Adopted Levels, Gammas

		History		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh	NDS 110, 1 (2009)	20-Nov-2008	

 $Q(\beta^{-})=-9.2 \times 10^{3} \ 3$; $S(n)=12353 \ (syst) \ 197$; $S(p)=230 \ 9$; $Q(\alpha)=2559 \ 20 \ 2017Wa10$ $Q(\varepsilon)=7.49 \times 10^{3} \ 3$; $S(2n)=23033 \ (syst) \ 197$; $S(2p)=3704 \ 9$; $Q(\varepsilon p)=3884 \ 16 \ 2017Wa10$ Additional information 1. Additional information 2.

Theoretical calculations (levels, moments, etc.): 2000Ma90, 1993To07, 1992Di05, 1982We12, 1981La26.

¹⁵¹Tm Levels

Cross Reference (XREF) Flags

		A B C D	¹⁵¹ Tm IT ¹⁵¹ Tm IT ¹⁵¹ Yb ε de ¹⁵² Lu εp d	decay (0.451 μ s) E ¹⁵⁵ Lu α decay (68 ms) decay (24 ns) F ¹⁵⁵ Lu α decay (138 ms) ecay (1.6 s):mixed G ¹⁵⁵ Lu α decay (2.69 ms) lecay (0.7 s)		
E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments		
0.0	(11/2 ⁻)	4.17 s <i>11</i>	ABCDE G	$\sqrt[]{\varepsilon} + \frac{\beta}{\beta^{+}} = 100$ T _{1/2} : from weighted average of 4.3 s 2 (1990Ak01) and 4.13 s 11 (1988Ba02) other: 3.8 s 8 (1982No13).		
0.0+x	(1/2+)	6.6 s 20	C F	% ε +% β^+ =100 E(level): x=50 keV 50 (estimated from syst by 1990Ak01). T _{1/2} : from weighted average of 8 s 2 (1990Ak01) and 5.2 s 20 (1988Ba02). Other:≈11 s (1987EIZX).		
108.4+x 582.6+x 1074.0 6	(3/2 ⁺) (5/2 ⁺)		C C C			
1102.7+x 1477.60 <i>10</i> 1489.83 <i>18</i>	$(7/2^+)$ $(15/2^-)$ $(15/2^+)$		C AB AB			
1905.64? <i>13</i>	$(19/2^+)$ $(19/2^+)$		AB	E(level): the energy of this level is uncertain because the ordering of the 415-393 cascade is tentative.		
2176.48 <i>19</i> 2299.55 <i>20</i>	$(19/2^{-})$ $(23/2^{+})$ $(22/2^{-})$		AB AB			
2655.67 22	$(23/2^{-})$ $(27/2^{-})$	0.451 µs 34	AB AB	%IT=100 T _{1/2} : from $\gamma\gamma$ (t); weighted average of 470 ns 50 (1982He08), 420 ns 40 (1982No13) and 466 ns 34 (1987McZZ).		
3555.6 <i>3</i> 3981.4 <i>4</i>			B B			
3987.9 <i>3</i> 4407.2 <i>3</i> 4612 7 <i>3</i>	$(31/2^{-})$		B B B			
4012.7 5 5858 3 <i>A</i>	(33/2)		B	I^{π} : (dipole) transition to (35/2 ⁻)		
6908.5 <i>4</i>	(37/2)	24 ns 4	B	$T_{1/2}$: from $\gamma(t)$ (1987McZZ). It is assumed that this is the isomer; however, there is a possibility that a very low energy isomeric transition has not been observed.		

[†] From least-squares fit to $E\gamma'$ s. From systematics the ground state is expected to be the $s_{1/2}$ single proton state and the $h_{11/2}$ state to be the isomer. However, this has not been established experimentally.

Adopted Levels, Gammas (continued)

¹⁵¹Tm Levels (continued)

 $\gamma(^{151}\text{Tm})$

[‡] From shell-model considerations. The negative parity states are well described by $\pi h_{11/2}^5$ yrast levels. The positive parity levels are assumed to have an $h_{11/2}$ proton coupled to a 3⁻, 5⁻, 7⁻ core. The 0+x (1/2⁺), 108+x (3/2⁺), 583+x (5/2⁺) and 1103+x (7/2⁺) levels are interpreted as the $s_{1/2}$, $d_{3/2}$, $d_{5/2}$, $g_{7/2}$ single proton states, respectively.

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_{f}	${ m J}_f^\pi$	Mult.	α &	Comments
108.4+x	$(3/2^+)$	108.4 1	100	0.0+x	$(1/2^+)$	(M1)	2.46	Mult.: from $\alpha(K)$ exp in ¹⁵¹ Yb ε decay.
582.6+x 1074.0	(5/2+)	474.2 <i>2</i> 1074.0 <i>6</i>	100 100	108.4+x 0.0	$(3/2^+)$ $(11/2^-)$	#		
1102.7+x 1477.60 1489.83	(7/2 ⁺) (15/2 ⁻) (15/2 ⁺)	520.1 2 1477.7 <i>1</i> 1489.8 2	100 100 100	582.6+x 0.0 0.0	(5/2 ⁺) (11/2 ⁻) (11/2 ⁻)	#		
1905.64? 2176.48	(19/2 ⁺) (19/2 ⁻)	415.8 [‡] <i>1</i> 698.8 2	100 100	1489.83 1477.60	(15/2 ⁺) (15/2 ⁻)			
2299.55 2515.27	(23/2 ⁺) (23/2 ⁻)	393.9 [‡] 1 215.7 2 338.8 1	100 14 <i>1</i> 100 5	1905.64? 2299.55 2176.48	$(19/2^+)$ $(23/2^+)$ $(19/2^-)$			
2655.67	(27/2 ⁻)	140.4 1	100	2515.27	$(23/2^{-})$	E2	0.90	B(E2)(W.u.)=0.257 14 Mult.: from $\alpha(exp)$ determined from intensity
3555.6 3981.4		1256.0 2 425.8 ^a 3	100 100	2299.55 3555.6	(23/2 ⁺)			balance.
3987.9 4407.2	(31/2 ⁻)	1332.2 <i>1</i> 425.8 ^a 3	100 100	2655.67 3981.4	(27/2 ⁻)	(E2) [@]		
4612.7	$(35/2^{-})$	624.8 1	100	3987.9	$(31/2^{-})$	(E2) [@]		
5858.3	(37/2)	1245.6 2 1451 <i>1</i>	100 6 10 6	4612.7 4407.2	(35/2 ⁻)	(D) [@]		
6908.5		1050.2 2	100	5858.3	(37/2)			

[†] From ¹⁵¹Yb ε decay for low-spin (J \leq 7/2) states and from IT decays for high-spin (J>7/2)states.

[±] Ordering of 415-393 cascade is tentative.

[#] From isotonic systematics, probable mult=M1.

[@] From $\gamma(\theta)$ in IT decay.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation

based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Multiply placed.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

¹⁵¹₆₉Tm₈₂