¹⁵²Ho ε decay (161.8 s) 1989Ga11

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. J. Martin	NDS 114, 1497 (2013)	31-Aug-2013				

Parent: ¹⁵²Ho: E=0.0; $J^{\pi}=2^-$; $T_{1/2}=161.8$ s 3; $Q(\varepsilon)=6519$ 14; $\mathscr{K}\varepsilon+\mathscr{K}\beta^+$ decay=88 3 ¹⁵²Ho- $\mathscr{K}\varepsilon+\mathscr{K}\beta^+$ decay: $\mathscr{K}\varepsilon+\mathscr{K}\beta^+=88$ 3 (from $\mathscr{K}\alpha=12$ 3 (1977Ha48)). 1989Ga11: measured γ , ce, $\gamma\gamma$, γX ; Ge detectors for γ , mag spect with Si(Li) detector for ce. 1982Ba75: measured γ , ce. 1979To09: measured γ .

¹⁵²Dy Levels

The proposed decay scheme is from 1989Ga11; it disagrees with the earlier decay scheme proposed by 1982Ba75. 1989Ga11

suggest that this is only a partial decay scheme, that the allowed ε decay proceeds through unobserved 4 quasiparticle states above 3.5 MeV excitation. log *ft* for such a transition would be >4.3.

Q(ε)=6.27 9 MeV from total γ -absorption spectroscopy (1993Al03).

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0 613.8 1226.8	$0^+ 2^+ 3^-$	1261.0 1313.7 1448.2	$ \begin{array}{r} 4^+ \\ (2^+) \\ (2^+) \end{array} $	1452.7 1697.9 1750.6	$1^+, 2^+$ 1^- 4^+	1840.6? ≥3500?	1-,2-,3-

[†] From a least-squares fit to the $E\gamma$ data. The authors give no uncertainties so the output is based on the assumption that the uncertainties are the same for each transition.

[‡] From Adopted Levels.

ε, β^+ radiations

Since it is probable that the levels shown are fed by additional gammas from unobserved higher levels, the $I(\varepsilon + \beta^+)$ calculated from intensity balance are upper limits and the log *ft* are thus lower limits.

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(3019 14)	≥3500?	<23	<77	>4.3	<100	
(4678 14)	1840.6?	<1.1	< 0.53	>6.8	<1.6	av Eβ=1661.2 65; εK=0.2801 21; εL=0.0418 4; εM+=0.01225 10
(4768 14)	1750.6	<2.4	<2.9	$> 8.1^{1u}$	<5.3	av Eβ=1682.2 63; εK=0.4527 25; εL=0.0688 4; εM+=0.02025 12
(4821 14)	1697.9	<1.7	< 0.77	>6.7	<2.5	av Eβ=1727.5 66; εK=0.2596 20; εL=0.0387 3; εM+=0.01135 9
(5066 14)	1452.7	<5.5	<2.1	>6.3	<7.6	av Eβ=1841.8 66; εK=0.2281 17; εL=0.0339 3; εM+=0.00996 8
(5071 14)	1448.2	<1.0	< 0.38	>7.1	<1.4	av Eβ=1843.9 66; εK=0.2275 17; εL=0.0339 3; εM+=0.00993 8
(5205 14)	1313.7	<10	<3.5	>6.1	<14	av Eβ=1906.7 66; εK=0.2121 16; εL=0.03155 24; εM+=0.00926 7
(5258 14)	1261.0	<6.1	<4.9	$>8.0^{1u}$	<11	av Eβ=1903.3 64; εK=0.3713 22; εL=0.0562 4; εM+=0.01654 10
(5292 14)	1226.8	<7	<2	>6.3	<9	av $E\beta$ =1947.3 66; ε K=0.2028 15; ε L=0.03015 22; ε M+=0.00885 7
(5905 14)	613.8	<32	<6.9	>5.9	<39	av Eβ=2235.4 66; εK=0.1491 11; εL=0.02213 16; εM+=0.00649 5

 † Absolute intensity per 100 decays.

¹⁵²Ho ε decay (161.8 s) 1989Ga11 (continued)

$\gamma(^{152}\mathrm{Dy})$

I γ normalization: $\Sigma(I(\gamma+ce) \text{ to } g.s.)=100$ (assuming no ε to ¹⁵²Dy g.s.). log $f^{4u}t \ge 8.5$ gives an $\varepsilon + \beta^+$ branch to g.s. of $\le 16\%$; other similar 2⁻ to 0⁺ transitions in this region (¹⁴⁸Tb, ¹⁵⁰Tb, ¹⁵⁰Tb, ¹⁵⁰Tb) have log $f^{4u}t = 8.8$ to 9.9.

Eγ [‡]	Ιγ #&	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult.@	α^{\dagger}	Comments
437.0	2	1750.6	4+	1313.7	(2^+)			
489.5	39	1750.6	4+	1261.0	4+	M1	0.0314	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0266 \ 4; \ \alpha(\mathbf{L}) = 0.00376 \ 6; \\ &\alpha(\mathbf{M}) = 0.000824 \ 12; \ \alpha(\mathbf{N}+) = 0.000220 \ 3 \\ &\alpha(\mathbf{N}) = 0.000191 \ 3; \ \alpha(\mathbf{O}) = 2.80 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{P}) = 1.624 \times 10^{-6} \ 23 \end{aligned}$
613	96	1226.8	3-	613.8	2^{+}			
613.9	884	613.8	2+	0.0	0+	E2	0.00905	$\alpha(K)=0.00742 \ 11; \ \alpha(L)=0.001277 \ 18; \alpha(M)=0.000285 \ 4; \ \alpha(N+)=7.50\times10^{-5} \ 11 \alpha(N)=6.54\times10^{-5} \ 10; \ \alpha(O)=9.17\times10^{-6} \ 13; \alpha(P)=4.21\times10^{-7} \ 6$
647.2	159	1261.0	4+	613.8	2+	E2	0.00798	$\alpha(\mathbf{K}) = 0.00656 \ 10; \ \alpha(\mathbf{L}) = 0.001106 \ 16; \alpha(\mathbf{M}) = 0.000247 \ 4; \ \alpha(\mathbf{N}+) = 6.49 \times 10^{-5} \ 9 \alpha(\mathbf{N}) = 5.66 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 7.96 \times 10^{-6} \ 12; \alpha(\mathbf{P}) = 3.74 \times 10^{-7} \ 6 \alpha(\mathbf{L}) = 0.00111$
700.0	109	1313.7	(2 ⁺)	613.8	2+	(E2)	0.00664	$\alpha(K) = 0.00548 \ 8; \ \alpha(L) = 0.000900 \ 13;$ $\alpha(M) = 0.000200 \ 3; \ \alpha(N+) = 5.27 \times 10^{-5} \ 8$ $\alpha(N) = 4.59 \times 10^{-5} \ 7; \ \alpha(O) = 6.49 \times 10^{-6} \ 9;$ $\alpha(P) = 3.14 \times 10^{-7} \ 5$
839.1	63	1452.7	1+,2+	613.8	2+	E2	0.00442	$\alpha(K) = 0.00369 \ 6; \ \alpha(L) = 0.000572 \ 8; \alpha(M) = 0.0001265 \ 18; \ \alpha(N+) = 3.35 \times 10^{-5} \ 5 \alpha(N) = 2.91 \times 10^{-5} \ 4; \ \alpha(O) = 4.16 \times 10^{-6} \ 6; \alpha(P) = 2.12 \times 10^{-7} \ 3$
1136.8	16	1750.6	4+	613.8	2+			-
1226.8	17	1840.6?	1-,2-,3-	613.8	2+	E1	8.95×10 ⁻⁴	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000737 \ 11; \ \alpha(\mathbf{L}) = 9.70 \times 10^{-5} \ 14; \\ &\alpha(\mathbf{M}) = 2.10 \times 10^{-5} \ 3; \ \alpha(\mathbf{N}+) = 4.05 \times 10^{-5} \ 6 \\ &\alpha(\mathbf{N}) = 4.85 \times 10^{-6} \ 7; \ \alpha(\mathbf{O}) = 7.10 \times 10^{-7} \ 10; \\ &\alpha(\mathbf{P}) = 4.12 \times 10^{-8} \ 6; \ \alpha(\mathbf{IPF}) = 3.49 \times 10^{-5} \ 5 \end{aligned}$
1313.7	47	1313.7	(2^{+})	0.0	0^{+}			
1448.2	15	1448.2	(2+)	0.0	0+	(E2)	1.51×10 ⁻³	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001236 \ 18; \ \alpha(\mathbf{L}) = 0.0001728 \ 25; \\ &\alpha(\mathbf{M}) = 3.77 \times 10^{-5} \ 6; \ \alpha(\mathbf{N}+) = 6.67 \times 10^{-5} \ 10 \\ &\alpha(\mathbf{N}) = 8.71 \times 10^{-6} \ 13; \ \alpha(\mathbf{O}) = 1.269 \times 10^{-6} \ 18; \\ &\alpha(\mathbf{P}) = 7.14 \times 10^{-8} \ 10; \ \alpha(\mathbf{IPF}) = 5.66 \times 10^{-5} \ 8 \end{aligned}$
1452.6	20	1452.7	$1^+, 2^+$	0.0	0^{+}			
1697.9	27	1697.9	1-	0.0	0+	E1	8.41×10 ⁻⁴	$\alpha(K)=0.000423 \ 6; \ \alpha(L)=5.51\times10^{-5} \ 8; \\ \alpha(M)=1.192\times10^{-5} \ 17; \ \alpha(N+)=0.000351 \ 5 \\ \alpha(N)=2.75\times10^{-6} \ 4; \ \alpha(O)=4.04\times10^{-7} \ 6; \\ \alpha(P)=2.38\times10^{-8} \ 4; \ \alpha(IPF)=0.000347 \ 5 \\ \end{cases}$

[†] Additional information 1.
[‡] From 1989Ga11.
[#] From 1989Ga11. 1989Ga11 measured Iγ, but quoted "total transition intensities" in level scheme. The evaluator has deduced Iγ, based on the multipolarities given in 1989Ga11.

[@] From 1989Ga11; based on ce data, measurements not given.

[&] For absolute intensity per 100 decays, multiply by 0.088 3.

152 Ho ε decay (161.8 s) 1989Ga11

Decay Scheme

¹⁵²₆₆Dy₈₆