		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 110, 1 (2009)	20-Nov-2008

Parent: ¹⁵¹Nd: E=0.0; $J^{\pi}=3/2^+$; $T_{1/2}=12.44$ min 7; $Q(\beta^-)=2442$ 4; $\%\beta^-$ decay=100.0

See 1989Ii01 for $\gamma\gamma(\theta)$ data for about 20 $\gamma\gamma$ cascades. See 1995Ik03 for $\beta\gamma$ data and 1997Gr09 and 1996Gr20 for total absorption γ -ray data.

Others: 1977Se06 (a companion publication to 1985Ii01 from the same laboratory), 1978BuZJ (from same laboratory as 1985GlZY), 1969BoZG 1973Se12, 1971Na25, 1969Vo09, 1966Be27, 1968Ma15, 1960Bu06.

1995Ik03: $\beta \gamma$ data, deduced Q(β^{-}).

1996Gr20, 1997Gr09: total absorption γ -ray data in singles and $\beta\gamma$ coin mode. Deduced relative β feedings as a function of excitation energy.

For levels and radiation data, consult ENSDF database (http://www.nndc.bnl.gov/ensdf/) and/or Nuclear Data Sheets 80, 263 (1997).

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡
0.0	5/2+		1297.682.14	5/2+	48^{d} ps 10
85.119 7	7/2+		1330.39 [@] 8	$(5/2^+)$	re re
116.794 6	5/2-	89 ^a ps 15	1355.81 [@] 10		
175.075 6	7/2-	$<0.2^{\&}$ ns	1394.77 [@] 9	$(3/2^{-})$	
197.272 10	9/2+		1424.57 [@] 6	$(5/2^{-})$	
255.692 7	3/2+	0.93 ^b ns 2	1444.98 5	$(5/2^+)$	
261.157 23	$(9/2^{-})$		1562.1 [@] 2	$(3/2^{-}, 5/2^{+})$	
324.682 8	5/2+		1589.91 [@] 17	(3/2 ⁻ ,5/2)	
426.451 14	$1/2^{+}$	<0.2 ^{&} ns	1617.82 [@] 5	(3/2,5/2)	
427.150 15	$(7/2)^+$		1618.42 3	$(3/2^+, 5/2^+)$	
507.885 11	5/2+		1639.63 [@] 9	$(1/2^+, 3/2, 5/2^+)$	
524.339 12	$(3/2)^{+c}$		1651.52 [@] 10	$(3/2^+, 5/2)$	
532.057 16	$(7/2^{-})$		1713.10 [@] 13	$(3/2^+, 5/2)$	
540.372 14	3/2-	<0.1 ^{&} ns	1741.25 [@] 4	$(1/2^+, 3/2, 5/2^+)$	
577.402 12	$(5/2)^{-}$		1793.68 [@] 20	(5/2)	
746.552 15	$(3/2^{-})$		1795.13 [@] 8	(3/2,5/2)	
755.569 18	$(5/2,7/2^{-})$		1805.51 [@] 4	$(1/2^+, 3/2, 5/2^+)$	
773.599 19	$(1/2, 3/2, 5/2^+)$		1809.80 4	$(3/2,5/2)^+$	
809.46 [@] 4	$(5/2^+, 7/2^-)$		1822.17 [@] 6	1/2,3/2,5/2	
840.966 14	$(3/2)^+$		1848.57 ^{^w 7}	(5/2)	
852.30 ^w 6	1/2+	0.	1853.70 4	$(5/2)^+$	
852.994 15	$5/2^{(+)}$	$<0.1^{\infty}$ ns	1854.50 [@] 8	$(3/2^+, 5/2)$	
870.58 ^{^w 5}	$(5/2^+, 7/2^-)$		1873.63 4	$(5/2)^+$	
874.71 2	3/2+		1878.60 [@] 6	(5/2)	
897.63 [@] 7	(3/2,5/2)		1892.05 2	$(5/2)^+$	
914.309 <i>13</i>	5/2+		1897.4 [@] 1	$(3/2^+, 5/2^+)$	
943.11 [@] 5	$(3/2^+, 5/2)$		1903.18 4	$(5/2)^+$	
957.89 [@] 6	5/2+		1910.68 [@] 7	$(3/2^+, 5/2^+)$	
989.88 4	5/2+		1927.98 [@] 6	$(5/2^+)$	
1010.71 [@] 9			1933.10 4	$(1/2^+, 3/2, 5/2)$	
1072.91 [@] 8	$(3/2^+)$		1959.61 [@] 7	$(1/2^+, 3/2, 5/2)$	
1133.214 21	$(5/2^+)$		1973.32 [@] 7	$(1/2^+, 3/2, 5/2)$	
1175.60 [@] 12			1989.71 [@] 13	(3/2,5/2)	
1183.27 [@] 4	$(3/2, 5/2)^+$		1993.81 [@] 5	$(5/2)^+$	
1200.97 5	(3/2+,5/2)		Continued on no	ext ⁵ /2) ⁺ ext ⁵ /2 ² /2 ^e (footnote	s at end of table

¹⁵¹Pm Levels

⁵¹ Nd β^{-} decay (12.44 min)	1985GIZY,1985Ii01,1989Ii0	(continued)
--	---------------------------	-------------

			1 111	Levels (continue	u)
E(level) [†]	$J^{\pi \#}$	E(level) [†]	J ^{π#}	E(level) [†]	J ^{##}
2010.99 [@] 5	(5/2)+	2024.01 [@] 14	(1/2,3/2,5/2)	2119.09 [@] 7	$(1/2^+, 3/2, 5/2^+)$
2015.93 [@] 9	(3/2,5/2)	2038.05 12	(1/2,3/2,5/2)	2204.30 [@] 15	$(1/2^+, 3/2^+, 5/2^+)$
2018.87 [@] 5	$(1/2^+, 3/2, 5/2^+)$	2053.10 [@] 24	$(5/2^+)$	2268.59 [@] 19	$(5/2^+)$
2022.4 [@] 3	$(3/2^+, 5/2)$	2084.92 [@] 8	(1/2,3/2,5/2)	2304.01 [@] 15	1/2+,3/2+,5/2+
2023.15 [@] 8	(5/2)	2106.86 [@] 14	(3/2, 5/2)		

¹⁵¹Pm Levels (continued)

[†] From least-squares fit to $E\gamma$'s, γ 's known from $\gamma\gamma$ only are given negligible weight in determining level energies. Above 1000 keV, many levels are reported only by 1985GIZY.

[‡] From $ce\gamma(t)$ of 1968Ma15, $\gamma\gamma(t)$ and $\beta\gamma(t)$ of 1965Fo08, 1966Be27 and 1976Be09. The upper limits are suspect because the detectors used were unable to resolve close doublets and the level scheme used was incomplete.

[#] From 'Adopted Levels'.

[@] Level identified by 1985GIZY only.

& From $\beta\gamma(t)$ (1966Be27), value considered as half-life instead of mean lifetime (evaluator).

^a From 1968Ma15. Other: 1966Be27 give 80 ps as mean lifetime but the authors probably meant half-life (in evaluator's opinion).

^b Weighted average of 0.91 ns 3 (1965Fo08), 0.93 ns 3 (1966Be27) and 0.95 ns 4 (1966Be27).

^c (408 γ)(116 γ)(θ) supports 3/2 over the other possible choice of 5/2, assuming 408 γ is E1.

^{*d*} From $\beta \gamma$ (t) (1976Be09).

β^- radiations

 β and $\beta\gamma$ studies (1973Se12) have been carried out with a ce spectrometer using solid state detectors. The most energetic β group observed feeds the 255 level. Although recognizing that a 10% g.s. β group would probably have escaped detection, the evaluator has assumed that no g.s. β exists. Inclusion of a 10% g.s. Component would have negligible effect on the log *ft* values for excited states of ¹⁵¹Pm; it would, however, increase the uncertainty in the normalization. Others: 1959Sc39, 1952Ru10.

From total γ -absorption %I β =0.0 for the following levels: 175, 197, 261, 427, 532, 958, 1011, 1073; consistent with those from γ -ray intensity balance.

For 577 level, apparent I β (from level scheme)=-0.34 9. 1997Gr09 give I β =1.16%, from total γ absorption. However, this value may have resulted from the implicit use (in the analysis of total γ absorption data) previous incorrect I β (577)=1.32% (1988Si15).

E(decay)	E(level)	$I\beta^{-\ddagger\ddagger}$	Log ft	Comments
(138 4)	2304.01	0.053 10	4.96 10	av $E\beta = 36.7 \ 12$
(173 4)	2268.59	0.011 5	5.95 20	$\mu = 0.105\%$ (1997Gr09, total γ absorption). av $E\beta = 46.8$ 12
(238 4)	2204.30	0.036 13	5.87 16	av $E\beta = 65.9 \ 13$ $E=0.025\% \ (1997C=00, \text{ total } x \text{ absorption})$
(323 4)	2119.09	0.067 14	6.03 10	av $E\beta = 92.5 \ 13$ $I_{e=0} \ 112\% \ (1997Gr09, total x absorption).$
(335 4)	2106.86	0.033 12	6.39 16	$\mu = 0.112\%$ (1997Gr09, total y absorption). av $E\beta = 96.4.13$ $\mu = 0.53\%$ (1997Gr09, total y absorption).
(357 4)	2084.92	0.051 6	6.29 6	av $E\beta = 103.5$ // $1002C=00$, total v absorption).
(389 4)	2053.10	0.016 5	6.91 14	$\mu = 0.075\%$ (1997) (1
(404 4)	2038.05	0.070 9	6.33 6	$\mu = 0.025\%$ (1997/0109, total γ absorption). av $E\beta = 119.0 \ 14$
(418 4)	2024.01	0.104 15	6.20 7	$\mu = 0.050\%$ (1997) (1097) (0101 γ absorption). av E $\beta = 123.7$ 14

151 Nd β^- decay (12.44 min) 1985GlZY,1985Ii01,1989Ii01 (continued)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(419 <i>4</i>)	2023 15	0 113 22	6 17 9	$I\beta$ =0.121% (1997Gr09, total γ absorption). av $E\beta$ =124.0 14
(11) 1)	2023.13	0.110 22	0.17 2	$I\beta = 0.131\%$ (1997Gr09, total γ absorption).
(420 4)	2022.4	0.060 12	6.45 9	av E β =124.2 <i>14</i> I β =0.071% (1997Gr09, total γ absorption)
(423 4)	2018.87	0.14 2	6.09 7	av E β =125.4 14
$(426 \ 4)$	2015.93	0.08 2	6.34 11	$I\beta$ =0.161% (1997/Gr09, total γ absorption). av E β =126.4 14
($I\beta = 0.101\%$ (1997Gr09, total γ absorption).
(431 4)	2010.99	0.30 3	5.79 5	av E β =128.1 <i>14</i> I β =0.33% (1997Gr09, total γ absorption).
(444 4)	1998.25	0.50 5	5.61 5	av $E\beta = 132.4 \ 14$
(448 4)	1993.81	0.30 3	5.84 5	$\mu = 0.56\%$ (1997/Gr09, total γ absorption). av E $\beta = 133.9$ 14
				$I\beta = 0.34\%$ (1997Gr09, total γ absorption).
(452 4)	1989.71	0.084 13	6.41 7	av $E\beta = 135.3$ 14
$(469 \ 4)$	1973 32	0 113 16	6337	$B = 0.101\%$ (199/Gr09, total γ absorption). av $F R = 141.0.14$
(10) 1)	1775.52	0.115 10	0.557	$I\beta = 0.131\%$ (1997Gr09, total γ absorption).
(482 4)	1959.61	0.146 15	6.26 5	av E β =145.7 14
$(509 \ 4)$	1933-10	0314	6.01.6	$l\beta=0.161\%$ (1997/Gr09, total γ absorption).
(30) +)	1755.10	0.51 7	0.01 0	$I\beta = 0.35\%$ (1997Gr09, total γ absorption).
(514 4)	1927.98	0.28 3	6.07 5	av $E\beta = 156.7 \ 14$
(531 4)	1910.68	0.043 17	6.94 18	$\mu = 0.51\%$ (1997/6109, total γ absorption). av E $\beta = 162.8$ 15
. ,				$I\beta = 0.051\%$ (1997Gr09, total γ absorption).
(539 4)	1903.18	0.76 7	5.71 5	av $E\beta = 165.5$ 15 $I\beta = 0.87\%$ (1007Gr00, total α abcomption)
(545 4)	1897.4	0.036 22	7.0 3	$\mu = 0.87\%$ (1997/0109, total γ absorption). av E $\beta = 167.5$ 15
				$I\beta = 0.040\%$ (1997Gr09, total γ absorption).
(550 4)	1892.05	1.49 10	5.45 4	av $E\beta = 169.4$ 15 $I\beta = 1.68\%$ (1997Gr09, total α absorption)
(563 4)	1878.60	0.17 2	6.43 6	av E β =174.2 15
				I β =0.192% (1997Gr09, total γ absorption).
(568 4)	18/3.63	0.91 7	5.71 4	av $E\beta = 1/6.0$ 15 18-1.03% (1997Gr09, total x absorption)
(588 4)	1854.50	0.28 4	6.27 7	av E β =182.9 15
				I β =0.32% (1997Gr09, total γ absorption).
(588 4)	1853.70	0.80 6	5.82 4	av E β =183.1 15 I β =0.91% (1997Gr09, total γ absorption).
(593 4)	1848.57	0.40 4	6.13 5	av $E\beta = 185.0 \ 15$
(620 4)	1822.17	0.12 3	6.72 11	$\mu = 0.45\%$ (1997/Gr09, total γ absorption). av E $\beta = 194.6$ 15
	1000.00			I β =0.152% (1997Gr09, total γ absorption).
(632-4)	1809.80	0.95 8	5.85 4	av E β =199.1 15 I β =1.07% (1997Gr09, total γ absorption).
(636 4)	1805.51	0.58 5	6.07 4	av E β =200.7 15
$(647 \ 4)$	1795 13	0.25.3	6466	$I\beta = 0.67\%$ (1997Gr09, total γ absorption).
(0+7+7)	1795.15	0.25 5	0.40 0	$I\beta = 0.29\%$ (1997Gr09, total γ absorption).
(648 4)	1793.68	0.033 14	7.35 19	av $E\beta = 205.1 \ 15$
(701 4)	1741.25	0.92 7	6.02 4	$\mu = 0.040\%$ (19970109, total γ absorption). av E $\beta = 224.5$ 15
		0.005		$I\beta = 1.79\%$ (1997Gr09, total γ absorption).
(729 4)	1713.10	0.028 4	7.60 7	av E β =235.1 I6 I β =0.096% (1997Gr09, total γ absorption)
				$\mu = 0.050 \text{ (cm)}$, total y absorption).

Continued on next page (footnotes at end of table)

151 Nd β^- decay (12.44 min) 1985GlZY,1985Ii01,1989Ii01 (continued)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(790 4)	1651.52	0.15 3	6.99 9	av $E\beta=258.6$ 16 $B=0.53\%$ (1007Gr00, total α absorption)
(802 4)	1639.63	0.27 4	6.76 7	$\mu = 0.53\%$ (1997)(109, total y absorption). av $E\beta = 263.1$ <i>16</i>
(824 4)	1618.42	0.73 5	6.37 3	$I\beta$ =0.88% (199/Gr09, total γ absorption). av $E\beta$ =271.3 16 $I\beta$ =0.72% (1007Gr00, total γ absorption).
(824 4)	1617.82	0.55 5	6.49 4	$\mu = 0.72\%$ (1997/6109, total y absorption). av $E\beta = 271.5$ 16 B = 0.54% (1997/6109, total y absorption)
(852 4)	1589.91	0.089 15	7.33 8	$\mu = 0.3 + \%$ (1997) (1097) (1017) absorption). av $E\beta = 282.4$ 16
(880 4)	1562.1	0.060 18	7.56 13	$I\beta$ =0.088% (1997Gr09, total γ absorption). av $E\beta$ =293.2 16 $I\beta$ =0.061% (1997Gr09, total γ absorption)
(997 4)	1444.98	1.06 9	6.50 4	av $E\beta$ =339.7 16 B =1 53% (1997Gr09, total γ absorption)
(1017 4)	1424.57	0.40 4	6.96 5	av E β =347.9 17 LB=0.40% (1007Gr00, total α absorption)
(1047 4)	1394.77	0.30 4	7.13 6	av $E\beta$ =360.0 17 (B=0.30% (1997Gr09, total x absorption)
(1086 4)	1355.81	0.04 2	8.06 22	av E β =375.8 <i>17</i> (1007Cr00) total subscription).
(1112 4)	1330.39	0.22 5	7.36 10	$\mu = 0.050\%$ (1997Gr09, total γ absorption). av E $\beta = 386.2$ 17 $I\beta = 0.177\%$ (1997Gr09, total γ absorption)
1.18×10 ³ 10	1297.682	17.9 16	5.50 4	av E β =399.6 17 B ⁻ average of 19.5 (from γ -ray intensity balance) and I β =16.2% (1997Gr09
(1241 4)	1200.97	0.74	7.0	total γ absorption). E(decay): from $\beta\gamma$ (1995Ik03). av E β =439.7 <i>17</i> I β =1.82% (1997Gr09, total γ absorption). Due to discrepancy in two
(1259 4)	1183.27	0.47	7.2	results, $\Delta I\beta$ is not given. av $E\beta=447.1 \ I7$ $I\beta^{-1}$: $I\beta=1.16\%$ (1997Gr09, total γ absorption). Due to large discrepancy in
(1266 4)	1175.60	0.070	8.1	two results, $\Delta I\beta$ is not given. av $E\beta$ =450.3 <i>17</i> $I\beta^-: I\beta$ =0.175% (1997Gr09, total γ absorption). Due to large discrepancy in
(1309 4)	1133.214	3.9 <i>3</i>	6.38 4	two results, $\Delta \beta$ is not given. av E β =468.1 17 β =3.86% (1997Gr09, total α absorption)
(1431 4)	1010.71	< 0.01	>9.1	av $E\beta$ =520.0 17 B=0.0% (1997Gr09, total x absorption)
(1452 4)	989.88	0.52 7	7.42 6	av E β =528.8 17
(1499 4)	943.11	0.25 5	7.79 9	$\mu = 0.32\%$ (1997/Gr09, total y absorption). av $E\beta = 548.9$ 18 B = 0.22% (1997/Gr09, total y absorption)
(1528 4)	914.309	8.7 6	6.28 <i>3</i>	av E β =561.2 <i>18</i> (B γ -73% (1997Gr09, total γ absorption)
(1544 4)	897.63	0.19 6	7.96 14	av $E\beta$ =568.4 18 B =0.166% (1997Gr09, total γ absorption)
(1567 4)	874.71	0.79 8	7.37 5	av $E\beta$ =578.3 <i>I8</i> <i>IB</i> =0.73% (1997Gr09, total γ absorption).
(1571 4)	870.58	0.16 5	8.07 14	av $E\beta$ =580.1 <i>I</i> 8 <i>B</i> =0.141% (1997Gr09, total γ absorption)
(1589 4)	852.994	9.6 6	6.31 <i>3</i>	av $E\beta = 587.7$ <i>B</i> $B = 8.95\%$ (1997Gr09, total γ absorption)
(1590 4)	852.30	0.25 6	7.89 11	av E β =588.0 <i>I8</i> <i>IB</i> =0.24% (1997Gr09, total γ absorption)
(1601 4)	840.966	4.4 3	6.66 <i>3</i>	av E β =592.9 18 I β =4.06% (1997Gr09, total γ absorption).

Continued on next page (footnotes at end of table)

β^{-} radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(1633 4)	809.46	0.14 6	8.19 19	av E β =606.6 18
(1668 4)	773.599	0.08 5	8.5 <i>3</i>	$I\beta$ =0.124% (1997Gr09, total γ absorption). av $E\beta$ =622.2 18 $I\beta$ =0.088% (1997Gr09, total γ absorption)
(1686 4)	755.569	0.09 7	8.4 4	av E β =630.0 <i>18</i> I β =0.105% (1997Gr09, total γ absorption).
(1695 4)	746.552	0.31 9	7.91 <i>13</i>	av $E\beta$ =634.0 <i>I</i> 8 <i>I</i> β =0.32% (1997Gr09, total γ absorption).
(1902 4)	540.372	3.09 24	7.10 4	av $E\beta=724.5$ 18 I $\beta=3.07\%$ (1997Gr09, total γ absorption).
(1910 [#] 4)	532.057	< 0.08	>9.7 ¹ <i>u</i>	av $E\beta$ =723.3 18 $I\beta$ =0.0% (1997Gr09 total x absorption)
(1918 4)	524.339	0.74	7.7	av E β =731.6 <i>18</i> I β ⁻ : I β =0.28% (1997Gr09, total γ absorption). Due to discrepancy in two results,
(1934 4)	507.885	1.8	7.4	$\Delta I\beta$ is not given. av $E\beta = 738.9 \ I8$ $I\beta^-: I\beta = 0.64\%$ (1997Gr09, total γ absorption). Due to large discrepancy in two
(2016 4)	426.451	2.6 2	7.28 4	results, $\Delta I\beta$ is not given. av E β =775.0 18
(2117 4)	324.682	3.9 5	7.19 6	$\mu = 2.05\%$ (1997/G109, total γ absorption). av E $\beta = 820.4$ 18 $I\beta = 3.86\%$ (1997/Gr09, total γ absorption).
(2181 [#] 4)	261.157	< 0.24	>8.4	av E β =848.8 18 I β =0.0% (1997Gr09, total x absorption)
(2186 4)	255.692	7.5 8	6.96 5	av E β =851.3 18 I β =7.45% (1997Gr09, total γ absorption).
(2245 [#] 4)	197.272	< 0.23	>8.5	av E β =877.5 18 I β =0.0% (1997Gr09, total γ absorption).
(2267 4)	175.075	1.0 4	9.06 ¹ <i>u</i> 18	av E β =877.7 18 I β =0.0% (1997Gr09, total γ absorption).
(2325 [#] 4)	116.794	<0.9	>8.0	av $E\beta = 913.7 \ 18$ $I\beta = 1.40\% \ (1997 Gr09, total \gamma absorption).$
(2442 4)	0.0	14.6 18	6.86 6	av $E\beta$ =966.4 <i>18</i> I β ⁻ : from %I β (g.s.+85)=14.6 <i>18</i> (1997Gr09,1996Gr20, total γ absorption). β feeding to 85 level is expected to be negligible for Δ J=2, no.

[†] From γ -ray intensity balance for excited states. For g.s., the value is from total γ absorption study (1997Gr09,1996Gr20). Relative I β 's from total γ absorption (1997Gr09) are given under comments and are in general agreement with those from level scheme. Some differences are as follows: 1. I β (507+524) from $4\pi\gamma$ (1997Gr09) is smaller by $\approx 2\%$. 2. I β (1175+1183+1201) from $4\pi\gamma$ (1997Gr09) is larger by $\approx 2\%$. 3. I β (1298) from $4\pi\gamma$ (1997Gr09) is smaller by $\approx 6\%$. 4. For levels above 2100, additional I β =0.18% is indicated by $4\pi\gamma$ data (1997Gr09).

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

$\gamma(^{151}\text{Pm})$

Iγ normalization: from I(γ+ce) of γ's feeding g.s.=85.4 *18*, with Iβ(g.s.)=14.6 *18* (1997Gr09,1996Gr20), in rough agreement with 0.013 from estimate of absolute intensity of 1181γ from 1293 level (1967Dz08). γγ(θ): 1989Ii01, 1977Se06, 1973Se12, 1971Be97.

6

	Experimental	conversion	coefficier	its
Eγ	α (K)exp	α (L)exp	α (M)exp	other shells
31.67		1.9 12		
58.28		1.09 17		
68.98		0.66 5	0.21 4	
80.74	1.3 9			
85.12	1.99 23	0.86 7	0.18 3	α (N)exp=0.05 1
89.96	0.31 3			
102.45	1.32 14			
116.80	0.167 15	0.0247 27	0.0061 10	α (N) exp=0.0019 9 α (L12) exp=0.0196 2 α (L3) exp=0.0051 11
138.89	0.087 7	0.0134 22		
149,61	0.09 3			
170.76	0.279 24	0.046 5	0.014 3	
175.07	0.047 4	0.009 3		
183.19	0.10 6	0.05 3		
197.27	0.10 6			
199.68	0.17 5			
238.63				
+	0.10 2	0.03 2		
239.60				
255.68	0.075 5	0.012 1	0.0028 6	
263.56	0.026 10			
300.58	0.011 5			
324.3	0.025 16			
402.33	0.024 5	0.006 2		
423.56	0.019 3	0.005 2		
585.22	0.014 7			
736.2	0.0029 14			
797.5	0.0018 9			
914.3	0.004 2			
$\gamma\gamma(\theta)$ data (from	1989Ii01. (Others: 1977	Se06,1973S	e12,1971Be97)
γ - γ cas	scade	A_2	A_4	reference
		0 34 2	0 00 5	

	139 - 150 - 171 - 271 - 301 - 402 - 333 - 357 - 383 - 402 - 402 - 402 - 402 - 402 - 408 - 402 - 401 - 678 - 736 - 739 - 798 - 1016 - 1123 - 1123 - 1123 - 1123 - 1123 - 1181 - 1181 - 1787 -	117 175 139 256 175 424 171 175 175 798 175 90 117 117 117 117 117 117 117 117 117 11	$\begin{array}{c} -0 \\ +0 \\ +0 \\ -0 \\ +0 \\ +0 \\ +0 \\ +0 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} +0.0\\ 0.0\\ +0.0\\ +0.0\\ -0.0\\ -0.0\\ -0.0\\ +0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ -0.0\\ +0.0\\ $	91 2 90 12 94 7 91 2 92 6 93 8 93 11 15 1 92 4 95 16 92 15 91 2 91 4 90 6 90 4 92 4 92 4 925 10 .21 2	1977Se06 1977Se06 1971Be97 1971Be97 1971Be97 1971Be97 1971Be97			
E_{γ}^{\dagger}	I_{γ} ‡ <i>j</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult.@	δ #	α^{k}	$I_{(\gamma+ce)}j$	Comments
(16.5 ^{<i>f</i>})		524.339	$(3/2)^+$	507.885	5/2+				11	$I_{(\gamma+ce)}$: γ not observed but inferred from several triple
31.67 3	34 4	116.794	5/2-	85.119	7/2+	E1		1.068		cascades like $(249\gamma)(16\gamma)(333\gamma)$ to yield $I(\gamma+ce)=1$ <i>I</i> . $\alpha(L)=0.843$ <i>I</i> 2; $\alpha(M)=0.181$ <i>3</i> ; $\alpha(N+)=0.0444$ <i>7</i> $\alpha(N)=0.0391$ <i>6</i> ; $\alpha(O)=0.00510$ <i>8</i> ; $\alpha(P)=0.000186$ <i>3</i> Mult.: from $\alpha(L)exp$, estimated from combined $ce(K)(69\gamma)+ce(L)(32\gamma)$ by subtraction of calculated $ce(K)(69\gamma)$ component
58.28 <i>1</i>	28 2	175.075	7/2-	116.794	5/2-	M1+E2	0.14 +6-9	7.55 22		$\alpha(K) = 6.19 \ 10; \ \alpha(L) = 1.07 \ 19; \ \alpha(M) = 0.23 \ 5; \ \alpha(N+) = 0.060 \ 11 \ (M) = 0.052 \ 10; \ \alpha(D) = 0.0075 \ 12; \ \alpha(D) = 0.000200 \ 7$
63.81 6	2.6 11	261.157	(9/2-)	197.272	9/2+	[E1]		0.898		$\begin{array}{l} \alpha_{(N)=0.052} & 10; \ \alpha(O)=0.0075 \ 12; \ \alpha(P)=0.000399 \ 7 \\ \alpha(K)=0.750 \ 11; \ \alpha(L)=0.1167 \ 17; \ \alpha(M)=0.0249 \ 4; \\ \alpha(N+)=0.00626 \ 9 \\ \alpha(N)=0.00547 \ 8; \ \alpha(O)=0.000761 \ 11; \ \alpha(P)=3.46\times10^{-5} \ 5 \end{array}$
*67.02 5 68.98 1	1.4 <i>4</i> 95 <i>4</i>	324.682	5/2+	255.692	3/2+	M1+E2	0.16 4	4.63 9		$\alpha(K)=3.81 \ 6; \ \alpha(L)=0.64 \ 6; \ \alpha(M)=0.139 \ 13; \ \alpha(N+)=0.036 \ 4$ $\alpha(N)=0.031 \ 3; \ \alpha(O)=0.0045 \ 4; \ \alpha(P)=0.000244 \ 4$ $\delta: \ from \ \alpha(L)exp.$ $ce(K)(69\gamma) \ and \ ce(L)(32\gamma) \ superposed.$

From ENSDF

 $^{151}_{61}\mathrm{Pm}_{90}$ -7

				151 Nd β^-	decay (12.44	min) 198	5GIZY,1985Ii01,2	1989Ii01 (c	ontinued)		
γ ⁽¹⁵¹ Pm) (continued)											
$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\ddagger j}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{\#}$	α^{k}	Comments		
80.74 3	18 <i>I</i>	507.885	5/2+	427.150	(7/2)+	M1,E2		3.9 11	$\alpha(K)=2.27\ 17;\ \alpha(L)=1.3\ 10;\ \alpha(M)=0.29\ 22;\ \alpha(N+)=0.07\ 6$ $\alpha(N)=0.06\ 5;\ \alpha(O)=0.008\ 6;\ \alpha(P)=0.00012\ 4$ $\alpha(K)$ exp estimated by subtraction of large KLM Auger contribution		
85.12 <i>I</i>	154 4	85.119	7/2+	0.0	5/2+	M1+E2	+0.88 +15-10	3.16 <i>14</i>	α(K)=1.98 4; α(L)=0.92 12; α(M)=0.21 3; α(N+)=0.052 7 α(N)=0.046 6; α(O)=0.0060 7; α(P)=0.000110 5 δ: from γγ(θ). δ=0.8 2 from K/L=2.3 4. δ=+1.8 3 is also possible from γγ(θ) but is inconsistent with K/L ratio.		
86.08 10	4 2	261.157	(9/2 ⁻)	175.075	7/2-	[M1,E2]		3.1 8	$\alpha(K)=1.91\ 12;\ \alpha(L)=1.0\ 7;\ \alpha(M)=0.22\ 16;\ \alpha(N+)=0.05\ 4$		
89.96 <i>1</i>	115 4	175.075	7/2-	85.119	7/2+	E1		0.357	$\begin{array}{l} \alpha(\mathrm{N})=0.0015; \ \alpha(\mathrm{O})=0.00015; \ \alpha(\mathrm{I})=0.000105 \\ \alpha(\mathrm{N})=0.0015; \ \alpha(\mathrm{L})=0.04427; \ \alpha(\mathrm{M})=0.0093914; \\ \alpha(\mathrm{N}+)=0.002394 \\ \alpha(\mathrm{N})=0.002083; \ \alpha(\mathrm{O})=0.0002955; \\ \alpha(\mathrm{P})=1455\times10^{-5}21 \end{array}$		
94.40 ⁸ 15 97.87 5	1.2 2 1.1 6	840.966 524.339	$(3/2)^+$ $(3/2)^+$	746.552 426.451	(3/2 ⁻) 1/2 ⁺						
100.1 ^{<i>J</i>} 2 102.45 2	2.6 10 37 2	2010.99 427.150	$(5/2)^+$ $(7/2)^+$	1910.68 324.682	$(3/2^+, 5/2^+)$ $5/2^+$	M1(+E2)	<1	1.60 <i>16</i>	$\alpha(K)=1.20 4$; $\alpha(L)=0.31 15$; $\alpha(M)=0.07 4$; $\alpha(N+)=0.018 8$ $\alpha(N)=0.015 8$; $\alpha(O)=0.0021 9$; $\alpha(P)=7.1\times10^{-5} 8$ For $\alpha(K)$ exp, correction made for ce(M) of 58 γ .		
104.9 ^{<i>a</i>} 6 112.15 5	3 <i>1</i> 8.8 <i>15</i>	532.057 197.272	(7/2 ⁻) 9/2 ⁺	427.150 85.119	(7/2) ⁺ 7/2 ⁺	[M1,E2]		1.31 20	$\alpha(K)=0.91\ 5;\ \alpha(L)=0.31\ 18;\ \alpha(M)=0.07\ 5;$ $\alpha(N+)=0.018\ 11$ $\alpha(N)=0.016\ 10;\ \alpha(O)=0.0021\ 11;\ \alpha(P)=4.9\times10^{-5}\ 12$		
113.88 ^g 19 116.80 1	7 2 2930 <i>40</i>	540.372 116.794	3/2 ⁻ 5/2 ⁻	426.451 0.0	1/2 ⁺ 5/2 ⁺	E1		0.1751	$\alpha(K)=0.1483\ 21;\ \alpha(L)=0.0211\ 3;\ \alpha(M)=0.00449\ 7;\alpha(N+)=0.001148\ 16\alpha(N)=0.000998\ 14;\ \alpha(O)=0.0001435\ 20;\alpha(P)=7.44\times10^{-6}\ 11$		
125.74 8 138.89 <i>1</i>	1.8 <i>11</i> 530 <i>16</i>	2023.15 255.692	(5/2) 3/2 ⁺	1897.4 116.794	(3/2 ⁺ ,5/2 ⁺) 5/2 ⁻	E1		0.1091	α (K)=0.0927 <i>13</i> ; α (L)=0.01302 <i>19</i> ; α (M)=0.00276 <i>4</i> ; α (N+)=0.000709 <i>10</i> α (N)=0.000615 <i>9</i> ; α (O)=8.91×10 ⁻⁵ <i>13</i> ;		
149.61 <i>1</i>	22 1	324.682	5/2+	175.075	7/2-	E1		0.0891	$\alpha(\mathbf{r})=4.70 \times 10^{-7} \\ \alpha(\mathbf{K})=0.0757 \ 11; \ \alpha(\mathbf{L})=0.01058 \ 15; \ \alpha(\mathbf{M})=0.00225 \\ 4; \ \alpha(\mathbf{N}+)=0.000577 \ 8 \\ \alpha(\mathbf{N})=0.000500 \ 7; \ \alpha(\mathbf{O})=7.26 \times 10^{-5} \ 11; \\ \alpha(\mathbf{P})=3.93 \times 10^{-6} \ 6 $		

 ∞

From ENSDF

Т

 $^{151}_{61}\mathrm{Pm}_{90}$ -8

	$\frac{151}{\text{Nd}}\beta^{-}\text{decay}(12.44\text{min}) \qquad 1985{\text{GIZY}},1985{\text{Ii01}},1989{\text{Ii01}}(\text{continued})$												
γ ⁽¹⁵¹ Pm) (continued)													
E_{γ}^{\dagger}	Ι _γ ‡ <i>j</i>	E _i (level)	J_i^π	E_{f}	J_f^{π}	Mult. [@]	$\delta^{\#}$	α^{k}	Comments				
158.79 6	7.0 7	914.309	5/2+	755.569	(5/2,7/2 ⁻)	[D,Q]		0.23 15					
163.6 [†] 2 165.99 4	1.5 5 4.6 7	1973.32 427.150	$(1/2^+, 3/2, 5/2)$ $(7/2)^+$	1809.80 261.157	$(3/2,5/2)^+$ $(9/2^-)$	[E1]		0.0673	α (K)=0.0572 8; α (L)=0.00793 12; α (M)=0.001685 24; α (N+)=0.000433 6				
167.88 ^{<i>f</i>} 7	7.9 8	914.309	5/2+	746.552	(3/2 ⁻)	[E1]		0.0652	$\alpha(N)=0.000375 \ 6; \ \alpha(O)=5.47\times10^{-5} \ 8; \ \alpha(P)=3.00\times10^{-6} \ 5 \\ \alpha(K)=0.0555 \ 8; \ \alpha(L)=0.00769 \ 11; \ \alpha(M)=0.001633 \ 23; \\ \alpha(N+)=0.000420 \ 6$				
169.20 6	5.6 8	746.552	(3/2 ⁻)	577.402	(5/2)-	[M1,E2]		0.354 6	$\begin{array}{l} \alpha(\mathrm{N}) = 0.000364 \ 6; \ \alpha(\mathrm{O}) = 5.30 \times 10^{-5} \ 8; \ \alpha(\mathrm{P}) = 2.92 \times 10^{-6} \ 4 \\ \alpha(\mathrm{K}) = 0.27 \ 3; \ \alpha(\mathrm{L}) = 0.063 \ 22; \ \alpha(\mathrm{M}) = 0.014 \ 5; \\ \alpha(\mathrm{N}+) = 0.0035 \ 12 \end{array}$				
170.76 ^l	30 ^{<i>l</i>} 5	255.692	3/2+	85.119	7/2+	[E2]		0.345	α (N)=0.0031 <i>11</i> ; α (O)=0.00043 <i>13</i> ; α (P)=1.6×10 ⁻⁵ <i>4</i> α (K)=0.241 <i>4</i> ; α (L)=0.0811 <i>12</i> ; α (M)=0.0183 <i>3</i> ; α (N+)=0.00456 <i>7</i>				
170.76 ^{<i>l</i>} 2	216 ¹ 8	426.451	1/2+	255.692	3/2+	M1+E2	-0.4 3	0.343	α (N)=0.00402 6; α (O)=0.000533 8; α (P)=1.169×10 ⁻⁵ 17 α (K)=0.284 11; α (L)=0.046 8; α (M)=0.0100 19; α (N+)=0.0026 5				
									α (N)=0.0022 4; α (O)=0.00033 5; α (P)=1.77×10 ⁻⁵ 14 Ice corrected for E2 transitions from 255.7 and 427.1 levels.				
171.4 <i>I</i>	11 3	427.150	(7/2)+	255.692	3/2+	[E2]		0.341	α(K)=0.239 4; α (L)=0.0799 12; α (M)=0.0180 3; α (N+)=0.00449 7				
175.07 1	476 16	175.075	7/2-	0.0	5/2+	E1		0.0582	α (N)=0.00395 6; α (O)=0.000525 8; α (P)=1.157×10 ⁻⁵ 17 α (K)=0.0496 7; α (L)=0.00685 10; α (M)=0.001454 21; α (N+)=0.000374 6				
176.09 8	21 <i>I</i>	261.157	(9/2 ⁻)	85.119	7/2+	[E1]		0.0573	α (N)=0.000324 5; α (O)=4.73×10 ⁻⁵ 7; α (P)=2.62×10 ⁻⁶ 4 ce(M)(175 γ) and ce(L)(183 γ) superposed. α (K)=0.0488 7; α (L)=0.00674 <i>10</i> ; α (M)=0.001431 <i>21</i> ; α (N+)=0.000368 6				
183.19 2	34 1	507.885	5/2+	324.682	5/2+	M1,E2		0.277 7	$ \begin{aligned} &\alpha(\text{N}) = 0.000319 \ 5; \ \alpha(\text{O}) = 4.66 \times 10^{-5} \ 7; \ \alpha(\text{P}) = 2.58 \times 10^{-6} \ 4 \\ &\alpha(\text{K}) = 0.217 \ 23; \ \alpha(\text{L}) = 0.047 \ 14; \ \alpha(\text{M}) = 0.010 \ 4; \\ &\alpha(\text{N}+) = 0.0026 \ 8 \end{aligned} $				
197.27 <i>1</i>	16 <i>1</i>	197.272	9/2+	0.0	5/2+	(E2)		0.212	α(N)=0.0023 7; α(O)=0.00032 8; α(P)=1.2×10-5 3 Estimates of α(K)exp and α(L)exp involve large corrections for Ice(M) of 139γ and 176γ, respectively. $ α(K)=0.1540 22; α(L)=0.0450 7; α(M)=0.01012 15; α(N+)=0.00253 4$				
199.68 2	20 1	524.339	(3/2)+	324.682	5/2+	M1,E2		0.213 10	α(N)=0.00222 4; α(O)=0.000298 5; α(P)=7.71×10-6 11 α(K)exp estimated (evaluator) from βγ (1969BoZG), using β- detection efficiency of 0.5. α(K)=0.169 21; α(L)=0.035 9; α(M)=0.0076 21;				

¹⁵¹₆₁Pm₉₀-9

	151 Nd β^- decay (12.44 min) 1985GIZY,1985Ii01,1989Ii01 (continued)										
	γ ⁽¹⁵¹ Pm) (continued)										
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger j}$	E _i (level)	J^π_i	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult.@	$\delta^{\#}$	$\alpha^{\boldsymbol{k}}$	Comments		
b									α (N+)=0.0019 5 α (N)=0.0017 5; α (O)=0.00024 5; α (P)=9.8×10 ⁻⁶ 24 α (K)exp estimated (evaluator) from $\beta\gamma$ (1969BoZG), using detection efficiency of 0.9.		
206.16° 10 207.7 1	3.2 <i>3</i> 3.4 5	746.552 324.682	(3/2 ⁻) 5/2 ⁺	540.372 116.794	3/2 ⁻ 5/2 ⁻	[E1]		0.0368	$\alpha(K)=0.0314\ 5;\ \alpha(L)=0.00430\ 6;\ \alpha(M)=0.000912\ 13;$ $\alpha(N+)=0.000235\ 4$ $\alpha(N)=0.000204\ 3;\ \alpha(O)=2.99\times10^{-5}\ 5;\ \alpha(P)=1.689\times10^{-6}\ 24$		
211.36 ^{<i>f</i>} 8 222.18 6 229.90 5	5.1 8 3.5 <i>10</i> 2.5 7	957.89 746.552 427.150	5/2 ⁺ (3/2 ⁻) (7/2) ⁺	746.552 524.339 197.272	(3/2 ⁻) (3/2) ⁺ 9/2 ⁺						
232.92 ^f 13	2.5 7	773.599	$(1/2, 3/2, 5/2^+)$	540.372	$3/2^{-}$						
238.63 2	36 2	746.552	(3/2 ⁻)	507.885	5/2+	(E1) ^{<i>i</i>}		0.0255	α (K)=0.0218 3; α (L)=0.00296 5; α (M)=0.000628 9; α (N+)=0.0001621 23		
									α (N)=0.0001403 20; α (O)=2.07×10 ⁻⁵ 3; α (P)=1.187×10 ⁻⁶ 17		
239.60 6	28 2	324.682	5/2+	85.119	7/2+	M1,E2		0.123 13	$\alpha(K)=0.100 \ 16; \ \alpha(L)=0.018 \ 3; \ \alpha(M)=0.0040 \ 7; \ \alpha(N+)=0.00103 \ 15$		
. 10					(a (a) ±				α (N)=0.00090 14; α (O)=0.000128 13; α (P)=5.9×10 ⁻⁶ 15 Mult.: from α (K)exp, after correcting Ice for E1 contribution of 238.63 γ .		
249.29 <i>3</i> 252.23 <i>4</i>	25 2 10 <i>1</i>	773.599 507.885	$(1/2,3/2,5/2^+)$ $5/2^+$	524.339 255.692	$(3/2)^+$ $3/2^+$	[M1,E2]		0.106 12	$\alpha(K)=0.086 \ 15; \ \alpha(L)=0.0156 \ 18; \ \alpha(M)=0.0034 \ 5; \ \alpha(N+)=0.00087 \ 10$		
255.68 1	1110 20	255.692	3/2+	0.0	5/2+	M1+E2	-0.8 4	0.105 7	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.00076 \ 10; \ \alpha(\mathrm{O}) = 0.000109 \ 8; \ \alpha(\mathrm{P}) = 5.1 \times 10^{-6} \ 14 \\ \alpha(\mathrm{K}) = 0.086 \ 8; \ \alpha(\mathrm{L}) = 0.0146 \ 8; \ \alpha(\mathrm{M}) = 0.00316 \ 21; \\ \alpha(\mathrm{N}+) = 0.00081 \ 5 \end{array} $		
^x 258 08 3	225								α(N)=0.00071 5; α(O)=0.000102 4; α(P)=5.2×10-6 7 δ: from (171γ)(256γ)(θ) using δ(170.76γ)=-0.4 3. Value consistent with 0.6 4 from K/L.		
263.56 2	59 <i>3</i>	840.966	$(3/2)^+$	577.402	(5/2)-	E1		0.0197	$\alpha(K)=0.01681\ 24;\ \alpha(L)=0.00227\ 4;\ \alpha(M)=0.000482\ 7;\ \alpha(N+)=0.0001247\ 18$		
									$\alpha(R) = 0.0001019 \ 10; \ \alpha(G) = 1.595 \times 10^{-7} \ 25;$ $\alpha(P) = 9.25 \times 10^{-7} \ 13$ $\alpha(K)$ exp estimated (evaluator) from $\beta\gamma$ (1969BoZG),		
268.67 4	12 <i>I</i>	524.339	$(3/2)^+$	255.692	3/2+	[M1,E2]		0.088 12	using β detection efficiency of 0.5. $\alpha(K)=0.072 \ 13; \ \alpha(L)=0.0127 \ 10; \ \alpha(M)=0.0028 \ 3; \ \alpha(N+)=0.00071 \ 6$		
270.89 3	24 2	532.057	(7/2 ⁻)	261.157	(9/2 ⁻)	[M1,E2]		0.086 12	$\begin{aligned} &\alpha(N) = 0.00062 \ 6; \ \alpha(O) = 8.9 \times 10^{-5} \ 4; \ \alpha(P) = 4.3 \times 10^{-6} \ 12 \\ &\alpha(K) = 0.070 \ 13; \ \alpha(L) = 0.0123 \ 10; \ \alpha(M) = 0.0027 \ 3; \\ &\alpha(N+) = 0.00069 \ 6 \end{aligned}$		

From ENSDF

 $^{151}_{61}$ Pm₉₀-10

Т

			¹⁵¹ N	d β^- decay	(12.44 min)	1985GIZ	ZY,1985Ii01	1,1989Ii01 (continued)
					<u> </u>	¹⁵¹ Pm) (con	tinued)	
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\ddagger j}$	E _i (level)	J^{π}_i	E_f	J_f^π	Mult. [@]	α^{k}	Comments
								α (N)=0.00060 5; α (O)=8.6×10 ⁻⁵ 4; α (P)=4.2×10 ⁻⁶ 11
275 52 3	17.2	852 004	5/2(+)	577 402	$(5/2)^{-}$			δ : +0.14 6 or +3.0 +8-5 from (271 γ)(175 γ)(θ).
284.7 1	3.2 9	540.372	3/2-	255.692	(3/2) $3/2^+$			
292.15 ^f 11	4.2 10	1133.214	$(5/2^+)$	840.966	$(3/2)^+$			
297.3 ^C	0.8 5	874.71	$3/2^+$	577.402	$(5/2)^{-}$	E1	0.01406	$\alpha(K) = 0.01201.17; \alpha(L) = 0.001615.23; \alpha(M) = 0.000242.5;$
500.58 2	137 4	640.900	(3/2)	540.572	5/2	EI	0.01400	$\alpha(\mathbf{N})=0.01201 \ 17, \ \alpha(\mathbf{L})=0.001015 \ 25, \ \alpha(\mathbf{M})=0.000542 \ 5, \ \alpha(\mathbf{N}+)=8.87\times10^{-5} \ 13$
								$\alpha(N)=7.67\times10^{-5}$ 11; $\alpha(O)=1.135\times10^{-5}$ 16; $\alpha(P)=6.69\times10^{-7}$ 10
301.8 ^{<i>f</i>} 2	4.8 13	809.46	$(5/2^+, 7/2^-)$	507.885	$5/2^+$			
310.40 11	2.2.8	427.150	$(1/2)^{+}$ $5/2^{(+)}$	116.794 540.372	5/2 3/2-			
316.56 7	3.5 7	840.966	$(3/2)^+$	524.339	$(3/2)^+$			
320.09 3	46 <i>3</i>	746.552	(3/2-)	426.451	1/2+			
321.06 5	15 1	852.994	$5/2^{(+)}$	532.057	$(7/2^{-})$			
323.80	1.0 5 36 2	324.682	$(5/2^+)$ $5/2^+$	809.46 0.0	$(5/2^+, 1/2^-)$ $5/2^+$	[M1.E2]	0.051 9	$\alpha(K)=0.043$ 9; $\alpha(L)=0.00697$ 13; $\alpha(M)=0.001509$ 24;
02.1100.2		0211002	0/2	0.0	0/2	[]	01001 2	$\alpha(n)$ of $\alpha(n)$
								α (N)=0.000337 5; α (O)=4.91×10 ⁻⁵ 22; α (P)=2.6×10 ⁻⁶ 7
326.3f 2	217	1200.07	$(3/2^+ 5/2)$	874 71	3/2+			$\alpha(\mathbf{K})$ exp would permit E1 or M1+E2.
332.78 2	52 3	507.885	$(5/2^+, 5/2)$	175.075	$7/2^{-}$			
334.65 ^f 14	3.6 12	532.057	$(7/2^{-})$	197.272	9/2+	[E1]	0.01073	α (K)=0.00918 <i>13</i> ; α (L)=0.001228 <i>18</i> ; α (M)=0.000260 <i>4</i> ;
								α (N+)=6.75×10 ⁻⁵ 10
227.12f	210	014 200	5/0+	577 400	(5/2) =			$\alpha(N) = 5.83 \times 10^{-5} \ 9; \ \alpha(O) = 8.65 \times 10^{-6} \ 13; \ \alpha(P) = 5.15 \times 10^{-7} \ 8$
341.95 7	5.1 9 4.4 8	427.150	$(7/2)^+$	85.119	(3/2) $7/2^+$			
344.99 <i>f</i> 10	3.0 7	852.994	5/2 ⁽⁺⁾	507.885	5/2+			
347.13 2	30 2	773.599	$(1/2, 3/2, 5/2^+)$	426.451	1/2+			
357.00 2	29-2	532.057	$(1/2^{-})$	175.075	7/2-	[M1,E2]	0.040 8	$\alpha(\mathbf{K})=0.033 \ 8; \ \alpha(\mathbf{L})=0.0052 \ 3; \ \alpha(\mathbf{M})=0.00113 \ 5; \ \alpha(\mathbf{N}+)=0.000291 \ 15$
								$\alpha(N)=0.000253 \ 11; \ \alpha(O)=3.7\times10^{-5} \ 3; \ \alpha(P)=2.0\times10^{-6} \ 6$
C								δ : +0.2 2 or -1.6 +6-12 from (357γ)(175γ)(θ).
362.7 ^J 2	1.7 7	870.58	$(5/2^+,7/2^-)$	507.885	$5/2^+$			
$366.9 \int 3$	208	340.372 874 71	3/2+	507 885	7/2 5/2+			
373.57 ^l	2^{l}	897.63	(3/2.5/2)	524.339	$(3/2)^+$			
373.57 ¹ 11	6.1 ¹ 12	1183.27	$(3/2,5/2)^+$	809.46	$(5/2^+, 7/2^-)$			
377.73 9	4.1 9	1133.214	$(5/2^+)$	755.569	(5/2,7/2 ⁻)			
380.1 ^{<i>f</i>} 2	2.4 9	957.89	5/2+	577.402	$(5/2)^{-}$			

From ENSDF

 $^{151}_{61}\mathrm{Pm}_{90}$ -11

 $^{151}_{61}$ Pm₉₀-11

			¹⁵¹ Nd	β^- decay (1	2.44 min)	1985GIZY	,1985Ii01,1	.989Ii01 (co	ontinued)			
	$\gamma(^{151}\text{Pm})$ (continued)											
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger j}$	E _i (level)	${ m J}^{\pi}_i$	E_f	${ m J}_f^\pi$	Mult. [@]	δ [#]	α^{k}	Comments			
383.2 ^{<i>f</i>} 3 391.13 2	1.8 8 3.5 <i>11</i>	1297.682 507.885	5/2 ⁺ 5/2 ⁺	914.309 116.794	5/2 ⁺ 5/2 ⁻							
391.7 ^c	1.0 5	1200.97	$(3/2^+, 5/2)$	809.46	$(5/2^+, 7/2^-)$							
394.6 [†] 2 402.33 2	2.2 9 19 3	2204.30 577.402	$(1/2^+, 3/2^+, 5/2^+)$ $(5/2)^-$	1809.80 175.075	(3/2,5/2) ⁺ 7/2 ⁻	M1,E2		0.029 6	$\alpha(K)=0.024\ 6;\ \alpha(L)=0.0037\ 4;\ \alpha(M)=0.00079\ 7;$ $\alpha(N+)=0.000205\ 19$ $\alpha(N)=0.000177\ 16;\ \alpha(O)=2.6\times10^{-5}\ 3;$ $\alpha(P)=1.5\times10^{-6}\ 5$ For $\alpha(K)$ exp and $\alpha(L)$ exp, Ice(K,L) reduced to			
									allow for contributions from $ce(K)$ and $ce(L)$ lines of unresolved 407γ .			
407.55.2	38 1	524,339	$(3/2)^+$	116.794	5/2-				δ: +0.03 3 or +4.1 5 from (402γ)(1/5γ,90γ)(θ).			
413.5^{f} 3	31	840.966	$(3/2)^+$	427.150	$(7/2)^+$							
414.63 8	13 <i>I</i>	840.966	$(3/2)^+$	426.451	1/2+							
415.2 3	21	532.057	$(7/2^{-})$	116.794	5/2-							
418.47 2	4.0 7 10 4	943.11 746 552	$(3/2^+, 5/2)$ $(3/2^-)$	524.339 324.682	$(3/2)^+$ 5/2 ⁺							
422.6 2	28 4	507.885	$5/2^+$	85.119	$\frac{3}{2}^{+}$							
423.56 ¹ 2	445 ¹ 9	540.372	5/2+	874.71	5/2 ⁻	M1+E2	-0.15 <i>I</i>	0.0300	α(K)=0.0256 4; α(L)=0.00349 5; α(M)=0.000743 I1; α(N+)=0.000194 3 α(N)=0.0001675 24; α(O)=2.53×10-5 4; α(P)=1.619×10-6 23 δ: from (424γ)(117γ)(θ) and from (301γ)(424γ)(θ). For α(K)exp and α(L)exp, Ice(K,L) of 1969BoZG reduced by 12% to allow for contributions from ce(K) and ce(L) lines of unresolved 422γ, 426γ, 427γ.			
425.56° 426.47 <i>3</i>	8.0° 4 29 <i>3</i>	426.451	5/2* 1/2 ⁺	8/4./1 0.0	5/2+	[E2]		0.0190	$\alpha(K)=0.01552\ 22;\ \alpha(L)=0.00277\ 4;\ \alpha(M)=0.000604$ 9; $\alpha(N+)=0.0001545\ 22$ $\alpha(N)=0.0001344\ 19;\ \alpha(O)=1.92\times10^{-5}\ 3;$			
427.2.2	8.3	427.150	$(7/2)^+$	0.0	$5/2^{+}$				$\alpha(P)=8.8/\times10^{-7}$ 13			
427.65^{f} 5	14 3	1183.27	$(3/2,5/2)^+$	755.569	$(5/2,7/2^{-})$							
430.2 ^{<i>f</i>} 3	2.0 6	2304.01	1/2+,3/2+,5/2+	1873.63	(5/2)+							
435.9 ^c	1.0 5	1998.25	$(5/2)^+$	1562.1	$(3/2^{-}, 5/2^{+})$							
439.22 <i>3</i> 444 7 <mark>0</mark>	24 I 1 I	524.339	$(3/2)^{+}$	85.119	$\frac{1}{2^{+}}$ 5/2 ⁽⁺⁾							
445.53^{f} 11	7.9 10	1297.682	5/2+	852.30	$1/2^+$							

 $^{151}_{61}$ Pm₉₀-12

Т

From ENSDF

 ${}^{151}_{61}\mathrm{Pm}_{90}$ -12

			1	⁵¹ Nd β^- deca	y (12.44 min)	1985GIZ	ZY,1985Ii()1,1989Ii01 (continued)
E_{γ}^{\dagger} $I_{\gamma}^{\ddagger j}$ $E_{i}(\text{level})$ J_{i}^{π} E_{f} J_{f}^{π} Mult. [@]								$\alpha^{\boldsymbol{k}}$	Comments
446.88 7	14 <i>1</i>	532.057	$(7/2^{-})$	85.119	7/2+				
449.2 ^{<i>f</i>} 2	2.4 9	989.88	5/2+	540.372	3/2-				
454.6 ^{<i>f</i>} 2	3.1 6	1200.97	$(3/2^+, 5/2)$	746.552	$(3/2^{-})$				
456.68 ^{<i>f</i>} 11	5.4 6	1297.682	5/2+	840.966	$(3/2)^+$				
459.8 ^c	0.4 2	1330.39	$(5/2^+)$	870.58	$(5/2^+, 7/2^-)$				
460.59 2	72 2	577.402	(5/2)-	116.794	5/2-	[M1+E2]	-0.6 3	0.0220 17	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0187 \ 16; \ \alpha(\mathbf{L}) = 0.00265 \ 13; \ \alpha(\mathbf{M}) = 0.000567 \\ &25; \ \alpha(\mathbf{N}+) = 0.000148 \ 7 \\ &\alpha(\mathbf{N}) = 0.000127 \ 6; \ \alpha(\mathbf{O}) = 1.91 \times 10^{-5} \ 11; \\ &\alpha(\mathbf{P}) = 1.16 \times 10^{-6} \ 11 \\ &\delta: \ \text{from } (461\gamma)(117\gamma)(\theta). \end{aligned}$
465.6 ^{<i>f</i>} 5	1.7 8	989.88	5/2+	524.339	$(3/2)^+$				
$x476.5^{f}$ 3	1.2 5								
479.3 ^{<i>f</i>} 3	0.8 5	1809.80	$(3/2, 5/2)^+$	1330.39	$(5/2^+)$				
481.92 ^{<i>f</i>} 13	4.1 7	989.88	5/2+	507.885	5/2+				
486.98 19	5.1 8	914.309	5/2+	427.150	$(7/2)^+$				
488.18 ^J 12	8.6 8	1297.682	5/2+	809.46	$(5/2^+, 7/2^-)$				
490.78 11	7.3 7	746.552	$(3/2^{-})$	255.692	$3/2^+$				
492.24 10	1.5 /	577.402	(5/2)	85.119	1/21				
498.0^{-5}	0.5 3	1853.70	$(5/2)^{-1}$	1355.81	1/2+				
503.8 ⁷ 3 507.84 12	0.74	1355.81	5/2+	852.30	$\frac{1}{2}^{+}$				
516.21 15	5.4.9	840.966	$(3/2)^+$	324.682	$5/2^+$				
518.0 2	4.0 8	773.599	$(1/2,3/2,5/2^+)$) 255.692	$3/2^+$				
$x_{522.1}f_{2}$	1.2 6								
524.31 4	38 1	524.339	$(3/2)^+$	0.0	5/2+				
527.6 ^f 3	1.9 6	1424.57	$(5/2^{-})$	897.63	(3/2,5/2)				
531.97 6	9.1 7	532.057	$(7/2^{-})$	0.0	5/2+				
^x 535.7 ^J 4	0.5 3								
540.6 ^J 3	3.3 7	540.372	3/2-	0.0	5/2+				
542.06 3	38 1	1297.682	$5/2^+$	755.569	$(5/2,7/2^{-})$				
550.04.3	4.27	874 71	(3/2, 3/2) $3/2^+$	324 682	(3/2) $5/2^+$				
551.1 ^c	1.0 5	1297.682	$5/2^+$	746.552	$(3/2^{-})$				
^x 557.4 ^f 4	1.5 6								
562.73 5	16 <i>1</i>	989.88	5/2+	427.150	$(7/2)^+$				
573.0 ^f 5 577.36 4	1.2 6 27 <i>1</i>	897.63 577.402	(3/2,5/2) (5/2) ⁻	324.682 0.0	5/2 ⁺ 5/2 ⁺				
580.2 ^{<i>f</i>} 3 585.22 3	1.2 <i>6</i> 98 8	755.569 840.966	$(5/2,7/2^{-})$ $(3/2)^{+}$	175.075 255.692	7/2 ⁻ 3/2 ⁺	M1,E2		0.011 3	$\alpha(K)=0.0091$ 24; $\alpha(L)=0.00130$ 23; $\alpha(M)=0.00028$ 5;

 $^{151}_{61}$ Pm₉₀-13

 ${}^{151}_{61}\mathrm{Pm}_{90}$ -13

Т

From ENSDF

	¹⁵¹ Nd β^- decay (12.44 min) 1985GIZY,1985Ii01,1989Ii01 (continued)						
					$\gamma(12)$	⁵¹ Pm) (continued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger j}$	E _i (level)	J_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Comments	
						α (N+)=7.3×10 ⁻⁵ <i>13</i> α (N)=6.3×10 ⁻⁵ <i>11</i> ; α (O)=9.4×10 ⁻⁶ <i>18</i> ; α (P)=5.6×10 ⁻⁷ <i>16</i> For α (K)exp, Ice(K) of 1969BoZG reduced by 40% to allow for contributions from ce(K) and ce(L) lines of unresolved 550 γ , 577 γ , 589 γ .	
589.61 <i>3</i>	22 1	914.309	5/2+	324.682 5/	2+		
592.4 ^{<i>f</i>} 2	1.8 6	1444.98	$(5/2^+)$	852.30 1/	2+		
596.64 8	32 2	852.30	$1/2^{+}$	255.692 3/	2+		
597.6 2	16 2	852.994	$5/2^{(+)}$	255.692 3/	2+		
600.8^{f} 3	1.9 7	1133.214	$(5/2^+)$	532.057 (7	/2-)		
602.4^{f} 2	2.9 14	1933.10	$(1/2^+, 3/2, 5/2)$) 1330.39 (5	(2^+)		
605.8 ^{<i>f</i>} 3	1.8 6	1183.27	$(3/2, 5/2)^+$	577.402 (5	/2)-		
612.22 7	5.6 7	809.46	$(5/2^+, 7/2^-)$	197.272 9/	2^{+}		
615.9 ^J 3	1.3 6	2010.99	$(5/2)^+$	1394.77 (3	(2^{-})		
619.01 <i>4</i>	25.2	874.71	3/2*	255.692 3/	2*		
621.3^{J} 2	2.4 7	1822.17	1/2, 3/2, 5/2	1200.97 (3	$(2^+, 5/2)$		
629.74.5	2.5 0	746 552	$(3/2^{-})$ $(3/2^{-})$	507.885 5/ 116 794 5/	2-		
634.0^{f} 3	2.0.5	809.46	$(5/2^+ 7/2^-)$	175 075 7/	2-		
$x_{636} 4^{f} 2$	2.3.5	007.10	(3/2 ,//2)	110.010 1	-		
639.0^{f} 5	1.6.7	755,569	$(5/2.7/2^{-})$	116.794 5/	2-		
643.11 13	5.0 6	1183.27	$(3/2,5/2)^+$	540.372 3/	2-		
648.4 ^{<i>f</i>} 3	0.5 3	1394.77	$(3/2^{-})$	746.552 (3	(2^{-})		
650.8 ^f 3	0.5 3	2268.59	$(5/2^+)$	1617.82 (3	(2,5/2)		
655.0 ^{<i>f</i>} 2	2.9 6	2010.99	$(5/2)^+$	1355.81			
658.61 <i>3</i>	55 2	914.309	5/2+	255.692 3/	2+		
665.21 <i>11</i>	7.0 8	989.88	5/2+	324.682 5/	2^{+}		
668.1 ^J 2	2.0 6	2024.01	(1/2, 3/2, 5/2)	1355.81	a ±		
670.39 6	25 1	755.569 870.58	(5/2,7/2) (5/2+7/2)	85.119 //	2+		
676.8f 5	1.0 9	1200.07	(3/2, 7/2)	524 330 (3	$(2)^{+}$		
677.88.3	4 2 179 <i>4</i>	852 994	(3/2, 3/2) $5/2^{(+)}$	175 075 7/	72) 7-	$\delta = +0.05.5 \text{ or } +3.7.8 \text{ from } (678 \chi)(175 \chi)(\theta)$	
$x_{679} 6 \int_{-3}^{x} 3$	3310	052.771	5/2	115.015 1	2	0. 10.05 5 61 15.7 6 Hold (0707)(1757)(0).	
682.0f 5	2.510	1639 63	$(1/2^+ 3/2 5/2)$	+) 957.80 5/	2+		
687.5f 3	165	943 11	(1/2, 3/2, 3/2) (3/2+5/2)	255 602 3/	2 2+		
695.7f 5	2512	870.58	$(5/2^+, 5/2)$	175 075 7/	- 2-		
702.8 4	1.5 6	1617.82	(3/2, 5/2)	914.309 5/	$\tilde{2}^{+}$		
705.85 12	5.7 6	1133.214	$(5/2^+)$	427.150 (7	$(/2)^{+}$		
709.3 ^c	0.6 5	1562.1	$(3/2^-, 5/2^+)$	852.994 5/	$2^{(+)}$		

From ENSDF

 ${}^{151}_{61}\mathrm{Pm}_{90}$ -14

 $^{151}_{61}$ Pm₉₀-14

Т

¹⁵¹ Nd β^- decay (12.44 min)						1985GIZ	Y,1985Ii01	,1989Ii01 (continued)		
$\gamma(^{151}\text{Pm})$ (continued)										
E_{γ}^{\dagger}	I_{γ} ‡ j	E _i (level)	${ m J}^{\pi}_i$	E_{f}	J_f^π	Mult. [@]	α^{k}	Comments		
715.7^{f}_{2}	3.3 9	1848.57	(5/2)	1133.214	(5/2+)					
^x 717.60 ⁿ 15	9.7 11									
719.6 ^J 3	3.5 10	1903.18	$(5/2)^+$ 5/2 ⁺	1183.27	$(3/2,5/2)^+$					
720.3 724 28 ¹ 7	$\frac{2}{14l}$	809.46	$(5/2^+ 7/2^-)$	85 119	(3/2) $7/2^+$					
724.28° 7	$\frac{14}{8l}$ 2	840 966	$(3/2, 7/2)^+$	116 794	5/2 ⁻					
$727.5^{f}5$	0.8.6	1903.18	$(5/2)^+$	1175.60	5/2					
731.9^{f} 4	1.5 6	1933.10	$(1/2^+, 3/2, 5/2)$	1200.97	$(3/2^+, 5/2)$					
734.0 ^{<i>f</i>} 2	7.6 20	989.88	5/2+	255.692	$3/2^+$					
736.23 3	445 10	852.994	5/2 ⁽⁺⁾	116.794	5/2-	(E1)	0.00179	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.001538\ 22;\ \alpha(\mathrm{L}) = 0.000199\ 3;\ \alpha(\mathrm{M}) = 4.20 \times 10^{-5}\ 6;\\ &\alpha(\mathrm{N}+) = 1.094 \times 10^{-5}\ 16\\ &\alpha(\mathrm{N}) = 9.44 \times 10^{-6}\ 14;\ \alpha(\mathrm{O}) = 1.419 \times 10^{-6}\ 20;\ \alpha(\mathrm{P}) = 8.95 \times 10^{-8}\ 13 \end{aligned} $		
								For $\alpha(K)$ exp, Ice(K) of 1969BoZG reduced by 20% to allow for contribution from ce(K) and ce(L) lines of unresolved		
								δ : -0.1 <i>l</i> or -1.4 2 from (736γ)(117γ)(θ). α(K)exp gives E1 or E2+M1 with δ >2.1.		
								Mult.: from consistency of ce and $\gamma\gamma(\theta)$ data.		
$739.20\ 3$	114 3	914.309	5/2+	175.075	$7/2^{-}$					
741.75 2 744.0°	3.5 8	1639.63	$(1/2^+, 3/2, 5/2^+)$ $(3/2^+, 5/2^+)$	897.63 874.71	(3/2, 5/2) $3/2^+$					
746.5 [°]	0.64	746.552	$(3/2^{-})$	0.0	$5/2^+$					
751.0 ^c	1.0 5	1741.25	$(1/2^+, 3/2, 5/2^+)$	989.88	5/2+					
753.0^{f} 2	4.5 12	1330.39	$(5/2^+)$	577.402	$(5/2)^{-}$					
753.80	21	870.58	$(5/2^+,7/2^-)$	116.794	$5/2^{-}$					
753.575	00 Z 2 8 11	155.509	(3/2, 1/2) $3/2^+$	0.0	5/2 5/2-					
765 40 f 6	13 1	1297 682	5/2+	532 057	$(7/2^{-})$			E : noor fit Level energy difference-765.62		
767.89 6	20 1	852.994	$5/2^{(+)}$	85.119	7/2+			L_{γ} . poor nt. Level energy universe – 705.02.		
773.62 ¹ 9	20 ¹ 2	1200.97	$(3/2^+, 5/2)$	427.150	$(7/2)^+$					
773.62 ¹ 9	5 ¹ 1	1297.682	5/2+	524.339	$(3/2)^+$					
777.1 ^f 3	1.5 6	1617.82	(3/2,5/2)	840.966	$(3/2)^+$					
780.7 3	2.7 7	897.63	(3/2,5/2)	116.794	5/2-					
783.4 3	2.4 7	1741.25	$(1/2^+, 3/2, 5/2^+)$ $(5/2^+, 7/2^-)$	957.89 85.110	5/2 ⁺ 7/2 ⁺					
787.2° 5	1.4 6	1639.63	$(1/2^+, 3/2, 5/2^+)$	852.30	$1/2^+$					
789.95 ¹ 7	8 ¹ 1	1297.682	5/2+	507.885	5/2+					
789.95 ¹ 9	4 ¹ 1	1330.39	$(5/2^+)$	540.372	3/2-					
792.4 ^{<i>f</i>} 4	2.9 8	989.88	5/2+	197.272	9/2+					

Т

	Ii01 (continued)											
	γ ⁽¹⁵¹ Pm) (continued)											
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger j}$	E _i (level)	${ m J}^{\pi}_i$	E_f	${ m J}_f^\pi$	Mult.@	α^{k}	Comments				
797.53 2	355 8	914.309	5/2+	116.794	5/2-	E1	1.52×10 ⁻³	$ α(K)=0.001309 \ 19; \ α(L)=0.0001685 \ 24; \ α(M)=3.56\times10^{-5} 5; \ α(N+)=9.29\times10^{-6} \ 13 α(N)=8.00\times10^{-6} \ 12; \ α(O)=1.205\times10^{-6} \ 17; α(P)=7.63\times10^{-8} \ 11 For \ α(K)exp, \ Ice(K) \ of \ 1969BoZG \ reduced \ by \ 10\% \ to allow \ for \ contribution \ from \ ce(K) \ and \ ce(L) \ lines \ of unresolved \ 798\gamma. Mult.: \ from \ α(K)exp \ and \ (798\gamma)(117\gamma)(θ). $				
798.2 ^f 5	11 3	1330.39	$(5/2^+)$	532.057	$(7/2^{-})$							
801.0 ^{<i>f</i>} 3	1.8 7	1873.63	$(5/2)^+$	1072.91	$(3/2^+)$							
809.23 <i>10</i> 812.6 <i>2</i>	17 2 9.4 <i>15</i>	809.46 897.63	$(5/2^+,7/2^-)$ (3/2,5/2)	0.0 85.119	5/2 ⁺ 7/2 ⁺							
815.4 ^{<i>f</i>} 3	3.2 10	1562.1	$(3/2^{-}, 5/2^{+})$	746.552	$(3/2^{-})$							
819.75 8	8.1 9	1809.80	$(3/2, 5/2)^+$	989.88	5/2+							
823.2 <i>4</i> 829.16.5	1.7 8	2024.01	(1/2,3/2,5/2) $5/2^+$	1200.97	$(3/2^+, 5/2)$ $7/2^+$							
829.10° 837 5 f_{\circ} 4	084	1795 13	(3/2 5/2)	957.89	5/2 ⁺							
841.07^{l} 4	$57^{l} 5$	840.966	$(3/2)^+$	0.0	5/2 ⁺							
841.07 ^l	$12^{l} 2$	957.89	5/2+	116.794	5/2 ⁻							
$847.12^{f} 6$	6.6 9	1424.57	$(5/2^{-})$ $(1/2^{+} 3/2 5/2^{+})$	577.402	$(5/2)^{-}$ 5/2 ⁺							
848.0 851.8 ^l	$\frac{2}{9l}$	852 30	(1/2, 3/2, 3/2) $1/2^+$	0.0	5/2 ⁺							
851.8 ¹ 3	12.8^{1} 19	1809.80	$(3/2, 5/2)^+$	957.89	5/2 ⁺							
853.30 12	16.3	852.994	$5/2^{(+)}$	0.0	$5/2^{+}$							
854.0 ^f 5	4 2	1394.77	(3/2 ⁻)	540.372	3/2-							
858.3 2	7.9 12	943.11	$(3/2^+, 5/2)$	85.119	7/2+							
865.9 ^{<i>J</i>} 5	3 1	1639.63	$(1/2^+, 3/2, 5/2^+)$	773.599	$(1/2, 3/2, 5/2^+)$							
866.4 ¹ 3	5.6 ¹ 19	1741.25	$(1/2^+, 3/2, 5/2^+)$	874.71	3/2+							
$866.4^{l} 3$	1.5' 10	1809.80	$(3/2,5/2)^+$	943.11	$(3/2^+, 5/2)$							
867.67 5	51	1444.98	$(5/2^+)$	577.402	(5/2)							
870.70° 11	8° 1 6 1 10	870.58	$(5/2^+, 7/2^-)$	0.0	5/2							
870.70° 11 872.5 [°]	0.4° 10 1 1	957.89	5/2+ 5/2+	427.150	$(1/2)^{+}$							
873.1 ^c	11	989.88	5/2 ⁺	116.794	5/2-							
874.5 ^f 2	7.8 9	874.71	3/2+	0.0	5/2+							
876.39 7	29 1	1200.97	$(3/2^+, 5/2)$	324.682	5/2+							
881.14 <i>16</i> 886 8 3	4.6 / 3.1.7	1892.05	$(5/2)^{+}$ $(3/2^{-})^{-}$	1010.71	5/2+							
889.1 <i>3</i>	3.4 7	1741.25	$(1/2^+, 3/2, 5/2^+)$	852.30	$1/2^+$							
892.7 2	4.9 9	1424.57	(5/2 ⁻)	532.057	$(7/2^{-})$							

 $^{151}_{61}$ Pm₉₀-16

Т

From ENSDF

¹⁵¹₆₁Pm₉₀-16

¹⁵¹ Nd β^- decay (12.44 min)						1985GIZY	,1985Ii01,19	89Ii01 (continued)					
	γ ⁽¹⁵¹ Pm) (continued)												
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger j}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	α^{k}	Comments					
897.65 9	21 <i>I</i>	897.63	(3/2,5/2)	0.0	5/2+								
900.2 1		1741.25	$(1/2^+, 3/2, 5/2^+)$	840.966	$(3/2)^+$								
904.7 2	7 [•] 2	989.88	5/2+	85.119	7/2+								
$904.7^{l} 2$	8 [•] 2	1444.98	$(5/2^+)$	540.372	3/2-								
905.3 ^J 5	3I	1848.57	(5/2)	943.11	$(3/2^+, 5/2)$								
$912.5^{t} 2$	8 ¹ 2	1444.98	$(5/2^+)$	532.057	$(1/2^{-})$								
912.5 ^{<i>i</i>} 2 914.28 <i>4</i>	8 ² 2 69 6	1809.80 914.309	(3/2,5/2)+ 5/2+	897.63 0.0	(3/2,5/2) 5/2 ⁺	M1,E2	0.0037 9	$\alpha(K)=0.0031 \ 8; \ \alpha(L)=0.00043 \ 9; \ \alpha(M)=9.1\times10^{-5} \ 18; \ \alpha(N+)=2.4\times10^{-5} \ 5 \ \alpha(N)=2.0\times10^{-5} \ 4; \ \alpha(O)=3.1\times10^{-6} \ 7; \ \alpha(P)=1.9\times10^{-7} \ 5 \ For \ \alpha(K)exp, \ Ice(K) \ of \ 1969BoZG \ reduced \ by \ 20\% \ to \ allow \ for \ contribution \ from \ ce(K) \ and \ ce(L) \ lines \ of \ unresolved \ 912\gamma, \ 913\gamma, \ 919\gamma.$					
919.93 12	6.9 10	1175.60		255.692	3/2+								
924.4 ^c		1822.17	1/2,3/2,5/2	897.63	(3/2,5/2)								
925.5^{t} I	$2^{\iota} I$	1010.71	(5.0) +	85.119	$7/2^{+}$								
925.5^{t} I	8.0 1	1998.25	(5/2) ⁺	10/2.91	$(3/2^+)$								
930.47 5	3 I 8 8 14	18/3.63	$(5/2)^+$ $(5/2)^+$	943.11	$(3/2^+, 5/2)$ $5/2^+$								
935.1 [°]	11	1892.05	$(3/2)^+$	874.71	$3/2^+$								
936.8 <i>3</i>	3.3 14	1444.98	$(5/2^+)$	507.885	5/2+								
943.17 7	28 1	943.11	$(3/2^+, 5/2)$	0.0	5/2+								
945.5 ^f 5	11	1903.18	$(5/2)^+$	957.89	5/2+								
949.05 15	51	1892.05	$(5/2)^+$	943.11	$(3/2^+, 5/2)$								
950.80	399	1848.57	(3/2) 1/2 3/2 5/2	897.03 870.58	(3/2, 3/2) $(5/2^+, 7/2^-)$								
954.4f 3	178	1807 4	$(3/2^+, 5/2^+)$	943 11	$(3/2^+,7/2^-)$								
958 18 ¹	$\frac{1.70}{4^{l}2}$	957.89	(3/2 ,3/2) 5/2 ⁺	0.0	(<i>3</i> /2 ⁺ , <i>3</i> /2)								
958 18^{l} 4	44^{l} 2	1133 214	$(5/2^+)$	175.075	5/2 7/2 ⁻								
960.5f 3	4312	1903 18	$(5/2)^+$	943 11	$(3/2^+ 5/2)$								
964.74 <i>13</i>	14 1	1805.51	$(1/2^+, 3/2, 5/2^+)$	840.966	$(3/2)^+$								
967.58 ¹ 12	14 ¹ 1	1741.25	$(1/2^+, 3/2, 5/2^+)$	773.599	$(1/2, 3/2, 5/2^+)$								
967.58 ¹ 12	1.5 ¹ 5	1910.68	$(3/2^+, 5/2^+)$	943.11	$(3/2^+, 5/2)$								
969.2 ¹ 4	4.9 ¹ 11	1809.80	$(3/2,5/2)^+$	840.966	$(3/2)^+$								
969.2 ¹ 4	0.6 ^l 4	1959.61	$(1/2^+, 3/2, 5/2)$	989.88	5/2+								
973.23 10	12.9 10	1297.682	5/2+	324.682	5/2+								
979.65 21	4.2 9	1854.50	$(3/2^+, 5/2)$	874.71	3/2+								
983.5 ^J 2	1.9 8	1973.32	$(1/2^+, 3/2, 5/2)$	989.88	5/2+								
985.3 ^J 3 989.71 16	1.8 8 3.9 6	1927.98 989.88	(5/2 ⁺) 5/2 ⁺	943.11 0.0	(3/2 ⁺ ,5/2) 5/2 ⁺								

From ENSDF

 ${}^{151}_{61}\mathrm{Pm}_{90}$ -17

151 Nd β^- decay (12.44 min) 1985GIZY,1985Ii01,1989Ii01 (continued)											
	$\gamma(^{151}\text{Pm})$ (continued)										
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger j}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Comments					
994.64 <i>10</i> 999.5 <i>3</i> 1003.24 <i>13</i> ^x 1008.6 ^g <i>10</i>	4.2 <i>3</i> 1.9 8 4.7 7 2.9 6	1741.25 1897.4 1873.63	$(1/2^+, 3/2, 5/2^+) (3/2^+, 5/2^+) (5/2)^+$	746.552 897.63 870.58	$(3/2^{-}) (3/2,5/2) (5/2^{+},7/2^{-})$						
1010.8 ^{<i>f</i>} 3 1012.7 ^{<i>c</i>} 1016.40 3 1021.05 ^{<i>l</i>}	1.5 <i>10</i> 0.8 5 188 4 2 ^{<i>l</i>} 1	1010.71 1853.70 1133.214 1873.63	$(5/2)^+$ $(5/2^+)$ $(5/2)^+$	0.0 840.966 116.794 852.994	5/2 ⁺ (3/2) ⁺ 5/2 ⁻ 5/2 ⁽⁺⁾	Mult.: $(1016\gamma)(117\gamma)(\theta)$ consistent with E1.					
1021.05 ^{<i>l</i>} 11 1029.05 20 1030.5 ^{<i>c</i>}	5 ¹ 1 2.7 6 1 1	1892.05 2018.87 1927.98	$(5/2)^+$ $(1/2^+, 3/2, 5/2^+)$ $(5/2^+)$	870.58 989.88 897.63	$(5/2^+, 7/2^-)$ $5/2^+$ (3/2, 5/2)	E_{γ} : level energy difference=1021.47.					
$1032.4^{l} 2$ $1032.4^{l} 2$ 1035.4^{c} $1036.16 7$	$2^{l} 1$ $3^{l} 1$ 1.0 5 13.4 7	1873.63 1903.18 1933.10 1809.80	$(5/2)^+$ $(5/2)^+$ $(1/2^+, 3/2, 5/2)$ $(3/2, 5/2)^+$	840.966 870.58 897.63 773.599	$(3/2)^+$ $(5/2^+,7/2^-)$ (3/2,5/2) $(1/2,3/2,5/2^+)$						
1040.4 ^{<i>f</i>} 2 1041.91 8 1044.3 ^{<i>c</i>} 1045.0 ^{<i>c</i>}	4.9 8 24 <i>1</i> 0.4 2 0.6 4	1617.82 1297.682 1897.4 1854.50	(3/2,5/2) $5/2^+$ $(3/2^+,5/2^+)$ $(3/2^+,5/2)$	577.402 255.692 852.994 809.46	$(5/2)^{-}$ $3/2^{+}$ $5/2^{(+)}$ $(5/2^{+}, 7/2^{-})$						
$\begin{array}{c} 1048.11 \ 5 \\ 1049.5^{f} \ 2 \\ 1051.0^{f} \ 5 \end{array}$	46 2 6 1 2 1	1133.214 1589.91 1892.05	$(5/2^+)$ $(3/2^-, 5/2)$ $(5/2)^+$	85.119 540.372 840.966	$7/2^+$ $3/2^-$ $(3/2)^+$						
$1057.8 \ 5$ $1064.0 \ 2$ $1066.57^{l} \ 6$ $1066.57^{l} \ 6$	$\begin{array}{c} 0.8 \ 5 \\ 4.2 \ 5 \\ 12^{l} \ 7 \\ 2^{l} \ l \end{array}$	1910.68 1873.63 1183.27	$(3/2^+, 5/2^+)$ $(5/2)^+$ $(3/2, 5/2)^+$ 1/2, 2/2, 5/2	852.994 809.46 116.794	$5/2^{(+)}$ ($5/2^+, 7/2^-$) $5/2^-$ ($5/2, 7/2^-$)						
1066.5766 1070.03 13 1073.1 1 1074.0^{f} 5	2° 1 4.8 6 8.1 7 3.0 15	1822.17 1394.77 1072.91 1651.52	$(3/2^{-})$ $(3/2^{+})$ $(3/2^{+}, 5/2)$	755.569 324.682 0.0 577.402	(5/2, 7/2) $5/2^+$ $(5/2)^-$						
$1077.12 \ 10$ 1079.5° $1080.09^{\circ} 5$	8.9 8 1.0 5 16 ¹ 1	1617.82 2022.4 1853.70	(3/2, 3/2) (3/2, 5/2) $(3/2^+, 5/2)$ $(5/2)^+$	540.372 943.11 773.599	$(3/2)^{-}$ $(3/2^{+}, 5/2)$ $(1/2, 3/2, 5/2^{+})$						
$ \begin{array}{r} 1080.09^{l} \ 5 \\ 1082.7^{f} \ 5 \\ 1084.0 \ 3 \\ 1092.0 \ 2 \\ 1099.95 \ 13 \\ \\ x1406 \ 0^{f} \ 2 \end{array} $	2 ^{<i>l</i>} <i>1</i> 2 <i>1</i> 1.9 5 2.3 5 7.3 10	1933.10 1892.05 1200.97 1933.10 1355.81	$(1/2^+, 3/2, 5/2) (5/2)^+ (3/2^+, 5/2) (1/2^+, 3/2, 5/2)$	852.994 809.46 116.794 840.966 255.692	$5/2^{(+)}$ $(5/2^+,7/2^-)$ $5/2^-$ $(3/2)^+$ $3/2^+$						
1100.07 2 1107.16 5 1111.0 4	1.0 13 32 1 1.4 5	1853.70 1651.52	$(5/2)^+$ $(3/2^+, 5/2)$	746.552 540.372	(3/2 ⁻) 3/2 ⁻						

From ENSDF

Т

			151 Nd β^-	decay (12.4	4 min) 19	85GIZY,1985Ii
					γ (¹⁵¹ Pn	n) (continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger j}$	E _i (level)	${ m J}^{\pi}_i$	E_f	${ m J}_f^\pi$	Mult. [@]
1115.4 3	4.1 7	1639.63	$(1/2^+, 3/2, 5/2^+)$	524.339	$(3/2)^+$	
1118.2 ¹ 3	4.0^{l} 7	1873.63	$(5/2)^+$	755.569	$(5/2,7/2^{-})$	
1118.2 ¹ 3	111	2015.93	(3/2.5/2)	897.63	(3/2.5/2)	
1122.63 3	307 6	1297.682	5/2+	175.075	7/2-	
1123.5 ^{<i>f</i>} 5	2 1	1998.25	$(5/2)^+$	874.71	$3/2^{+}$	
1125.4 ^{<i>f</i>} 5	2 1	2023.15	(5/2)	897.63	(3/2,5/2)	
1127.11 7	14 <i>1</i>	1873.63	$(5/2)^+$	746.552	$(3/2^{-})$	
1128.7 <mark>5</mark> 4	0.8 3	2304.01	$1/2^+, 3/2^+, 5/2^+$	1175.60		
1131.6 ^{<i>f</i>} 2	4.3 12	1639.63	$(1/2^+, 3/2, 5/2^+)$	507.885	$5/2^{+}$	
^x 1132.55 <i>10</i>	6.9 12					
1136.58 8	13.6 7	1892.05	$(5/2)^+$	755.569	$(5/2,7/2^{-})$	
1139.0 ^{<i>f</i>} 2	4.2 6	1394.77	(3/2-)	255.692	3/2+	
1145.5 2	41	1892.05	$(5/2)^+$	746.552	$(3/2^{-})$	
1145.9 <i>I</i>	51	1998.25	(5/2)	852.30	1/2	
1147.8 5	1.0 5	1903.18	$(5/2)^+$	755.569	$(5/2, 7/2^{-})$	
1151.8 5	3.37	2022.4	(3/2, 3/2)	070.30	(3/2, 1/2)	
1156.90 15	8.4° 20	1903.18	$(5/2)^+$	/46.552	(3/2)	
1156.90	5° 2 3 9 8	1998.25	$(3/2)^{+}$ $(1/2^{+} 3/2 5/2)$	840.966 773 500	$(3/2)^{+}$ $(1/2)^{-}3/2)^{-}5/2^{+}$	-)
1165 5 ^C	073	2018 87	$(1/2^+, 3/2, 5/2^+)$	852 994	(1/2, 3/2, 3/2) $5/2^{(+)}$)
1169.2 5	17 1	1424.57	$(1/2^{-}, 3/2, 3/2^{-})$ $(5/2^{-})$	255.692	$3/2^+$	
1172.53 ^h 13	8.0 6	1927.98	$(5/2^+)$	755.569	$(5/2,7/2^{-})$	
1174.9 ^{<i>f</i>} <i>I</i>	2.6 7	2015.93	(3/2.5/2)	840.966	$(3/2)^+$	
1177.7^{f} 5	2.3.12	2018.87	$(1/2^+, 3/2, 5/2^+)$	840.966	$(3/2)^+$	
1180 89 2	1000 20	1297 682	5/2 ⁺	116 794	5/2-	&
1184.2f 3	7 1	1993.81	$(5/2)^+$	809.46	$(5/2^+ 7/2^-)$	
1186.0 ^C	2.0 5	1959.61	$(1/2^+, 3/2, 5/2)$	773.599	$(1/2,3/2,5/2^{+})$	-)
1186.7 ^e 2	5.6 4	1933.10	$(1/2^+, 3/2, 5/2)$	746.552	$(3/2^{-})$,
1189.24 9	20 1	1444.98	$(5/2^+)$	255.692	3/2+	
1191.1 ^{<i>f</i>} 4	2.9 8	1618.42	$(3/2^+, 5/2^+)$	427.150	$(7/2)^+$	
1201.03 ¹ 6	12.7 ¹ 10	1741.25	$(1/2^+, 3/2, 5/2^+)$	540.372	3/2-	
1201.03 ^l	2^{l} 1	2010.99	$(5/2)^+$	809.46	$(5/2^+, 7/2^-)$	
1206.6 [°]	0.4 2	2015.93	(3/2,5/2)	809.46	$(5/2^+, 7/2^-)$	
1213.18 ¹	1.5 ¹ 10	1297.682	5/2+	85.119	$7/2^{+}$	
1213.18 ¹ 8	6.4 ¹ 5	1959.61	(1/2+,3/2,5/2)	746.552	$(3/2^{-})$	
1217.71 14	4.5 6	1795.13	(3/2,5/2)	577.402	(5/2)-	
1224.45 15	2.4 5	1998.25	$(5/2)^{+}$	773.599	$(1/2,3/2,5/2^{+})^{-}$)
1232.0 I	0.00	1009.00	$(3/2,3/2)^{-1}$	J11.402	(3/2)	
1234.1 ⁷ 3	1.0.5	1989./1	(3/2, 3/2)	/33.369	(3/2, 1/2)	

$\gamma(^{151}\text{Pm})$	(continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger j}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}
1238.35 8	3.7 5	1993.81	$(5/2)^+$	755.569	(5/2,7/2 ⁻)
1251.60 15	3.8 5	1998.25	$(5/2)^+$	746.552	$(3/2^{-})$
1255.4 2	3.1 5	2010.99	$(5/2)^+$	755.569	$(5/2,7/2^{-})$
1260.86 27	1.3 3	2015.93	(3/2, 5/2)	755.569	$(5/2,7/2^{-})$
1264.3 2	1.5 5	2010.99	$(5/2)^{1}$ (1/2) 2/2) 5/2)	755 560	(3/2) $(5/2)^{-1}$
1208.52	4.1	2024.01	(1/2, 3/2, 3/2)	135.309	(3/2, 1/2)
1269.67 2	5.1 <i>14</i> 4.8 <i>13</i>	1444.98	$(5/2^+)$ (3/2,5/2)	1/5.0/5	$(3/2)^+$
1271.3f 5	2	1848 57	(5/2)	577 402	$(5/2)^{-}$
1276.9.3	195	1854 50	(3/2) (3/2+5/2)	577 402	$(5/2)^{-}$
1282.2 4	1.6.5	2038.05	(1/2,3/2,5/2)	755.569	$(5/2,7/2^{-})$
1285.63 16	12.3 11	1809.80	$(3/2,5/2)^+$	524.339	$(3/2)^+$
1287.2 <i>1</i>	8 1	1795.13	(3/2, 5/2)	507.885	5/2+
1293.61 5	23 1	1618.42	$(3/2^+, 5/2^+)$	324.682	5/2+
1296.4 ^{<i>f</i>} 2	4.2 6	1873.63	$(5/2)^+$	577.402	$(5/2)^{-}$
1297.61 5	15 <i>I</i>	1297.682	5/2+	0.0	5/2+
1308.5 ^{<i>f</i>} 4	1.8 4	1848.57	(5/2)	540.372	3/2-
1314.2 ¹ 2	12 ¹ 2	1854.50	$(3/2^+, 5/2)$	540.372	3/2-
1314.2 ¹ 5	7.0 ¹ 6	1892.05	$(5/2)^+$	577.402	$(5/2)^{-}$
1316.3 2	10 1	1848.57	(5/2)	532.057	$(7/2^{-})$
1325.9 <i>f</i> 3	2.4 6	1903.18	$(5/2)^+$	577.402	$(5/2)^{-}$
1328.22 8	19 2	1444.98	$(5/2^+)$	116.794	5/2-
1329.5 ^{<i>f</i>} 2	3.9 6	1853.70	$(5/2)^+$	524.339	$(3/2)^+$
1332.3 ^c	1.0 6	2106.86	(3/2,5/2)	773.599	$(1/2, 3/2, 5/2^+)$
1333.10 12	7.7 7	1873.63	$(5/2)^+$	540.372	3/2-
1338.4 <i>3</i>	2.2 10	1878.60	(5/2)	540.372	3/2-
1341.58 8	9.0 7	1873.63	$(5/2)^+$	532.057	$(7/2^{-})$
1346.55 ¹ 15	1.01 5	1854.50	$(3/2^+, 5/2)$	507.885	5/2+
1346.55 ¹ 15	1.7 ¹ 5	1878.60	(5/2)	532.057	$(7/2^{-})$
1349.3 5	1.8 7	1873.63	$(5/2)^+$	524.339	$(3/2)^+$
1350.4 ¹ 4	1.1 ¹ 6	1927.98	$(5/2^+)$	577.402	(5/2)-
1350.4 ¹ 5	0.8^{l} 6	2106.86	(3/2,5/2)	755.569	$(5/2,7/2^{-})$
1351.7 [°]	0.2 1	1892.05	$(5/2)^+$	540.372	3/2-
1357.0 ^c	0.5 2	1897.4	$(3/2^+, 5/2^+)$	540.372	3/2-
1359.94 ^d 9	9.9 6	1444.98	$(5/2^+)$	85.119	7/2+
1359.94 ^d 9	9.9 6	1892.05	$(5/2)^+$	532.057	$(7/2^{-})$
1362.78 4	23 1	1618.42	$(3/2^+, 5/2^+)$	255.692	3/2+
1366.1 ^c	1.1 3	1873.63	$(5/2)^+$	507.885	5/2+
1371.4 ^J 1	2.2 4	1903.18	$(5/2)^+$	532.057	$(7/2^{-})$
1379.12 ¹ 7	7.8 ¹ 5	1805.51	$(1/2^+, 3/2, 5/2^+)$	426.451	$1/2^{+}$

$\gamma(^{151}\text{Pm})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger j}$	E _i (level)	J_i^π	E_f	\mathbf{J}_{f}^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger j}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
1379.12 ^l	3.6 ¹ 6	1903.18	$(5/2)^+$	524.339	$(3/2)^+$	1617.94 6	25 2	1617.82	(3/2,5/2)	0.0	5/2+
1383 37 9	584	1809 80	$(3/2, 5/2)^+$	426 451	$1/2^{+}$	1618.6^{f} 2	2.1	1793 68	(5/2)	175 075	7/2-
1387.1 4	1.7 4	1562.1	$(3/2^{-}, 5/2^{+})$	175.075	$7/2^{-}$	1622.8 10	0.72	1878.60	(5/2)	255.692	$3/2^+$
1393.0.3	0.8 4	1933.10	$(1/2^+, 3/2, 5/2)$	540.372	$3/2^{-}$	1627.97 13	2.1 2	1713.10	$(3/2^+, 5/2)$	85.119	$7/2^+$
1395.0 3	7.4 13	1394.77	$(3/2^{-})$	0.0	$5/2^+$	1636.34 6	6.6 4	1892.05	$(5/2)^+$	255.692	$3/2^+$
^x 1408.3 2	0.7 2		(-1))		- 1	1639.79 13	1.5 1	1639.63	$(1/2^+, 3/2, 5/2^+)$	0.0	$5/2^{+}$
1414.9 <i>3</i>	0.7 2	1589.91	$(3/2^{-}, 5/2)$	175.075	$7/2^{-}$	^x 1642.7 <mark>8</mark> 3	1.0 1				,
1425.29 8	3.4 5	1933.10	$(1/2^+, 3/2, 5/2)$	507.885	$5/2^+$	1647.43 8	2.7 3	1903.18	$(5/2)^+$	255.692	$3/2^{+}$
1427.6 3	0.8 5	1854.50	$(3/2^+, 5/2)$	427.150	$(7/2)^+$	^x 1658.9 ^g 3	0.6 1				
^x 1434.4 ^g 5	1.4 2					^x 1664.6 3	0.6 2				
1439.0 ^C	0.9 6	2015.93	(3/2, 5/2)	577.402	$(5/2)^{-}$	1673.2 2	1.3 2	1848.57	(5/2)	175.075	$7/2^{-}$
^x 1442.4 ^g 10	1.3 <i>3</i>					1678.4 2	0.4 1	1853.70	$(5/2)^+$	175.075	$7/2^{-}$
1445.4 2	3.7 <i>3</i>	1444.98	$(5/2^+)$	0.0	$5/2^{+}$	1686.3 2	1.1 <i>1</i>	2010.99	$(5/2)^+$	324.682	$5/2^{+}$
1446.4 ^C	0.6 4	1873.63	$(5/2)^+$	427.150	$(7/2)^+$	1693.0 <i>3</i>	0.9 9	2119.09	$(1/2^+, 3/2, 5/2^+)$	426.451	$1/2^{+}$
1451.5 ^C	0.3 2	1878.60	(5/2)	427.150	$(7/2)^+$	1698.42 <i>14</i>	1.4 2	1873.63	$(5/2)^+$	175.075	$7/2^{-}$
1457.6 ^C	0.2 2	2204.30	$(1/2^+, 3/2^+, 5/2^+)$	746.552	$(3/2^{-})$	1703.65 ¹ 15	0.4 ¹ 2	1878.60	(5/2)	175.075	7/2-
1461.6 ^C	0.7 5	1993.81	$(5/2)^+$	532.057	$(7/2^{-})$	1703.65 ¹ 15	2.0^{l} 2	1959.61	$(1/2^+, 3/2, 5/2)$	255.692	$3/2^{+}$
1465.41 8	4.8 4	1973.32	$(1/2^+, 3/2, 5/2)$	507.885	$5/2^{+}$	1708.5 ^c	0.5 3	1793.68	(5/2)	85.119	$7/2^{+}$
1470.8 2	1.2 3	2010.99	$(5/2)^+$	540.372	$3/2^{-}$	^x 1711.2 2	1.8 2				
1473.6 ^f 3	1.5 3	1998.25	$(5/2)^+$	524.339	$(3/2)^+$	1716.92 7	8.2 4	1892.05	$(5/2)^+$	175.075	$7/2^{-}$
1475.78 9	5.0 7	1903.18	$(5/2)^+$	427.150	$(7/2)^+$	^x 1727.2 ^f 2	0.7 1				
1485.45 ¹ 7	15.0 ¹ 1	1741.25	$(1/2^+, 3/2, 5/2^+)$	255.692	$3/2^{+}$	1731.82 ^{<i>f</i>} 12	6.4 <i>3</i>	1848.57	(5/2)	116.794	$5/2^{-}$
1485.45 ¹	3.0 ¹ 1	1993.81	$(5/2)^+$	507.885	$5/2^{+}$	1737.75 15	1.2 2	1993.81	$(5/2)^+$	255.692	$3/2^{+}$
1490.93 18	0.7 2	2023.15	(5/2)	532.057	$(7/2^{-})$	1742.4 2	1.0 1	1998.25	$(5/2)^+$	255.692	$3/2^{+}$
1498.95 <i>15</i>	2.4 3	2023.15	(5/2)	524.339	$(3/2)^+$	1752.99 8	3.4 <i>3</i>	1927.98	$(5/2^+)$	175.075	7/2-
1501.8 2	2.4 3	1618.42	$(3/2^+, 5/2^+)$	116.794	$5/2^{-}$	1756.82 8	3.7 <i>3</i>	1873.63	$(5/2)^+$	116.794	$5/2^{-}$
1507.48 8	3.2 3	2084.92	(1/2, 3/2, 5/2)	577.402	$(5/2)^{-}$	1761.77 8	2.3 2	1878.60	(5/2)	116.794	$5/2^{-}$
1533.6 2	1.6 2	1618.42	$(3/2^+, 5/2^+)$	85.119	$7/2^{+}$	1767.45 15	0.7 1	2023.15	(5/2)	255.692	$3/2^{+}$
$x_{1540.0}^{f}$ 4	0.3 2					1775.26 6	18 <i>1</i>	1892.05	$(5/2)^+$	116.794	$5/2^{-}$
1548.9 ^ƒ 3	4 1	1873.63	$(5/2)^+$	324.682	$5/2^{+}$	1782.36 13	3.5 <i>3</i>	2038.05	(1/2, 3/2, 5/2)	255.692	$3/2^{+}$
1549.75 5	20 1	1805.51	$(1/2^+, 3/2, 5/2^+)$	255.692	$3/2^{+}$	1786.51 8	6.6 5	1903.18	$(5/2)^+$	116.794	$5/2^{-}$
1553.84 <i>13</i>	5.1 5	1878.60	(5/2)	324.682	$5/2^{+}$	1788.4 ^C	1.1 2	1873.63	$(5/2)^+$	85.119	$7/2^{+}$
^x 1559.8 ^f 6	0.6 3					1793.84 9	3.0 2	1910.68	$(3/2^+, 5/2^+)$	116.794	$5/2^{-}$
1566.41 10	6.8 5	1651.52	$(3/2^+, 5/2)$	85.119	$7/2^{+}$	1795.1 ^{<i>f</i>} 4	0.8 2	1795.13	(3/2, 5/2)	0.0	$5/2^{+}$
1571.84 7	7.4 5	1998.25	$(5/2)^+$	426.451	$1/2^{+}$	1797.4 ^C	0.3 1	2053.10	$(5/2^+)$	255.692	3/2+
1578.36 6	12.1 6	1903.18	$(5/2)^+$	324.682	$5/2^{+}$	1800.9 ^{<i>f</i>} 4	0.2 1	1998.25	$(5/2)^+$	197.272	$9/2^{+}$
1584.6 2	0.7 2	2010.99	$(5/2)^+$	426.451	$1/2^{+}$	1807.00 9	4.7 3	1892.05	$(5/2)^+$	85.119	$7/2^{+}$
1585.8 4	0.3 2	1910.68	$(3/2^+, 5/2^+)$	324.682	$5/2^{+}$	1810.9 <i>1</i>	6.0 4	1927.98	$(5/2^+)$	116.794	$5/2^{-}$
1592.5 2	1.6 2	2018.87	$(1/2^+, 3/2, 5/2^+)$	426.451	$1/2^{+}$	1818.74 8	4.3 <i>3</i>	1993.81	$(5/2)^+$	175.075	$7/2^{-}$
1598.04 7	6.9 5	1853.70	$(5/2)^+$	255.692	$3/2^{+}$	1825.4 ^C	0.2 1	1910.68	$(3/2^+, 5/2^+)$	85.119	$7/2^{+}$
1611.5 ^f 3	0.3 2	2119.09	$(1/2^+, 3/2, 5/2^+)$	507.885	5/2+	1829.4 2	0.6 1	2084.92	(1/2,3/2,5/2)	255.692	$3/2^{+}$

21

-	-									
$\gamma(^{151}\text{Pm})$ (continued)										
E_f	\mathbf{J}_f^{π}	E_{γ}^{\dagger}	Ι _γ ‡ <i>j</i>	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}			
175.075	$7/2^{-}$	2010.92 15	0.8 1	2010.99	$(5/2)^+$	0.0	$5/2^{+}$			
0.0	$5/2^+$	2018.85 5	3.5 <i>3</i>	2018.87	$(1/2^+, 3/2, 5/2^+)$	0.0	5/2+			
0.0	$5/2^{+}$	2023.16 18	0.7 1	2023.15	(5/2)	0.0	$5/2^{+}$			
197.272	9/2+	2038.1 ^{<i>f</i>} 3	0.2 1	2038.05	(1/2,3/2,5/2)	0.0	5/2+			
255.692	$3/2^{+}$	2053.1 ^{<i>f</i>} 3	0.2 1	2053.10	$(5/2^+)$	0.0	5/2+			
116.794	5/2-	^x 2062.5 ^f 3	0.1 <i>1</i>							
426.451	$1/2^{+}$	2093.5 ^f 3	0.2 1	2268.59	$(5/2^+)$	175.075	$7/2^{-}$			
0.0	5/2+	2106.96 15	0.5 1	2106.86	(3/2,5/2)	0.0	5/2+			
	$\frac{E_f}{175.075} \\ 0.0 \\ 0.0 \\ 197.272 \\ 255.692 \\ 116.794 \\ 426.451 \\ 0.0 \\ \end{array}$	$\begin{array}{c c} {\rm E}_f & {\rm J}_f^{\pi} \\ \hline 175.075 & {7/2^-} \\ 0.0 & {5/2^+} \\ 0.0 & {5/2^+} \\ 197.272 & {9/2^+} \\ 255.692 & {3/2^+} \\ 116.794 & {5/2^-} \\ 426.451 & {1/2^+} \\ 0.0 & {5/2^+} \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			

0.0

0.0

0.0

0.0

 $5/2^{+}$

 $5/2^+$

 $5/2^{+}$

 $5/2^{+}$

 151 Nd β^- decay (12.44 min) 1985GIZY,1985Ii01,1989Ii01 (continued)

1863.37 8	3.3 <i>3</i>	2119.09	$(1/2^+, 3/2, 5/2^+)$	255.692	$3/2^{+}$	2053.1 ^{<i>f</i>} 3	0.2 1	2053.10	$(5/2^+)$
1873.1 2	1.1 <i>I</i>	1989.71	(3/2,5/2)	116.794	$5/2^{-}$	$x_{2062.5}f_{3}$	0.1 1		
1877.6 ^f 2	1.1 <i>1</i>	2304.01	$1/2^+, 3/2^+, 5/2^+$	426.451	$1/2^{+}$	2093.5 ^f 3	0.2 1	2268.59	$(5/2^+)$
1892.15 6	12.7 7	1892.05	$(5/2)^+$	0.0	$5/2^{+}$	2106.96 15	0.5 1	2106.86	(3/2,5/2)
1894.0 ^{<i>f</i>} 2	1.9 <i>3</i>	2010.99	$(5/2)^+$	116.794	$5/2^{-}$	^x 2113.4 ^f 4	0.1 1		
1903.35 14	0.9 1	1903.18	$(5/2)^+$	0.0	$5/2^{+}$	2118.94 18	0.5 1	2119.09	$(1/2^+, 3/2, 5/2^+)$
1908.6 2	2.5 2	1993.81	$(5/2)^+$	85.119	$7/2^{+}$	^x 2124.7 ^f 4	0.1 1		
1925.97 9	2.7 3	2010.99	$(5/2)^+$	85.119	7/2+	^x 2135.3 ^f 4	0.1 1		
^x 1932.5 2	1.7 2					^x 2153.8 ^f 3	0.3 1		
1938.0 ^C	0.2 1	2023.15	(5/2)	85.119	$7/2^{+}$	^x 2186.2 ^f 4	0.2 1		
^x 1950.3 ^g 6	0.4 1					2204.2 ^{<i>f</i>} 2	0.3 1	2204.30	$(1/2^+, 3/2^+, 5/2^+)$
1973.3 <i>3</i>	0.3 1	1973.32	$(1/2^+, 3/2, 5/2)$	0.0	$5/2^{+}$	^x 2227.4 ^f 4	0.1 1		
x1980.2 2	0.4 1					^x 2234.6 ^f 4	0.1 1		
1989.3 ^C	0.2 1	2106.86	(3/2,5/2)	116.794	5/2-	x2254.90 12	0.8 1		
1993.8 <i>3</i>	0.4 1	1993.81	$(5/2)^+$	0.0	$5/2^{+}$	2268.5 ^{<i>f</i>} 4	0.1 1	2268.59	$(5/2^+)$
1998.1 <i>f</i> 3	0.3 1	1998.25	$(5/2)^+$	0.0	$5/2^{+}$	2303.8 ^f 4	0.1 1	2304.01	$1/2^+, 3/2^+, 5/2^+$

[†] Weighted average of 1985GIZY and 1977Se06 or 1985Ii01 wherever possible. The agreement between the two sets is excellent, except for close multiplets where 1985GIZY seems to have marginally better resolution. There are very few unplaced γ 's, and only a few of these are reported by both groups. For multiply placed transitions energy is given for the composite peak. Uncertainties for weaker members of unresolved lines are not given. These are expected to be \approx 0.5 keV. [‡] From 1985GIZY unless otherwise indicated. 1985GIZY use $\gamma\gamma$ data to assign I γ to weak transitions and components of unresolved multiplets.

From $\gamma\gamma(\theta)$, unless stated otherwise.

[@] From ce data. ce data from 1969BoZG combined with γ data of 1985GIZY by the evaluator, using the E1 116.8 γ for normalization. $\alpha(\exp)$ for 117 γ have been established by 1969BoZG, 1969Vo09, 1971Na25, using Si(Li) ce spectrometers calibrated with transitions of known multipolarity in other nuclei. For weak but placed γ 's, 1969BoZG derive $\alpha(\exp)$'s from the β ce spectra, using β detection efficiencies derived from the level scheme. The estimated uncertainty for the efficiency factor is $\approx 10\%$. The evaluator has used this approach to estimate $\alpha(\exp)$'s for γ 's unplaced by 1969BoZG. Where no such data exists, mult consistent with ΔJ^{π} has been assigned to calculate α . Contributions to the electron intensities from neighboring (unresolved) γ rays have been subtracted based on assumed multipolarities suggested by ΔJ^{π} .

[&] $(1181\gamma)(117\gamma)(\theta)$ consistent with E1.

0.3 2

 I_{γ} [‡]*j*

0.7 1

1.2 *I*

0.9 1

0.7 3

E_i(level)

2010.99

1848.57

1854.50

2053.10

 E_{γ}

1835.99 14

1848.55 10

1854.55 15

1855.8^{*f*} 4

 $x_{2009.0}^{f} 4$

^{*a*} From 1977Se06. E γ and I γ deduced after subtracting contaminant component.

^b 1985GIZY quote 206.69.

^c Observed by 1985GIZY only in $\gamma\gamma$. Uncertainty is ≈ 0.5 keV.

From ENSDF

$\gamma(^{151}\text{Pm})$ (continued)

- ^d Assigned to 1445 level by 1985Ii01, presumably from 1360γ -85 γ coincidences. Assigned to 1892 level by 1985GIZY, presumably from 1360γ -357 γ -175 γ coincidences. The evaluator has not attempted to divide I γ between the two locations.
- ^{*e*} Masked by 1180.89 γ in spectra of 1985Ii01.
- ^{*f*} Observed only by 1985GIZY.
- ^g Observed only by 1977Se06 or 1985Ii01.
- ^h Reported only by 1985GIZY but peak present in spectra of 1977Se06 or 1985Ii01.
- ^{*i*} α (K)exp for unresolved 238.63 + 239.60 doublet is consistent with E1 for 238.6 and M1 for 239.60 or with both transitions being M1+E2. Δ J^{π} requires E1 for 238.63 γ .
- ^j For absolute intensity per 100 decays, multiply by 0.0133 8.
- ^k Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ¹ Multiply placed with intensity suitably divided.
- $x \gamma$ ray not placed in level scheme.

¹⁵¹₆₁Pm₉₀

¹⁵¹₆₁Pm₉₀

29

¹⁵¹₆₁Pm₉₀

151 Nd β^- decay (12.44 min) 1985GIZY,1985Ii01,1989Ii01

¹⁵¹₆₁Pm₉₀

151 Nd β^- decay (12.44 min) _____1985GIZY,1985Ii01,1989Ii01

