(M)=0.000416$ 6; $\alpha(N+)=0.0001097$ 16 $\alpha(N)=9.60\times10^{-5}$ 14; $\alpha(O)=1.313\times10^{-5}$ 19; $\alpha(P)=5.47\times10^{-7}$ 8 Mult : from $\alpha(K)$ and $\alpha(D)=0.000$ 3 (1002Ku12)
577.0 <i>3</i>	7.2 7	6036.7	19-	5459.8 17	7 ⁻ E2		0.01148	$\alpha(K) = 0.00927 \ 13; \ \alpha(L) = 0.001715 \ 25; \alpha(M) = 0.000389 \ 6; \ \alpha(N+) = 0.0001027 \ 15 \alpha(N) = 8.98 \times 10^{-5} \ 13; \ \alpha(O) = 1.231 \times 10^{-5} \ 18; \alpha(P) = 5.19 \times 10^{-7} \ 8$
596.4 <i>3</i>	1.9 <i>4</i>	6407.3 10306 5		5810.8 19	9-			
631.8 2	14.0 <i>14</i>	7118.7	23-	6486.9 2	1 ⁻ E2		0.00923	α (K)=0.00751 <i>11</i> ; α (L)=0.001335 <i>19</i> ; α (M)=0.000301 <i>5</i> ; α (N+)=7.98×10 ⁻⁵ <i>12</i> α (N)=6.97×10 ⁻⁵ <i>10</i> ; α (O)=9.62×10 ⁻⁶ <i>14</i> ; α (P)=4.23×10 ⁻⁷ 6
661.3 <i>3</i>	3.8 4	6837.5	22	6176.3 20	0 [−] E2		0.00829	$\alpha(K) = 0.00677 \ 10; \ \alpha(L) = 0.001181 \ 17; \alpha(M) = 0.000266 \ 4; \ \alpha(N+) = 7.05 \times 10^{-5} \ 10 \alpha(N) = 6.16 \times 10^{-5} \ 9; \ \alpha(O) = 8.53 \times 10^{-6} \ 12; \alpha(P) = 3.82 \times 10^{-7} \ 6$
664.4 <i>3</i>	3.2 3	8112.9		7448.6 24	4-			
672.6 1	97 5	1480.8	4+	808.2 2	+ E2 ^{bc}		0.00797	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00652 \ 10; \ \alpha(\mathbf{L}) = 0.001129 \ 16; \\ &\alpha(\mathbf{M}) = 0.000254 \ 4; \ \alpha(\mathbf{N}+) = 6.74 \times 10^{-5} \ 10 \\ &\alpha(\mathbf{N}) = 5.89 \times 10^{-5} \ 9; \ \alpha(\mathbf{O}) = 8.16 \times 10^{-6} \ 12; \\ &\alpha(\mathbf{P}) = 3.68 \times 10^{-7} \ 6 \end{aligned}$
682.7 <i>3</i> 721.4 <i>2</i>	3.7 <i>4</i> 17.0 <i>9</i>	10394.2 12121.2		9711.7 28 11399.8	8+			Mult.: $\Delta J=2$ (1992Ku13).

Continued on next page (footnotes at end of table)

$\gamma(^{152}\text{Er})$ (continued)

E_{γ}^{\dagger}	Ι _γ &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	δ	α^{d}	Comments
730.4 2	39.2 20	5810.8	19-	5080.4	18+	E1 ^b		0.00251	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00214 \ 3; \ \alpha(\mathbf{L}) = 0.000293 \ 4; \\ &\alpha(\mathbf{M}) = 6.42 \times 10^{-5} \ 9; \\ &\alpha(\mathbf{N}+) = 1.717 \times 10^{-5} \ 24 \\ &\alpha(\mathbf{N}) = 1.491 \times 10^{-5} \ 21; \ \alpha(\mathbf{O}) = 2.14 \times 10^{-6} \\ &\beta; \ \alpha(\mathbf{P}) = 1.162 \times 10^{-7} \ 17 \end{aligned}$
744.2 2	10.7 11	6555.0	21-	5810.8	19-	E2		0.00633	Mult.: $\alpha(K)\exp=0.007\ 3\ (1992Ku13)$. $\alpha(K)=0.00521\ 8;\ \alpha(L)=0.000870\ 13;$ $\alpha(M)=0.000195\ 3;\ \alpha(N+)=5.18\times10^{-5}\ 8$ $\alpha(N)=4.52\times10^{-5}\ 7;\ \alpha(O)=6.31\times10^{-6}\ 9;$ $\alpha(P)=2.95\times10^{-7}\ 5$ E_{γ} : Value of 243.3 in table I of 1992Ku13 is a misprint.
^x 744.9 [@]	96.5	2947 5	10 ⁺	2183.2	8+	E2bc		0.00597	$\alpha(\mathbf{K}) = 0.00492.7 \cdot \alpha(\mathbf{I}) = 0.000813.12 \cdot$
704.5 1	90 5	2947.3	10	2103.2	0	E2		0.00397	$a(\mathbf{R}) = 0.00492$ 7, $a(\mathbf{L}) = 0.000813$ 12, $a(\mathbf{M}) = 0.000182$ 3; $a(\mathbf{N}+) = 4.84 \times 10^{-5}$ 7
									$\alpha(\text{N})=4.23 \times 10^{-5} 6; \ \alpha(\text{O})=5.91 \times 10^{-6} 9; \ \alpha(\text{P})=2.79 \times 10^{-7} 4$
774.9 2	11.5 12	5459.8	17-	4685.0	16+	El		0.00223	$\alpha(K)=0.00190 \ 3; \ \alpha(L)=0.000259 \ 4; \\ \alpha(M)=5.69\times10^{-5} \ 8; \\ \alpha(N+)=1.522\times10^{-5} \ 22 \\ \alpha(N)=1.321\times10^{-5} \ 19; \ \alpha(O)=1.90\times10^{-6} \\ 3; \ \alpha(P)=1.035\times10^{-7} \ 15 $
									Mult.: from α (K)exp=0.0038 11 (1992Ku13)
784.6 2	25.5 13	8233.2	26-	7448.6	24-	E2		0.00563	$\alpha(K) = 0.00465 \ 7; \ \alpha(L) = 0.000762 \ 11; \alpha(M) = 0.0001707 \ 24; \alpha(N+) = 4.54 \times 10^{-5} \ 7 \alpha(N) = 3.96 \times 10^{-5} \ 6; \ \alpha(O) = 5.54 \times 10^{-6} \ 8;$
787 4 1	97 5	3734 9	12+	2947 5	10+	E2 ^{bc}		0 00559	$\alpha(P)=2.64\times10^{-7} 4$ $\alpha(K)=0.00462 7: \alpha(L)=0.000755 11:$
10111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5151.5	12	2517.0	10			0.00555	$\alpha(M) = 0.0001692 \ 24;$ $\alpha(M) = 0.0001692 \ 24;$ $\alpha(N+) = 4.50 \times 10^{-5} \ 7$ $\alpha(N) = 3.92 \times 10^{-5} \ 6; \ \alpha(O) = 5.49 \times 10^{-6} \ 8;$ $\alpha(P) = 2.62 \times 10^{-7} \ 4$
808.2 1	100 5	808.2	2+	0.0	0+	E2 ^{bc}		0.00528	$\alpha(K) = 0.00437 \ 7; \ \alpha(L) = 0.000708 \ 10;$ $\alpha(M) = 0.0001586 \ 23;$ $\alpha(N+) = 4.22 \times 10^{-5} \ 6$ $\alpha(N) = 3.68 \times 10^{-5} \ 6; \ \alpha(\Omega) = 5.16 \times 10^{-6} \ 8;$
814 9 3	212	11121 4		10306 5					$\alpha(P)=2.48\times10^{-7} 4$
822.6 3	2.5 3	10548.2		9725.5					
848.3 <i>3</i> 852 0 3	3.8 4	9711.7 11300 8	28^{+}	8863.4					Mult : $\Delta I = 2$ (1002Ku13)
901.6 <i>3</i>	9.5 10 2.7 3	8350.3		7448.6	24-				Mult.: $\Delta J = 2$ (1992Kul5).
940.7 2	1.7 <i>4</i> 23.5 12	5459.8	17-	4519.2	16+	E1 ^b		1.53×10 ⁻³	$\alpha(K)=0.001308 \ I9; \ \alpha(L)=0.0001769 \ 25; \ \alpha(M)=3.88\times10^{-5} \ 6; \ \alpha(N+)=1.038\times10^{-5} \ I5 \ \alpha(N)=9.01\times10^{-6} \ I3; \ \alpha(O)=1.298\times10^{-6} \ I9; \ \alpha(P)=7.16\times10^{-8} \ I0 \ Mult.: From \ \alpha(K)exp=0.0012 \ 4$
				0-	ntine	d on nort	nage /	footnotas at	(1992Ku13).
				Co	nunue	u on next	page (i	noothotes at en	iu or table)

$\gamma(^{152}\text{Er})$ (continued)

E_{γ}^{\dagger}	Iγ ^{&}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. ^a	δ	α^{d}	Comments
1021.0 7 1051.9 6	1.1 <i>3</i> 9.6 <i>10</i>	9711.7 9711.7	28 ⁺ 28 ⁺	8691.0 8659.8 26 ⁻	M2+E3	-1.5	0.00864 13	α (K)=0.00711 <i>10</i> ; α (L)=0.001190 <i>17</i> ; α (M)=0.000268 <i>4</i> ; α (N+)=7.15×10 ⁻⁵
								$\alpha(N)=6.23\times10^{-5} 9; \alpha(O)=8.83\times10^{-6} 13; \alpha(P)=4.41\times10^{-7} 7$
1066.5 7	2.7 3	8514.6	25	7448.6 24-	D			
1152.6 /	2.5 3	9679.8	20^{+}	8527.8 27				
1184.1 0	3.70	9/11./	28.	8527.8 27	ED		0.00220	$\alpha(K) = 0.00102.2$; $\alpha(L) = 0.000282.4$;
1211.2 5	12.3 12	8039.8	26	/448.6 24	E2		0.00229	$\alpha(\mathbf{K})=0.00192 \ 3; \ \alpha(\mathbf{L})=0.000283 \ 4; \\ \alpha(\mathbf{M})=6.26\times10^{-5} \ 9; \\ \alpha(\mathbf{N}+)=2.31\times10^{-5} \ 4$
								$\alpha(N)=1.456\times10^{-3} 21; \ \alpha(O)=2.08\times10^{-6} 3; \ \alpha(P)=1.096\times10^{-7} 16; \ \alpha(IPF)=6.32\times10^{-6} 11$
1242.6 7	1.1 3	8691.0		7448.6 24-				
1265.5 6	7.1 7	13387.2		12121.2				Mult.: $\Delta J=3$ (1992Ku13).
1316.1 7	2.3 3	11399.8		10082.8				
1394.9 [‡]		8514.6	25	7118.7 23-	Q			I _{γ} : The 1395 γ is a doublet. No intensity is given by 1992Ku13.
1395.3#	5.0 [#] 5	6477.3	20-	5080.4 18+	M2		0.00650	$\begin{array}{l} \alpha(\mathrm{K}) = 0.00546 \ 8; \ \alpha(\mathrm{L}) = 0.000804 \ 12; \\ \alpha(\mathrm{M}) = 0.0001783 \ 25; \\ \alpha(\mathrm{N}+) = 6.37 \times 10^{-5} \ 9 \\ \alpha(\mathrm{N}) = 4.16 \times 10^{-5} \ 6; \ \alpha(\mathrm{O}) = 6.04 \times 10^{-6} \ 9; \\ \alpha(\mathrm{P}) = 3.38 \times 10^{-7} \ 5; \ \alpha(\mathrm{IPF}) = 1.575 \times 10^{-5} \\ 22 \end{array}$
1409.6 7	2.5 3	11121.4		9711.7 28+				
1557.7 8	0.7 3	14944.9		13387.2				
x1579.1 [@]								
1596.5 8	1.0 3	7011.8	22^{-}	5414.7				
1687.1 7	2.2 3	11399.8		9711.7 28+				
1777.9 8	1.0 3	10306.5		8527.8 27				

[†] From 1992Ku13. The authors state, based on a comparison with energies from the earlier in-beam work of 1981Ba33 and 1980Ba33, that their values May have a systematic deviation of about -1.0 keV. Based on a comparison with energies of 1980Li18 in ε decay, the evaluator has increased the energies of 1992Ku13 by 0.9 keV. on the basis of the authors' general statement that the uncertainties are less than 0.1 keV for strong transitions, and up to 0.8 keV for weak high-energy transitions, the evaluator has assigned uncertainties as follows: for transitions below $E\gamma$ =1000 keV, Δ E=0.1 for I γ >40, 0.2 for I γ =10-40, 0.3 for I γ =1-10, and 0.4 for I γ <1. For transitions with $E\gamma$ >1000 keV, Δ E=0.6 for I γ =5-10, 0.7 for I γ =1-5, and 0.8 for I γ <1.

- [‡] γ is part of a doublet.
- [#] Doublet. E and I γ determined from coincidence spectra.
- [@] γ seen by 1981Ba33, not seen by 1992Ku13.
- & From 1992Ku13; from a spectrum in coin with the 764.6 γ .

^{*a*} From 1992Ku13, based on angular correlation and conversion coefficient measurements, unless otherwise noted. The conversion coefficients were determined from relative I γ and Ice data normalized to $\alpha(K)(423\gamma)$ taken as E2, based on its placement from 6⁺ to 4⁺ in the g.s. rotational band. Note, however, that the theory value for $\alpha(K)(423\gamma)$ is not given, and the theory values listed in the authors' table II are larger than those from 2008Ki07 by factors ranging from 3% to 14%. IT is not clear whose theory values the authors have used and thus it is not possible to reanalyze the $\alpha(K)$ exp to conform to our standard from 2008Ki07.

^b Assignment supported by $\gamma(\theta)$ (1980Ba33).

$\gamma(^{152}\text{Er})$ (continued)

^c From reference 6 (thesis) of 1992Ku13. The method is not given.

- ^{*d*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^{*e*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

10

 $^{152}_{68}\mathrm{Er}_{84}\text{--}10$

 $^{152}_{68}\mathrm{Er}_{84}$ -10

From ENSDF

(HI,xnγ)

1992Ku13,1981Ba33,1980Ba33

(HI,xnγ) 1992Ku13,1981Ba33,1980Ba33

¹⁵²₆₈Er₈₄

(HI,xnγ) 1992Ku13,1981Ba33,1980Ba33

¹⁵²₆₈Er₈₄