¹⁵⁰Sm(α , ³He) **1981Lo14**

History				
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh	NDS 110, 1 (2009)	20-Nov-2008	

E=40 MeV.

Magnetic spectrometer. FWHM=25 keV. $\sigma(\theta)$ data from 10° (C.M.) to 75° (C.M.) in steps of 6.5°. Absolute σ 's accurate to 30%. Relative σ 's accurate to 10%. DWBA analysis of $\sigma(\theta)$ data.

¹⁵¹Sm Levels

E(level) [†]	<u>L</u> #	S [‡]	Comments
0.0?			Very weakly populated.
67 10		0.93	
148 <i>10</i>		0.93	
175 <i>10</i>		2.02	
481 <i>10</i>			
727 10			
867 10	(6)	0.84	
1117 <i>30</i>			
1431 <i>30</i>			
1480 <i>30</i>	(6)	0.45	
1524 <i>30</i>			
1611 <i>30</i>			

[†] Normalized by authors to the 148-keV level.

[‡] Nuclear structure factor which is comparable to C²S.

[#] Consistent with L(n)=6 and 5. However, L(n)=6 more probable since level not populated in (d,p) reaction.