Adopted Levels, Gammas

History									
Type	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	NDS 110, 1 (2009)	20-Nov-2008						

 $Q(\beta^-)=-11434$ (syst) 425; S(n)=10975 (syst) 425; S(p)=2340 (syst) 359; $Q(\alpha)=2.6\times10^3$ 3 2017Wa10 $Q(\varepsilon)=9.2\times10^3$ 3; S(2n)=24487 (syst) 425; $S(2p)=2.4\times10^{3(syst)}$ 359; $Q(\varepsilon p)=9.0\times10^3$ 3 2017Wa10

Additional information 1.

1986To12: this nucleus was identified via its β -delayed proton decay. It was produced in 96 Ru(58 Ni,n2p) reaction at E=360 MeV. The isotopic identification was made on the basis that the measured lifetime is new to the isobaric chain and the protons are in coincidence with Tm x-rays and known 150 Er γ rays. Further evidence for isotopic identification is provided (1995Ni10) by the mass gated ce studies using fragment mass analyzer.

The delayed proton spectrum extends from≈2.5 MeV to≈7 MeV and shows a 1.6 s *I* half-life.

No α decay from ¹⁵⁵Hf, T_{1/2}=0.89 s 12 (to ¹⁵¹Yb) has been reported (1981HoZM). For Q(α)=5245 to 3895, systematics of α decay give $\%\alpha$ from 1 to 1.0×10^{-8} (see Nuclear Data Sheets for α =155, 2005Re01).

The ordering of the 226-172-202 cascade is not established. The placement of these γ rays is based on matching of 600γ with sum of 226, 172 and 202γ rays.

¹⁵¹Yb Levels

Cross Reference (XREF) Flags

A 151 Yb IT decay (20 μ s)

E(level)	$J^{\pi^{\ddagger}}$	T _{1/2}	XREF	Comments
0.0	(1/2+)	1.6 s <i>I</i>	_	$%ε+%β^+=100; %εp>0$ Decays by $εp$ mode (1986To12,1989Ni02), but branching is unknown. $T_{1/2}$: from systematics it is expected that 151 Yb has two isomers: $s_{1/2}$ and $h_{11/2}$ and that the $s_{1/2}$ isomer is the ground state. Both the delayed proton decay and the $ε$ decay of 151 Yb offer indirect evidence for existence of these two isomers. Both the delayed protons and the Tm K x ray show the same half-life within uncertainties, suggesting that the two isomers have approximately similar half-lives. Proton decay gives $T_{1/2}$ =1.6 s I and X (t) in 1985K110 gives 1.6 s 2 .
0.0+x	(11/2 ⁻)	1.6 s <i>I</i>	A	From $\gamma(t)$, $T_{1/2}=1.6$ s I (1990Ak01) for g.s. and the isomer. Configuration= $\nu s_{1/2}$. $\%\epsilon + \%\beta^+ \approx 100$; $\%\epsilon p=?$; $\%IT\approx 0.4$ $T_{1/2}$: see comment for g.s. E(level): $X\approx 740$ (estimated from syst 1990Ak01). Configuration= $\nu h_{11/2}^{-1}$. Decays by ϵp also (1986To12,1989Ni02). $\%IT=0.4$ (from syst of M4 transitions and $T_{1/2}=1.6$ s, 1990Ak01). The isomeric decay is expected through M4-M1 cascade via a $d_{3/2}$ neutron state at ≈ 150 keV (1990Ak01), but no such transitions have been observed (1990Ak01) due to low
1531.3+x 1734.7+x 1791.2+x 1791.2+y	(15/2 ⁻) (17/2 ⁺)	2.6 μs 7	A A A	production of 151 Yb and expected low %IT. J^{π} : E1 γ to $(15/2^{-})$. %IT \approx 100
1791.2+z 1993.2+z? 2165.4+z? 2391+z 2448+z	(23/2 ⁻) (27/2 ⁻)	20 μs 1	A A A A	E(level): level is above 1791.2+x. $T_{1/2}$: from 1993Ni05. E(level): level is above 1791.2+x. %IT=100 E(level): based on deexciting E γ =57 2 (1995Ni10).

Adopted Levels, Gammas (continued)

¹⁵¹Yb Levels (continued)

E(level) $T_{1/2}$ **XREF**

Comments

 $T_{1/2}$: from 1993Ni05. Other: 26 μ s 5 (1987Br14). J^{π}: from analogy to ¹⁴⁷Dy and ¹⁴⁹Er. Probable configuration= $\pi h_{11/2} \otimes \nu h_{11/2}^{-1}$, seniority=3.

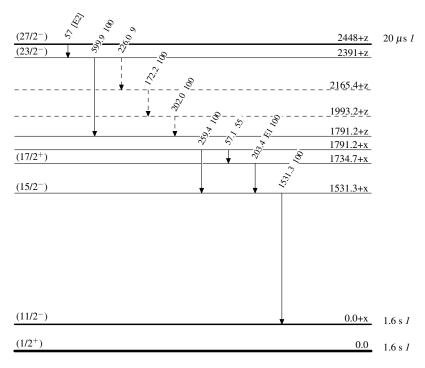
$$\gamma$$
(151 Yb)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbb{E}_f	J_f^π	Mult.	α^{\dagger}	Comments
1531.3+x	$(15/2^{-})$	1531.3 5	100	0.0+x	$\overline{(11/2^{-})}$			
1734.7+x	(17/2+)	203.4 5	100	1531.3+x	(15/2 ⁻)	E1	0.0531	$\alpha(K)$ =0.044; $\alpha(L)$ =0.0067; $\alpha(M)$ =0.00150 Mult.: from $\alpha(K)$ exp=0.068 18 (1995Ni10).
1791.2+x		57.1 2	55 15	1734.7+x	$(17/2^+)$			
		259.4 <i>3</i>	100 15	1531.3+x	$(15/2^{-})$			
1993.2+z?		202.0 [‡] 4	100	1791.2+z				
2165.4+z?		172.2 [‡] <i>4</i>	100	1993.2+z?				
2391+z	$(23/2^{-})$	226.0 [‡] 4 599.9 4	9 <i>I</i> 100 <i>7</i>	2165.4+z? 1791.2+z				
2448+z	$(27/2^{-})$	57 2	,	2391+z	$(23/2^{-})$	[E2]	32 6	B(E2)(W.u.)=0.030 6

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{^\}dagger$ From systematics of neighboring nuclides such as 147 Dy and 149 Er. See 1987Br14 and 1993Ni05 for discussion.

[‡] Placement of transition in the level scheme is uncertain.


Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{151}_{70}\mathrm{Yb}_{81}$