152 Lu ε p decay (0.7 s) 1988Ni02

History Author Citation Literature Cutoff Date Balraj Singh NDS 110, 1 (2009) 20-Nov-2008

Parent: 152 Lu: E=0.0; J^{π} =(5⁻,6⁻); $T_{1/2}$ =0.7 s *I*; $Q(\varepsilon p)$ =10070 *SY*; % εp decay=15 7

¹⁵²Lu-T_{1/2}: from 1987To02. Other: 0.6 s *1* (1988Ni02, from timing of protons from β^+ p decay).

¹⁵²Lu-J^π: strong ε to ¹⁵²Yb (5⁻), no ε to ¹⁵²Yb (3⁻). Low log ft (4.4.2) suggests that the ε transition is a $\pi h_{11/2}$ to $\nu h_{11/2}$ allowed, favored transition. 152 Lu isotope produced by 96 Ru(58 Ni,pn) E=244 MeV reaction followed by mass separation. Measured delayed proton spectrum,

proton-x and proton- γ coincidences, $T_{1/2}(^{152}Lu)$.

No γ rays (in ¹⁵¹Tm) in coincidences with protons were seen.

The proton spectrum shown by 1988Ni02 is structureless.

From proton spectrum, $T_{1/2}$ =0.6 s I (1988Ni02).

%p=15 7 (1988Ni02).

 $Q(\varepsilon p) = 10070 \ 200 \ (syst, 2003 Au03).$

¹⁵¹Tm Levels

E(level) Comments $\overline{J^{\pi}}$: from 'Adopted Levels'.