|                 |              | History           |                        |
|-----------------|--------------|-------------------|------------------------|
| Туре            | Author       | Citation          | Literature Cutoff Date |
| Full Evaluation | Balraj Singh | NDS 110, 1 (2009) | 20-Nov-2008            |

 $Q(\beta^{-})=2443$  4; S(n)=5334.55 10; S(p)=9931 9;  $Q(\alpha)=-1354$  9 2017Wa10

S(2n)=12710.2 10; S(2p)=18851 9 2017Wa10

Additional information 1. Other reaction: <sup>150</sup>Nd(n,n) E=res (1968Ka28,1969Al09). Neutron transmission and  $\gamma$  yields measured for neutron energies up to 10 keV and resonances in  $^{151}$ Nd determined. Neutron widths determined for all resonances and  $\gamma$  partial widths for some. The  $\Gamma$ data are available for 16 strong resonances. Other: 1971Te04 (E<31 keV).

Theoretical references: 1983Ri10, 1981Be59, 1980Cw03, 1968Ma15.

Additional information 2. See  ${}^{150}Nd(n,\gamma)$ ,(n,n):resonances dataset for 79 neutron resonances in the energy region: 78 eV to 13.9 keV.

A В С

## <sup>151</sup>Nd Levels

#### Cross Reference (XREF) Flags

| <sup>151</sup> Pr $\beta^{-}$ decay (18.90 s) | D | $^{150}$ Nd(d,p $\gamma$ ) |
|-----------------------------------------------|---|----------------------------|
| $^{150}$ Nd(n, $\gamma$ ) E=th                | Е | <sup>252</sup> Cf SF decay |
| <sup>150</sup> Nd(d,p)                        |   |                            |

| E(level) <sup>†</sup>                             | $J^{\pi \ddagger}$                | T <sub>1/2</sub> | XREF         | Comments                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------|-----------------------------------|------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0 <sup>b</sup>                                  | 3/2+                              | 12.44 min 7      | ABCD         | $%β^-=100$<br>T <sub>1/2</sub> : from 1966ZgZZ. Others: 12 min (1950Ma05), 12 min <i>I</i> (1952Ru10), 17 min <i>5</i> (1958Wi42), 1965Fo08, 1960Wi10, 1959Sc39. J <sup>π</sup> : log <i>ft</i> =5.4 to 5/2 <sup>+</sup> and log <i>ft</i> =7.2 to 1/2 <sup>+</sup> .                                                      |
| 22.4506 <sup>b</sup> 10<br>57.6741 <sup>c</sup> 4 | $(5/2)^+$<br>$(3/2)^-$            |                  | ABCD<br>ABCD | $J^{\pi}$ : L(d,p)=2 and M1+E2 $\gamma$ to 3/2 <sup>+</sup> . Nilsson model favors 5/2.<br>$J^{\pi}$ : E1 $\gamma$ to 3/2 <sup>+</sup> , $\gamma$ to (5/2) <sup>+</sup> and primary $\gamma$ from 1/2 <sup>+</sup> .                                                                                                       |
| 75.857 <sup>b</sup> 4                             | $(7/2)^+$                         |                  | ΒD           | $J^{\pi}$ : M1(+E2) $\gamma$ to (5/2) <sup>+</sup> and probable member of g.s. band.                                                                                                                                                                                                                                       |
| $95.9^{b}$ 10<br>0.0+x                            | $(9/2^+)$<br>$(9/2^+)$            |                  | C<br>E       | $J^{\pi}$ : probable 9/2 <sup>+</sup> member of g.s. band.<br>E(level): x $\approx$ 96 if this level corresponds to 95.9. (9/2 <sup>+</sup> ) level reported in (d.p.)                                                                                                                                                     |
| 105.7524 <sup>°</sup> 8                           | 5/2-                              |                  | ABCD         | XREF: C(107.5).<br>$J^{\pi}$ : L(d.p)=3 and E1 $\gamma$ to 3/2 <sup>+</sup> .                                                                                                                                                                                                                                              |
| 177.714 <sup>c</sup> 2                            | (7/2 <sup>-</sup> )               |                  | ABCD         | XREF: A(177.78)C(174.0).<br>$J^{\pi}$ : $\gamma$ from (9/2 <sup>-</sup> ), $\gamma$ to (5/2) <sup>+</sup> and probable $\gamma$ to (5/2) <sup>-</sup> suggest 5/2 <sup>-</sup> , 7/2 but 7/2 <sup>-</sup> favored by probable assignment to 3/2[532] band.                                                                 |
| 189.054 <sup><i>d</i></sup> 1                     | (3/2)-                            | <0.7 ns          | ABCD         | $J^{\pi}$ : L(d,p)=1 and E1 $\gamma$ to 3/2 <sup>+</sup> .<br>T <sub>1/2</sub> : from $\gamma\gamma(t)$ in (d,p $\gamma$ ).                                                                                                                                                                                                |
| 149.4+x <sup>h</sup>                              | (13/2 <sup>+</sup> ) <sup>a</sup> |                  | E            | E(level): this level may correspond to 258.9, $(9/2^+)$ level reported in (d,p), but energy difference between $13/2^+$ and $9/2^+$ does not match $149.4\gamma$ reported by 1996Ba34. In neighboring N=91 nuclides, $13/2^+$ bandhead is at 214 ( <sup>155</sup> Gd), 239 ( <sup>157</sup> Dy), 226 ( <sup>159</sup> Er). |
| 249.568 <sup>d</sup> 2                            | $(5/2)^{-}$                       |                  | AB D         | $J^{\pi}$ : E1 $\gamma$ to $3/2^+$ ; $\gamma'$ s to $(3/2)^-$ and $(7/2)^+$ . $\gamma$ from $(9/2^-)$ .                                                                                                                                                                                                                    |
| 258.9 <mark>b</mark> 10                           | $(13/2^+)$                        |                  | С            | $J^{\pi}$ : L(d,p)=(6) and probable member of g.s. band.                                                                                                                                                                                                                                                                   |
| 335.72 <sup><i>d</i></sup> 4<br>404.8 10          | $(7/2)^{-}$                       |                  | BCD<br>C     | $J^{\pi}$ : L(d,p)=3 and probable member of 3/2[521] band.                                                                                                                                                                                                                                                                 |
| $443.62^{d}$ 11                                   | $(9/2)^{-}$                       |                  | CD           | $J^{\pi}$ : L(d,p)=5 and possible 194-250 cascade to 3/2 <sup>+</sup> .                                                                                                                                                                                                                                                    |
| $495.305^{e} 4$<br>$506.953^{e} 5$                | $(1/2)^{-}$<br>$(3/2)^{-}$        |                  | ABCD<br>ABCD | $J^{\pi}$ : E1 $\gamma$ to 3/2 <sup>+</sup> ; M1,E2 $\gamma$ to (3/2) <sup>-</sup> ; L(d,p)=(1) and probable bandhead.<br>$J^{\pi}$ : L(d,p)=1; E1 $\gamma$ to (5/2) <sup>+</sup> ; M1,E2 $\gamma$ to 5/2 <sup>-</sup> .                                                                                                   |
| 531.85 <sup><i>f</i></sup> 4                      | $(5/2^-, 7/2^-)$                  |                  | ABCD         | J <sup><math>\pi</math></sup> : L(d,p)=(3). Possibly the 5/2[523] bandhead. The $\gamma$ -ray data between                                                                                                                                                                                                                 |

# <sup>151</sup>Nd Levels (continued)

| E(level) <sup>†</sup>         | $J^{\pi \ddagger}$                | XREF    | Comments                                                                                                                                                                                  |
|-------------------------------|-----------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                                   |         | different reactions are discrepant. It is possible that two different levels are populated                                                                                                |
|                               |                                   |         | near this energy.                                                                                                                                                                         |
| 542.80 <sup>e</sup> 2         | $(1/2 \text{ to } 7/2)^+$         | ABCD    | $J^{\pi}$ : M1,E2 $\gamma$ to 3/2 <sup>+</sup> . L(d,p)=(3) is inconsistent.                                                                                                              |
| 581.0 2                       | (5/2+)                            | ABC     | $J^{\pi}$ : $\gamma$ to $(3/2)^{-}$ suggests 1/2, 3/2, 5/2, 7/2 <sup>-</sup> .                                                                                                            |
| 599.22 /                      | (5/21)                            | ABCD    | XREF: C(596.4).<br>$I^{\pi_{+}}$ primary $\gamma$ from $1/2^{+}$ and $\gamma'$ s to $(7/2^{+})$ and $(7/2^{-})$                                                                           |
| 622.53 f 4                    | 5/2-7/2-                          | BC      | XREF C(624.1)                                                                                                                                                                             |
| 022.33                        | 5/2 ,//2                          | 20      | $J^{\pi}$ : L=3 in (d,p). Possibly the 7/2 <sup>-</sup> member of 5/2[523] band.                                                                                                          |
| 626.68 10                     | $(1/2 \text{ to } 7/2)^+$         | Α       | $J^{\pi}$ : M1,E2 $\gamma$ to 3/2 <sup>+</sup> .                                                                                                                                          |
| 634.8 <sup>e</sup> 15         | 5/2-,7/2-                         | С       | $J^{\pi}$ : L(d,p)=3. Possibly the 7/2 <sup>-</sup> member of the 1/2[530] band.                                                                                                          |
| 673.90? <i>3</i>              | 1/2,3/2,5/2+                      | В       |                                                                                                                                                                                           |
| 685.30 6                      | $(3/2, 5/2)^+$                    | A       | $J^{\pi}$ : M1,E2 $\gamma'$ s to $3/2^+$ and $(5/2)^+$ ; $\gamma'$ s to $(3/2)^-$ and $5/2^-$ .                                                                                           |
| 703?# 3                       |                                   | С       |                                                                                                                                                                                           |
| 725?# 3                       |                                   | С       |                                                                                                                                                                                           |
| 736.30 2                      | $(5/2,7/2^{-})$                   | BC      | XREF: C(733).                                                                                                                                                                             |
| 752 1 15                      |                                   | C       | $J''$ : $\gamma$ 's to $(3/2)$ and $(5/2)$ '. Absence of primary $\gamma$ from $1/2$ ' favors $5/2$ , $1/2$ .                                                                             |
| 752.4 15                      |                                   | C       |                                                                                                                                                                                           |
| /66?" 3                       |                                   | C       |                                                                                                                                                                                           |
| $684.4 + x^{n}$               | $(21/2^+)^{tr}$                   | E       |                                                                                                                                                                                           |
| 840.03° 2<br>877.22.0         | 1/2, $3/2(1/2^{-} 3/2 5/2)$       | ABCD    | J <sup>*</sup> : L(d,p)=1. Probable $\gamma$ to (//2) distavors 1/2.                                                                                                                      |
| 880 10 3                      | (1/2, 3/2, 3/2)<br>$(1/2, 3/2)^+$ | A<br>AR | J. $\gamma$ s to $3/2$ , $(3/2)^{-1}$ and $3/2^{-1}$ .<br>$I^{\pi_{1}}$ primary $\gamma$ from $1/2^{+1}$ : M1 F2 $\gamma$ to $3/2^{+1}$ : F1 $\gamma$ 's to $(3/2)^{-1}$ and $(1/2)^{-1}$ |
| 892.97 <mark>8</mark> 3       | $1/2^{-}.3/2^{-}$                 | ABCD    | XREF: A(?).                                                                                                                                                                               |
|                               | -1- ,-1-                          |         | $J^{\pi}$ : L(d,p)=1.                                                                                                                                                                     |
| 942.57 10                     | (1/2,3/2,5/2)                     | AC      | $J^{\pi}$ : $\gamma$ 's to $3/2^+$ and $(3/2)^-$ .                                                                                                                                        |
| 949.34 8                      | $(1/2^{-}, 3/2, 5/2^{+})$         | ABCD    | XREF: C(951).                                                                                                                                                                             |
|                               |                                   |         | $J^{\pi}$ : primary $\gamma$ from $1/2^+$ and $\gamma$ to $5/2^-$ .                                                                                                                       |
| 964.09 8                      | 1/2,3/2,5/2+                      | BC      |                                                                                                                                                                                           |
| 986.0? <sup><b>x</b></sup> 15 | 1/2,3/2,5/2+                      | В       |                                                                                                                                                                                           |
| 995.9 20                      | 5/0- 7/0-                         | C       |                                                                                                                                                                                           |
| 1034.0 20                     | 5/2 ,1/2                          | D<br>D  | $J^{*}: L(a,p)=3.$                                                                                                                                                                        |
| 1079? 7                       |                                   | с<br>С  |                                                                                                                                                                                           |
| 1104.1 2                      |                                   | A       | $J^{\pi}$ : $\gamma$ to $3/2^+$ suggests $1/2$ , $3/2$ , $5/2$ , $7/2^+$ .                                                                                                                |
| 1110.0 15                     |                                   | С       |                                                                                                                                                                                           |
| 1130.68? 7                    | 1/2,3/2,5/2+ @                    | В       |                                                                                                                                                                                           |
| 1150.70 6                     | 1/2,3/2,5/2+@                     | BC      | XREF: C(1155).                                                                                                                                                                            |
| 1068.2+x <sup>h</sup>         | $(25/2^+)^a$                      | Е       |                                                                                                                                                                                           |
| 1183.96? <sup>&amp;</sup> 14  | 1/2,3/2,5/2+@                     | AB      | XREF: A(?).                                                                                                                                                                               |
| 1212.17? 9                    | 1/2.3/2.5/2+@                     | AB      | XREF: A(?)                                                                                                                                                                                |
| 1220 3 3                      | $1/2, 3/2, 5/2^+$ @               | BC      |                                                                                                                                                                                           |
| 1229.84 15                    | (1/2,3/2,5/2)                     | A       | $J^{\pi}$ : $\gamma'$ s to $3/2^+$ and $(3/2)^-$ .                                                                                                                                        |
| 1256.48 6                     |                                   | В       |                                                                                                                                                                                           |
| 1380? <sup>#</sup> 4          |                                   | С       |                                                                                                                                                                                           |
| 1409.6 15                     |                                   | BC      |                                                                                                                                                                                           |
| 1436.82 8                     |                                   | BC      | XREF: C(1432).                                                                                                                                                                            |
| 1449.6 2                      | $(1/2^-, 3/2, 5/2)$               | Α       | $J^{n}$ : $\gamma$ 's to $3/2^{+}$ , $(3/2)^{-}$ and $5/2^{-}$ .                                                                                                                          |
| 1474?" 6                      |                                   | C       |                                                                                                                                                                                           |
| 1512.13                       |                                   | Α       | J': $\gamma$ to 3/2' suggests 1/2, 3/2, 5/2, 1/2'.                                                                                                                                        |
| 1519?" 7                      | (1/2) 2/2 5/2                     | C       | $I_{\rm e}$ , $A_{\rm e}$ to $2/2^+$ and $(2/2)^-$                                                                                                                                        |
| 1323.13 17                    | (1/2, 3/2, 3/2)                   | A       | $J^{*}$ , $\gamma$ s to $J/2^{*}$ and $(J/2)$ .                                                                                                                                           |

Continued on next page (footnotes at end of table)

#### <sup>151</sup>Nd Levels (continued)

| E(level) <sup>†</sup>                | $J^{\pi \ddagger}$  | XREF     | Comments                                                                                                                                           |
|--------------------------------------|---------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1559 7                               |                     | С        |                                                                                                                                                    |
| 1575.57 <mark>&amp;</mark> 8         | 1/2,3/2,5/2+@       | В        |                                                                                                                                                    |
| 1616? <sup>#</sup> 8                 |                     | С        |                                                                                                                                                    |
| 1520.6+x <sup>h</sup>                | $(29/2^+)^a$        | E        |                                                                                                                                                    |
| 1638.2 <sup>&amp;</sup> 1            | 1/2,3/2,5/2+@       | ABC      |                                                                                                                                                    |
| 1672? <sup>#</sup> 5                 |                     | С        |                                                                                                                                                    |
| 1697? <sup>#</sup> 8                 |                     | С        |                                                                                                                                                    |
| 1745.85 8                            |                     | BC       | XREF: C(1751).                                                                                                                                     |
| 1777? <sup>#</sup> 7                 |                     | С        |                                                                                                                                                    |
| 1792.13? <sup>&amp;</sup> <i>13</i>  | 1/2,3/2,5/2+@       | В        |                                                                                                                                                    |
| 1813? <sup>#</sup> 5                 |                     | С        |                                                                                                                                                    |
| 1836.27 8                            |                     | BC       | XREF: C(1834).                                                                                                                                     |
| 1844.28 18                           | $(1/2^-, 3/2, 5/2)$ | Α        | $J^{\pi}$ : $\gamma$ 's to $3/2^+$ , $(3/2)^-$ and $5/2^-$ .                                                                                       |
| 1878.09 <i>15</i><br>1907.9 <i>2</i> | (1/2,3/2,5/2)       | A C<br>A | $J^{\pi}$ : $\gamma'$ s to $3/2^+$ and $(3/2)^-$ .<br>$J^{\pi}$ : $\gamma'$ s to $(3/2)^-$ and $5/2^-$ suggest $1/2^-$ , $3/2$ , $5/2$ , $7/2^-$ . |
| 1918? <sup>#</sup> 4                 |                     | С        |                                                                                                                                                    |
| 1951.94 11                           |                     | BC       |                                                                                                                                                    |
| 2001? <sup>#</sup> 7                 |                     | С        |                                                                                                                                                    |
| 2024? <sup>#</sup> 5                 |                     | С        |                                                                                                                                                    |
| 2040? <sup>#</sup> 7                 |                     | С        |                                                                                                                                                    |
| 2080? <sup>#</sup> 4                 |                     | С        |                                                                                                                                                    |
| 2094.31 <sup>&amp;</sup> 11          | 1/2,3/2,5/2+@       | В        |                                                                                                                                                    |
| 2129?# 5                             |                     | С        |                                                                                                                                                    |
| 2033.2+x <sup>h</sup>                | $(33/2^+)^a$        | E        |                                                                                                                                                    |
| 2160? <sup>#</sup> 5                 |                     | С        |                                                                                                                                                    |
| 2182? <sup>#</sup> 8                 |                     | С        |                                                                                                                                                    |
| 2205? <sup>#</sup> 6                 |                     | С        |                                                                                                                                                    |
| 2235? <sup>#</sup> 6                 |                     | С        |                                                                                                                                                    |
| 2312.5 2                             | $(1/2^-, 3/2, 5/2)$ | Α        | $J^{\pi}$ : $\gamma$ 's to $3/2^+$ , $(3/2)^-$ and $5/2^-$ .                                                                                       |
| 2341.4 2                             | $(1/2^-, 3/2, 5/2)$ | Α        | $J^{\pi}$ : $\gamma'$ s to $3/2^+$ , $(3/2)^-$ and $5/2^-$ .                                                                                       |
| 2429.8 3                             | . ~                 | Α        | $J^{\pi}$ : $\gamma$ 's to $(3/2)^{-}$ and $5/2^{-}$ suggest $1/2^{-}$ , $3/2$ , $5/2$ , $7/2^{-}$ .                                               |
| $2600.8 + x^{n}$                     | $(37/2^+)^a$        | E        |                                                                                                                                                    |
| 3220.8+x <sup><i>h</i></sup>         | $(41/2^+)^a$        | E        |                                                                                                                                                    |

<sup>†</sup> From least-squares fit to  $E\gamma'$ s for levels populated in  $\gamma$ -ray studies. Normalized  $\chi^2 = 1.8$ . Others are from (d,p) reaction.

<sup>‡</sup> No spins have been directly measured, no internal conversion coefficients are known and rather sparse coincidence measurements exist. Thus, most spin assignments are in parentheses. The model-dependent arguments are in agreement with most of these assignments.

<sup>#</sup> Based on weak peak in (d,p) seen only by 1967Ne08.

<sup>(a)</sup> Primary  $\gamma$  from 1/2<sup>+</sup> capture state gives  $J^{\pi}=1/2,3/2,5/2^+$ .

& Level based on capture  $\gamma$  seen by either 1975SmZT or 1976Pi13 but not by both.

<sup>*a*</sup> Probable  $i_{13/2}$  band.

<sup>b</sup> Band(A): 3/2[651]+3/2[402]. Coriolis perturbed band (1985BuZU,1975SmZT).

<sup>c</sup> Band(B): 3/2[532] band. band assignment from 1985BuZU and 1975SmZT.

<sup>d</sup> Band(C): 3/2[521] band. band assignment from 1985BuZU and 1975SmZT.

<sup>e</sup> Band(D): 1/2[530] band. band assignment from 1985BuZU and 1975SmZT.

## <sup>151</sup>Nd Levels (continued)

<sup>f</sup> Band(E): 5/2[523] band. band assignment from 1985BuZU and 1975SmZT.

- <sup>g</sup> Band(F):  $1/2[521]+\gamma$  vib on 3/2[521]. band assignment from 1985BuZU and 1975SmZT.
- <sup>h</sup> Band(G): 3/2[651] or 5/2[642] band. The band assignment from 1996Ba34. Similar bands reported in other N=91 nuclides, <sup>155</sup>Gd, <sup>157</sup>Dy and <sup>159</sup>Er.

|                        |                         |                          |                        |                  | A                      | dopted Leve        | ls, Gamma                 | as (continued | 1)                                                                                                                                                                                                                                                                                                      |
|------------------------|-------------------------|--------------------------|------------------------|------------------|------------------------|--------------------|---------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                         |                          |                        |                  |                        |                    | $\gamma(^{151}\text{Nd})$ |               |                                                                                                                                                                                                                                                                                                         |
| E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$      | $E_{\gamma}^{\dagger}$   | $I_{\gamma}^{\dagger}$ | $\mathrm{E}_{f}$ | $\mathbf{J}_f^{\pi}$   | Mult. <sup>‡</sup> | δ                         | $\alpha^{a}$  | Comments                                                                                                                                                                                                                                                                                                |
| 22.4506                | $(5/2)^+$               | 22.51 10                 | 100                    | 0.0              | 3/2+                   | M1+E2              | 0.16 3                    | 49 <i>13</i>  | α(L)=38 10; α(M)=8.5 23; α(N+)=2.1 6                                                                                                                                                                                                                                                                    |
|                        |                         |                          |                        |                  |                        |                    |                           |               | $\alpha(N)=1.8$ 5; $\alpha(O)=0.25$ 6; $\alpha(P)=0.00602$ 13<br>$\delta$ : from <sup>151</sup> Pr $\beta^-$ decay, based on ce data and intensity                                                                                                                                                      |
| 57.6741                | (3/2)-                  | 35.227 2                 | 17.3 16                | 22.4506          | $(5/2)^+$              | [E1]               |                           | 0.762         | $\alpha(L)=0.603 \ 9; \ \alpha(M)=0.1280 \ 18; \ \alpha(N+)=0.0315 \ 5 \ \alpha(N)=0.0276 \ 4; \ \alpha(O)=0.00369 \ 6; \ \alpha(P)=0.0001452 \ 21$                                                                                                                                                     |
|                        |                         | 57.6740 <i>4</i>         | 100                    | 0.0              | 3/2+                   | E1                 |                           | 1.144         | $\alpha(K)=0.955\ 14;\ \alpha(L)=0.1495\ 21;\ \alpha(M)=0.0316\ 5;\ \alpha(N+)=0.00791\ 11$                                                                                                                                                                                                             |
| 75.857                 | $(7/2)^+$               | 53.408 4                 | 100 9                  | 22.4506          | (5/2)+                 | M1(+E2)            |                           | 16 8          | $\begin{aligned} &\alpha(N) = 0.00690 \ 10; \ \alpha(O) = 0.000964 \ 14; \ \alpha(P) = 4.41 \times 10^{-5} \ 7 \\ &\alpha(K) = 6.1 \ 13; \ \alpha(L) = 8 \ 7; \ \alpha(M) = 1.8 \ 16; \ \alpha(N+) = 0.4 \ 4 \\ &\alpha(N) = 0.4 \ 4; \ \alpha(O) = 0.05 \ 4; \ \alpha(P) = 0.00036 \ 13 \end{aligned}$ |
|                        |                         | 75.95 10                 | 14 2                   | 0.0              | 3/2+                   | [E2]               |                           | 5.99          | $\alpha$ : for M1.<br>$\alpha$ (K)=2.51; $\alpha$ (L)=2.71; $\alpha$ (M)=0.62; $\alpha$ (N+)=0.15<br>$\alpha$ (N)=0.13; $\alpha$ (O)=0.017; $\alpha$ (P)=0.00011<br>L = form $\frac{151}{2}$ Pr $\alpha$ = L = 28.4 in (7.1)                                                                            |
| 105.7524               | 5/2-                    | 29.97 10                 | 4.2 6                  | 75.857           | $(7/2)^+$              | [E1]               |                           | 1.202 21      | $\alpha(L) = 0.950 \ 16; \ \alpha(M) = 0.202 \ 4; \ \alpha(N+) = 0.0493 \ 9$<br>$\alpha(N) = 0.0434 \ 8; \ \alpha(O) = 0.00570 \ 10; \ \alpha(P) = 0.000212 \ 4$                                                                                                                                        |
|                        |                         | 83.300 1                 | 59 5                   | 22.4506          | (5/2)+                 | E1                 |                           | 0.427         | $\alpha(\mathbf{K}) = 0.360 5; \ \alpha(\mathbf{L}) = 0.0527 \ 8; \ \alpha(\mathbf{M}) = 0.01114 \ 16; \\ \alpha(\mathbf{N}+) = 0.00281 \ 4$                                                                                                                                                            |
|                        |                         | 105.753 <i>1</i>         | 100 5                  | 0.0              | 3/2+                   | E1                 |                           | 0.222         | $\alpha$ (N)=0.00245 4; $\alpha$ (O)=0.000349 5; $\alpha$ (P)=1.748×10 <sup>-5</sup> 25<br>$\alpha$ (K)=0.189 3; $\alpha$ (L)=0.0268 4; $\alpha$ (M)=0.00566 8;<br>$\alpha$ (N+)=0.001437 21                                                                                                            |
| 177.714                | $(7/2^{-})$             | ≈72 <sup>°</sup>         | <10                    | 105.7524         | 5/2-                   |                    |                           |               | $\alpha(N)=0.001248\ 18;\ \alpha(O)=0.000180\ 3;\ \alpha(P)=9.4/\times10^{-6}\ 14$                                                                                                                                                                                                                      |
| 1,,,,,1                | ())= )                  | 155.263 <sup>b</sup> 2   | <100 <sup>b@</sup>     | 22.4506          | $(5/2)^+$              |                    |                           |               |                                                                                                                                                                                                                                                                                                         |
| 189.054                | $(3/2)^{-}$             | 83.3 3                   | 2.7 14                 | 105.7524         | 5/2-                   |                    |                           |               | $E_{\gamma}, I_{\gamma}$ : from <sup>151</sup> Pr $\beta^-$ .                                                                                                                                                                                                                                           |
|                        |                         | 131.381 2                | 10.3 7                 | 57.6741          | (3/2)-                 | M1,E2              |                           | 0.74 9        | $\alpha(K)=0.546\ 12;\ \alpha(L)=0.15\ 8;\ \alpha(M)=0.034\ 18;\ \alpha(N+)=0.008\ 5$                                                                                                                                                                                                                   |
|                        |                         | 166 603 1                | 33 3 18                | 22 4506          | $(5/2)^+$              | F1                 |                           | 0.0642        | $\alpha(N)=0.00^{7} 4; \alpha(O)=0.0010 5; \alpha(P)=3.0\times10^{-5} 6$<br>B(E1)(Wu)>1.5×10 <sup>-5</sup>                                                                                                                                                                                              |
|                        |                         | 100.005 1                | 55.5 10                | 22.4300          | (3/2)                  | EI                 |                           | 0.0042        | $\alpha(K)=0.0547 \ 8; \ \alpha(L)=0.00751 \ 11; \ \alpha(M)=0.001583 \ 23; \ \alpha(N+)=0.000405 \ 6$                                                                                                                                                                                                  |
|                        |                         |                          |                        |                  |                        |                    |                           |               | $\alpha(N)=0.000351\ 5;\ \alpha(O)=5.16\times10^{-5}\ 8;\ \alpha(P)=2.91\times10^{-6}\ 4$                                                                                                                                                                                                               |
|                        |                         | 189.057 2                | 100 5                  | 0.0              | 3/2+                   | E1                 |                           | 0.0456        | B(E1)(W.u.)>3.1×10 <sup>-5</sup><br>$\alpha$ (K)=0.0389 <i>6</i> ; $\alpha$ (L)=0.00530 <i>8</i> ; $\alpha$ (M)=0.001117 <i>16</i> ;<br>$\alpha$ (N+)=0.000286 <i>4</i>                                                                                                                                 |
| 1.40.4                 | (10/21)                 | 1.10.1                   | 100                    | 0.0              |                        |                    |                           |               | $\alpha$ (N)=0.000248 4; $\alpha$ (O)=3.66×10 <sup>-5</sup> 6; $\alpha$ (P)=2.10×10 <sup>-6</sup> 3                                                                                                                                                                                                     |
| 149.4+x<br>249.568     | $(13/2^+)$<br>$(5/2)^-$ | 149.4<br>60.519 <i>3</i> | 100<br>29 <i>3</i>     | 0.0+x<br>189.054 | $(9/2^+)$<br>$(3/2)^-$ | [M1,E2]            |                           | 10 4          | $\alpha(K)=4.6\ 6;\ \alpha(L)=4\ 4;\ \alpha(M)=1.0\ 9;\ \alpha(N+)=0.24\ 20$                                                                                                                                                                                                                            |
|                        |                         | 143.5 3                  | 32                     | 105.7524         | 5/2-                   | [M1,E2]            |                           | 0.56 6        | $\alpha(N)=0.21\ 13,\ \alpha(O)=0.027\ 22,\ \alpha(P)=0.00020\ 3$<br>$\alpha(K)=0.421\ 14;\ \alpha(L)=0.11\ 5;\ \alpha(M)=0.024\ 12;$<br>$\alpha(N+)=0.006\ 3$                                                                                                                                          |

S

 $^{151}_{60}\mathrm{Nd}_{91}$ -5

|                        |                         |                                                                                             |                                                 |                                                     | A                                                                     | Adopted L          | evels, Gam              | mas (continued)                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|-------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|--------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                         |                                                                                             |                                                 |                                                     |                                                                       | <u> </u>           | <sup>151</sup> Nd) (cor | ntinued)                                                                                                                                                                                                                                                                                                                                                                     |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$    | $E_{\gamma}^{\dagger}$                                                                      | $I_{\gamma}^{\dagger}$                          | $E_f$                                               | ${ m J}_f^\pi$                                                        | Mult. <sup>‡</sup> | $\alpha^{a}$            | Comments                                                                                                                                                                                                                                                                                                                                                                     |
| 240.570                | (5.(2) -                | 172 714 5                                                                                   |                                                 |                                                     | (7/0)+                                                                |                    |                         | $\alpha$ (N)=0.0053 25; $\alpha$ (O)=0.0007 3; $\alpha$ (P)=2.4×10 <sup>-5</sup> 5<br>E <sub><math>\gamma</math></sub> ,I <sub><math>\gamma</math></sub> : from <sup>151</sup> Pr $\beta$ <sup>-</sup> . In (n, $\gamma$ ), E $\gamma$ =143.806 <i>18</i> may be placed here, but its intensity in (n, $\gamma$ ) is too large to be assigned with this level.               |
| 249.568                | (5/2)                   | 173.714 5<br>191.889 <i>10</i><br>227.135 5<br>240 562 2                                    | 39 3<br>25 2<br>57 11                           | 75.857<br>57.6741<br>22.4506                        | $(1/2)^{+}$<br>$(3/2)^{-}$<br>$(5/2)^{+}$<br>$2/2^{+}$                | E1                 | 0.0219                  | - (₩)0.0196 2 «(1.)0.00250 4 «(M)0.000529 8 «(M))-0.0001257 10                                                                                                                                                                                                                                                                                                               |
| 225.52                 | (7.12) -                | 249.505 2                                                                                   | 100 7                                           | 0.0                                                 | 5/2                                                                   | EI                 | 0.0218                  | $\alpha(\mathbf{N})=0.00186\ 5;\ \alpha(\mathbf{L})=0.00250\ 4;\ \alpha(\mathbf{M})=0.000528\ 8;\ \alpha(\mathbf{N}+)=0.0001357\ 19$<br>$\alpha(\mathbf{N})=0.0001172\ 17;\ \alpha(\mathbf{O})=1.742\times10^{-5}\ 25;\ \alpha(\mathbf{P})=1.034\times10^{-6}\ 15$                                                                                                           |
| 335.72                 | (1/2)-                  | 86.28 <i>10</i><br>146.54 <i>10</i><br>229.7 <i>1</i><br>259.77 <i>10</i><br>313.2 <i>1</i> | 44 8<br><7<br>≈10 <sup>#</sup><br>17 3<br>100 9 | 249.568<br>189.054<br>105.7524<br>75.857<br>22.4506 | $(5/2)^{-}$<br>$(3/2)^{-}$<br>$5/2^{-}$<br>$(7/2)^{+}$<br>$(5/2)^{+}$ |                    |                         |                                                                                                                                                                                                                                                                                                                                                                              |
| 443.62                 | (9/2)-                  | 107.9 <i>1</i><br>194 <i>1</i><br>266 <i>1</i>                                              | $100^{\#}_{\#}$                                 | 335.72<br>249.568                                   | $(7/2)^{-}$<br>$(5/2)^{-}$<br>$(7/2^{-})$                             |                    |                         |                                                                                                                                                                                                                                                                                                                                                                              |
| 376.5+x<br>495.305     | $(17/2^+)$<br>$(1/2)^-$ | 2007<br>227.1<br>306.243 7                                                                  | ~30<br>100<br>11.4 <i>18</i>                    | 149.4+x<br>189.054                                  | (1/2)<br>$(13/2^+)$<br>$(3/2)^-$                                      | M1,E2              | 0.057 8                 | $\alpha(K)=0.047\ 9;\ \alpha(L)=0.0077\ 3;\ \alpha(M)=0.00167\ 8;\ \alpha(N+)=0.000426\ 15$<br>$\alpha(N)=0.000369\ 15;\ \alpha(O)=5\ 41\times10^{-5}\ 8;\ \alpha(P)=2.8\times10^{-6}\ 7$                                                                                                                                                                                    |
|                        |                         | 389.5 <sup>&amp;</sup> 1<br>437.631 8                                                       | 2.4 2<br>49 <i>3</i>                            | 105.7524<br>57.6741                                 | 5/2 <sup>-</sup><br>(3/2) <sup>-</sup>                                | M1,E2              | 0.021 5                 | $\alpha(K) = 0.018 \ 4; \ \alpha(L) = 0.0027 \ 3; \ \alpha(M) = 0.00057 \ 6; \ \alpha(N+) = 0.000147 \ 15 \ \alpha(N) = 0.000127 \ 13; \ \alpha(O) = 1.89 \times 10^{-5} \ 24; \ \alpha(P) = 1.1 \times 10^{-6} \ 3 \ L : from \ ^{151}Pr \ \beta^{-} \ Other: \ 78 \ 7 \ (n \ x)$                                                                                           |
|                        |                         | 495.309 6                                                                                   | 100 7                                           | 0.0                                                 | 3/2+                                                                  | E1                 | 0.00402                 | $\alpha(K) = 0.00345 5; \alpha(L) = 0.000450 7; \alpha(M) = 9.47 \times 10^{-5} 14; \alpha(N+) = 2.45 \times 10^{-5} 4$                                                                                                                                                                                                                                                      |
| 506.953                | (3/2)-                  | 257.38 5                                                                                    | 3.6 3                                           | 249.568                                             | (5/2)-                                                                | M1,E2              | 0.094 9                 | $ \begin{aligned} \alpha(N) &= 2.11 \times 10^{-5} 3; \ \alpha(O) &= 3.18 \times 10^{-5} 5; \ \alpha(P) &= 2.01 \times 10^{-7} 3 \\ \alpha(K) &= 0.077 \ 11; \ \alpha(L) &= 0.0135 \ 16; \ \alpha(M) &= 0.0029 \ 4; \ \alpha(N+) &= 0.00074 \ 9 \\ \alpha(N) &= 0.00065 \ 8; \ \alpha(O) &= 9.4 \times 10^{-5} \ 8; \ \alpha(P) &= 4.6 \times 10^{-6} \ 11 \end{aligned} $   |
|                        |                         | 317.912 15                                                                                  | 9.3 12                                          | 189.054                                             | (3/2)-                                                                | M1,E2              | 0.051 8                 | I <sub>γ</sub> : from <sup>151</sup> Pr $\beta^-$ . Other: 11 <i>l</i> (n,γ).<br>$\alpha$ (K)=0.042 <i>8</i> ; $\alpha$ (L)=0.00688 <i>l4</i> ; $\alpha$ (M)=0.00148 5; $\alpha$ (N+)=0.000379 8<br>$\alpha$ (N)=0.000329 9; $\alpha$ (O)=4.82×10 <sup>-5</sup> <i>l1</i> ; $\alpha$ (P)=2.6×10 <sup>-6</sup> 7                                                              |
|                        |                         | 401.17 10                                                                                   | 13.6 15                                         | 105.7524                                            | 5/2-                                                                  | M1,E2              | 0.027 6                 | I <sub>γ</sub> : from <sup>131</sup> Pr β <sup>-</sup> . Other: 18 2 (n,γ).<br>$\alpha(K)=0.023 5; \alpha(L)=0.0034 3; \alpha(M)=0.00073 5; \alpha(N+)=0.000189 15$<br>$\alpha(N)=0.000163 12; \alpha(O)=2.42\times10^{-5} 24; \alpha(P)=1.4\times10^{-6} 4$<br>L : from <sup>151</sup> Pr β <sup>-</sup> . Other: 10 2 (n c)                                                |
|                        |                         | 449.3 <sup>&amp;</sup> 1                                                                    | 13 <i>I</i>                                     | 57.6741                                             | (3/2)-                                                                | M1,E2              | 0.020 5                 | $\alpha(K) = 0.00118$ <i>I</i> ? $\alpha(L) = 0.0025$ <i>3</i> ; $\alpha(M) = 0.00053$ <i>6</i> ; $\alpha(N+) = 0.000137$ <i>I</i> 5<br>$\alpha(K) = 0.000118$ <i>I</i> ? $\alpha(D) = 1.75 \times 10^{-5}$ 2? $\alpha(D) = 1.0 \times 10^{-6}$ ?                                                                                                                            |
|                        |                         | 484.501 5                                                                                   | 100 5                                           | 22.4506                                             | (5/2)+                                                                | E1                 | 0.00423                 | $\alpha(N) = 0.000118 \ 15; \ \alpha(O) = 1.70 \times 10^{-2} \ 25; \ \alpha(P) = 1.0 \times 10^{-5} \ 5$<br>$\alpha(K) = 0.00363 \ 5; \ \alpha(L) = 0.000474 \ 7; \ \alpha(M) = 9.97 \times 10^{-5} \ 14;$<br>$\alpha(N+) = 2.58 \times 10^{-5} \ 4$<br>$\alpha(N) = 2.22 \times 10^{-5} \ 4, \ \alpha(O) = 2.25 \times 10^{-6} \ 5; \ \alpha(D) = 2.11 \times 10^{-7} \ 2$ |
|                        |                         | 507.0 <sup>&amp;</sup> 1                                                                    | 24 1                                            | 0.0                                                 | 3/2+                                                                  |                    |                         | $u(n) = 2.22 \times 10^{-4}$ ; $u(0) = 5.55 \times 10^{-5}$ ; $u(r) = 2.11 \times 10^{-5}$                                                                                                                                                                                                                                                                                   |

6

|                        | Adopted Levels, Gammas (continued)                         |                                                                          |                                                                                 |                                                    |                                                                                                                |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|------------------------|------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                        |                                                            |                                                                          |                                                                                 |                                                    | $\gamma(^{151})$                                                                                               | Nd) (contin        | ued)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| E <sub>i</sub> (level) | ${ m J}^{\pi}_i$                                           | $E_{\gamma}^{\dagger}$                                                   | $I_{\gamma}^{\dagger}$                                                          | $E_f$                                              | $\mathrm{J}_f^\pi$                                                                                             | Mult. <sup>‡</sup> | $\alpha^{a}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 531.85                 | (5/2 <sup>-</sup> ,7/2 <sup>-</sup> )                      | 196.125 <i>11</i><br>342.6 <i>1</i>                                      | <26                                                                             | 335.72<br>189.054                                  | $(7/2)^{-}$<br>$(3/2)^{-}$                                                                                     |                    |              | From $(n,\gamma)$ only.<br>From <sup>151</sup> Pr $\beta^-$ and $(d,p\gamma)$ . It is possible that this $\gamma$ ray descrites a level different from the one in $(n,\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 542.80                 | (1/2 to 7/2) <sup>+</sup>                                  | 474.21 <i>10</i><br>542.776 <i>17</i>                                    | 100<br>100                                                                      | 57.6741<br>0.0                                     | (3/2) <sup>-</sup><br>3/2 <sup>+</sup>                                                                         | M1,E2              | 0.012 3      | From (n, $\gamma$ ) only.<br>$\alpha(K)=0.0103\ 25;\ \alpha(L)=0.00148\ 23;\ \alpha(M)=0.00031\ 5;\ \alpha(N+)=8.1\times10^{-5}\ 13$<br>$\alpha(N)=7.0\times10^{-5}\ 11;\ \alpha(O)=1.05\times10^{-5}\ 18;\ \alpha(P)=6.4\times10^{-7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 581.0                  |                                                            | 523.22 20                                                                | 100                                                                             | 57.6741                                            | (3/2)-                                                                                                         |                    |              | A 523.5 $\gamma$ from <sup>151</sup> Pr $\beta^-$ decay shown to deexcite a 599 level only, may also populate 581 level, as suggested by a comparison of branching ratios from 599 level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 599.22                 | $(5/2^+)$                                                  | 421.67 <i>10</i><br>493.6 <i>3</i><br>523.5 <i>1</i>                     | 100 <i>14</i><br>93 <i>14</i><br><200                                           | 177.714<br>105.7524<br>75.857                      | $(7/2^{-})$<br>$5/2^{-}$<br>$(7/2)^{+}$                                                                        |                    |              | $\gamma$ not reported in $(n,\gamma)$ .<br>I <sub>v</sub> : from $(n,\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 622.53                 | 5/2-,7/2-                                                  | 90.685 5<br>373 17 10                                                    | 100 <i>14</i><br>100 <i>50</i>                                                  | 531.85<br>249 568                                  | $(5/2^-, 7/2^-)$<br>$(5/2)^-$                                                                                  |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 626.68                 | (1/2 to 7/2) <sup>+</sup>                                  | 626.7 1                                                                  | 100 50                                                                          | 0.0                                                | 3/2+                                                                                                           | M1,E2              | 0.0085 20    | $\alpha(K)=0.0072 \ 18; \ \alpha(L)=0.00101 \ 18; \ \alpha(M)=0.00021 \ 4; \ \alpha(N+)=5.6\times10^{-5} \ 10 \ \alpha(N)=4.8\times10^{-5} \ 9; \ \alpha(O)=7.2\times10^{-6} \ 14; \ \alpha(P)=4.5\times10^{-7} \ 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 673.90?<br>685.30      | 1/2,3/2,5/2 <sup>+</sup><br>(3/2,5/2) <sup>+</sup>         | 131.04 <sup>c</sup> 3<br>496.1 5<br>579.7 1<br>627.5 3                   | 100<br>3.5 10<br>23 4<br>9.3 13                                                 | 542.80<br>189.054<br>105.7524<br>57.6741           | (1/2 to 7/2) <sup>+</sup><br>(3/2) <sup>-</sup><br>5/2 <sup>-</sup><br>(3/2) <sup>-</sup>                      |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                        |                                                            | 662.8 1                                                                  | 100 5                                                                           | 22.4506                                            | $(5/2)^+$                                                                                                      | M1,E2              | 0.0074 17    | $\alpha(\mathbf{K})=0.0063 \ 15; \ \alpha(\mathbf{L})=0.00087 \ 16; \ \alpha(\mathbf{M})=0.00019 \ 4; \\ \alpha(\mathbf{N}+)=4.8\times10^{-5} \ 9 \\ \alpha(\mathbf{M})=4.10^{-5} \ 9 \ \alpha(\mathbf{M})=0.00019 \ 4; \\ \alpha(\mathbf{M})=0.00$ |  |  |  |  |  |
|                        |                                                            | 685.2 1                                                                  | 34.3 17                                                                         | 0.0                                                | 3/2+                                                                                                           | M1,E2              | 0.0068 16    | $\alpha(N)=4.1\times10^{-5} 8; \ \alpha(O)=6.3\times10^{-6} 12; \ \alpha(P)=3.9\times10^{-7} 10$<br>$\alpha(K)=0.0058 \ 14; \ \alpha(L)=0.00080 \ 15; \ \alpha(M)=0.00017 \ 3;$<br>$\alpha(N+)=4.4\times10^{-5} 8$<br>$\alpha(N)=3.8\times10^{-5} 7; \ \alpha(O)=5.7\times10^{-6} \ 11; \ \alpha(P)=3.6\times10^{-7} \ 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 736.30                 | (5/2,7/2 <sup>-</sup> )                                    | 155.263 <sup>b</sup> 10<br>547.42 20<br>678.30 20<br>713.62 20           | <150 <sup>b</sup><br><128<br><600<br>100 <i>17</i>                              | 581.0<br>189.054<br>57.6741<br>22.4506             | $(3/2)^{-}$<br>$(3/2)^{-}$<br>$(5/2)^{+}$                                                                      |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 684.4+x<br>846.65      | (21/2 <sup>+</sup> )<br>1/2 <sup>-</sup> ,3/2 <sup>-</sup> | 307.9<br>110.353 8<br>172.749 <sup>b</sup> 19<br>657.615 21<br>668.56 10 | $ \begin{array}{c} 100 \\ 3.2 \\ 3.1^{b} \\ 3 \\ 100 \\ 9 \\ < 54 \end{array} $ | 376.5+x<br>736.30<br>673.90?<br>189.054<br>177.714 | $(17/2^+)$<br>(5/2,7/2 <sup>-</sup> )<br>1/2,3/2,5/2 <sup>+</sup><br>(3/2) <sup>-</sup><br>(7/2 <sup>-</sup> ) |                    |              | $E_{\nu}$ : complex line.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                        |                                                            | 846.5 3                                                                  | 59 11                                                                           | 0.0                                                | 3/2+                                                                                                           |                    |              | From ${}^{151}$ Pr $\beta^-$ only. With this intensity it should have been seen in $(n, \gamma)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 877.23                 | (1/2 <sup>-</sup> ,3/2,5/2)                                | 688.2 <i>1</i><br>771.5 <i>3</i>                                         | 20 <i>3</i><br>12 <i>10</i>                                                     | 189.054<br>105.7524                                | (3/2) <sup>-</sup><br>5/2 <sup>-</sup>                                                                         |                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |

7

## $\gamma(^{151}\text{Nd})$ (continued)

| E <sub>i</sub> (level) | ${ m J}^{\pi}_i$            | $E_{\gamma}^{\dagger}$              | $I_{\gamma}^{\dagger}$ | $E_f$             | $\mathbf{J}_{f}^{\pi}$                          | Mult. <sup>‡</sup> | α <sup><i>a</i></sup> | Comments                                                                                                                                                                                                                                                                                                                                             |
|------------------------|-----------------------------|-------------------------------------|------------------------|-------------------|-------------------------------------------------|--------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 877.23                 | (1/2 <sup>-</sup> ,3/2,5/2) | 819.1 <i>3</i><br>877.3 <i>2</i>    | 23 5<br>100 7          | 57.6741<br>0.0    | (3/2) <sup>-</sup><br>3/2 <sup>+</sup>          |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
| 880.10                 | (1/2,3/2)+                  | 253.7 <sup>&amp;</sup> 3<br>373.3 1 | 2.6 6<br>18 2          | 626.68<br>506.953 | (1/2 to 7/2) <sup>+</sup><br>(3/2) <sup>-</sup> | E1                 | 0.00785               | $\begin{aligned} &\alpha(\mathrm{K}) = 0.00673 \ 10; \ \alpha(\mathrm{L}) = 0.000888 \ 13; \ \alpha(\mathrm{M}) = 0.000187 \ 3; \\ &\alpha(\mathrm{N}+) = 4.83 \times 10^{-5} \ 7 \\ &\alpha(\mathrm{N}) = 4.16 \times 10^{-5} \ 6; \ \alpha(\mathrm{O}) = 6.24 \times 10^{-6} \ 9; \ \alpha(\mathrm{P}) = 3.85 \times 10^{-7} \\ & 6 \end{aligned}$ |
|                        |                             | 385.0 <sup>&amp;</sup> 1            | 37 3                   | 495.305           | (1/2)-                                          | E1                 | 0.00729               | $\begin{aligned} &\alpha(\mathrm{K}) = 0.00625 \ 9; \ \alpha(\mathrm{L}) = 0.000822 \ 12; \ \alpha(\mathrm{M}) = 0.0001732 \\ &25; \ \alpha(\mathrm{N}+) = 4.47 \times 10^{-5} \ 7 \\ &\alpha(\mathrm{N}) = 3.86 \times 10^{-5} \ 6; \ \alpha(\mathrm{O}) = 5.79 \times 10^{-6} \ 9; \ \alpha(\mathrm{P}) = 3.58 \times 10^{-7} \\ &5 \end{aligned}$ |
|                        |                             | 822.2 <sup>&amp;</sup> 3            | 3.5 10                 | 57.6741           | $(3/2)^{-}$                                     |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
|                        |                             | 857.5 <mark>&amp;</mark> 3          | 4.4 13                 | 22.4506           | $(5/2)^+$                                       |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
|                        |                             | 880.1 <i>1</i>                      | 100 7                  | 0.0               | 3/2+                                            | M1,E2              | 0.0038 9              | $\alpha(K)=0.0032 \ 8; \ \alpha(L)=0.00043 \ 9; \ \alpha(M)=9.2\times10^{-5} \ 17; \ \alpha(N+)=2.4\times10^{-5} \ 5 \ \alpha(N)=2.1\times10^{-5} \ 4; \ \alpha(Q)=3.1\times10^{-6} \ 6; \ \alpha(P)=2.0\times10^{-7} \ 5$                                                                                                                           |
| 892.97                 | $1/2^{-}, 3/2^{-}$          | 643.33 5                            | 100 9                  | 249.568           | $(5/2)^{-}$                                     |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
|                        |                             | 703.9 2                             | ≈180 <sup>#</sup>      | 189.054           | $(3/2)^{-}$                                     |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
|                        |                             | 787.42 11                           | 82 7                   | 105.7524          | 5/2-                                            |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
|                        |                             | 893.40 <i>30</i>                    | 26 2                   | 0.0               | 3/2+                                            |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
| 942.57                 | (1/2,3/2,5/2)               | 753.5 1                             | 100 50                 | 189.054           | $(3/2)^{-}$                                     |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
|                        |                             | 942.6 3                             | 67 30                  | 0.0               | 3/2+                                            |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
| 949.34                 | $(1/2^{-},3/2,5/2^{+})$     | 760.15 15                           | 100 24                 | 189.054           | $(3/2)^{-}$                                     |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
|                        |                             | 843.2 <sup><b>X</b></sup> 3         | 81 <i>16</i>           | 105.7524          | 5/2-                                            |                    |                       | 151                                                                                                                                                                                                                                                                                                                                                  |
| 0.64.00                |                             | 891.82 14                           | 48 16                  | 57.6741           | $(3/2)^{-}$                                     |                    |                       | $I_{\gamma}$ : from <sup>151</sup> Pr $\beta^-$ . Other: 140 12 (n, $\gamma$ ).                                                                                                                                                                                                                                                                      |
| 964.09                 | 1/2,3/2,5/2+                | /14.49 9                            | 100 10                 | 249.568           | $(5/2)^{-}$                                     |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
|                        |                             | 941.89 <sup>0</sup> 17              | 3000 37                | 22.4506           | $(5/2)^+$                                       |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
| 1065.72?               |                             | 172.749 <sup>0</sup> 19             | 13 <sup>0</sup> 1      | 892.97            | 1/2-,3/2-                                       |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
|                        |                             | 329.417 8                           | <75                    | 736.30            | $(5/2,7/2^{-})$                                 |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
| 1104 1                 |                             | 8/6.26 20                           | 100 15                 | 189.054           | (3/2)<br>$3/2^+$                                |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
| 1130 68?               | 1/2 3/2 5/2+                | 794 95 7                            | 100 10                 | 335.72            | $(7/2)^{-}$                                     |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
| 1120.001               | 1/2,3/2,3/2                 | 941 89 <sup>b</sup> 17              | $335^{b} 41$           | 189.054           | $(3/2)^{-}$                                     |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
|                        |                             | $1072.86^{\circ}$ 14                | 118 12                 | 57.6741           | $(3/2)^{-}$                                     |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
| 1150.70                | 1/2,3/2,5/2+                | 1074.80 <sup>°</sup> 14             | 288 29                 | 75.857            | $(7/2)^+$                                       |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
|                        |                             | 1150.46 10                          | 100 12                 | 0.0               | 3/2+                                            |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
| 1068.2+x               | $(25/2^+)$                  | 383.6                               | 100                    | 684.4+x           | $(21/2^+)$                                      |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
| 1183.96?               | 1/2,3/2,5/2+                | 641.00 6                            | 100                    | 542.80            | $(1/2 \text{ to } 7/2)^+$                       |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
| 1212.17?               | 1/2,3/2,5/2+                | 332.21 10                           | 25 3                   | 880.10            | $(1/2,3/2)^+$                                   |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
|                        |                             | 8/6.26 20<br>1154 5 3               | 100 15                 | 555.72            | (1/2)<br>$(3/2)^{-}$                            |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |
|                        |                             | 1104.0 0                            | <1JJ                   | 57.0741           | (J/2)                                           |                    |                       |                                                                                                                                                                                                                                                                                                                                                      |

 $\infty$ 

## $\gamma(^{151}$ Nd) (continued)

| E <sub>i</sub> (level) | $J_i^{\pi}$           | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f$    | $\mathrm{J}_f^\pi$        |
|------------------------|-----------------------|------------------------|------------------------|----------|---------------------------|
| 1220.3                 | 1/2,3/2,5/2+          | 970.8 <i>3</i>         | 100                    | 249.568  | (5/2)-                    |
| 1229.84                | (1/2, 3/2, 5/2)       | 1040.6 2               | 100 17                 | 189.054  | $(3/2)^{-}$               |
|                        |                       | 1172.6 3               | 56 6                   | 57.6741  | $(3/2)^{-}$               |
|                        |                       | 1229.8 <i>3</i>        | 22 14                  | 0.0      | 3/2+                      |
| 1256.48                |                       | 105.899 12             | 6 1                    | 1150.70  | 1/2,3/2,5/2+              |
|                        |                       | 724.49 11              | 15 2                   | 531.85   | $(5/2^{-},7/2^{-})$       |
|                        |                       | 761.36 17              | 17 2                   | 495.305  | $(1/2)^{-}$               |
|                        |                       | 1256.6 20              | 100 30                 | 0.0      | 3/2+                      |
| 1436.82                |                       | 1436.83 20             | 100                    | 0.0      | 3/2+                      |
| 1449.6                 | $(1/2^{-}, 3/2, 5/2)$ | 1343.9 <i>3</i>        | 100 26                 | 105.7524 | 5/2-                      |
|                        |                       | 1391.5 4               | 28 8                   | 57.6741  | $(3/2)^{-}$               |
|                        |                       | 1449.8 <i>3</i>        | 93 15                  | 0.0      | 3/2+                      |
| 1512.1                 |                       | 1512.1 <i>3</i>        | 100                    | 0.0      | 3/2+                      |
| 1523.73                | (1/2, 3/2, 5/2)       | 1466.1 2               | 100 16                 | 57.6741  | $(3/2)^{-}$               |
|                        |                       | 1523.6 <i>3</i>        | 58 8                   | 0.0      | 3/2+                      |
| 1575.57                | 1/2,3/2,5/2+          | 138.57 4               | 71                     | 1436.82  |                           |
|                        |                       | 626.233 11             | 100 10                 | 949.34   | $(1/2^{-}, 3/2, 5/2^{+})$ |
|                        |                       | 1032.61 10             | <53                    | 542.80   | $(1/2 \text{ to } 7/2)^+$ |
| 1520.6+x               | $(29/2^+)$            | 452.4                  | 100                    | 1068.2+x | $(25/2^+)$                |
| 1638.2                 | 1/2,3/2,5/2+          | 1638.3 2               | 100                    | 0.0      | 3/2+                      |
| 1745.85                |                       | 170.247 16             | 51 5                   | 1575.57  | 1/2,3/2,5/2+              |
|                        |                       | 309.036 14             | 100 10                 | 1436.82  |                           |
|                        |                       | 852.56 20              | <123                   | 892.97   | 1/2-,3/2-                 |
|                        |                       | 1164.6 3               | <159                   | 581.0    |                           |
| 1792.13?               | 1/2,3/2,5/2+          | 579.8 <sup>0</sup> 4   | 7 <mark>6</mark> 1     | 1212.17? | 1/2,3/2,5/2+              |
|                        |                       | 1192.99 12             | 100 13                 | 599.22   | $(5/2^+)$                 |
| 1836.27                |                       | 579.8 <sup>b</sup> 4   | 6 <mark>b</mark> 1     | 1256.48  |                           |
|                        |                       | 685.49 5               | 21 3                   | 1150.70  | 1/2,3/2,5/2+              |
|                        |                       | 1341.22 18             | 100 10                 | 495.305  | $(1/2)^{-}$               |
| 1844.28                | $(1/2^{-}, 3/2, 5/2)$ | 1655.4 <i>3</i>        | 94 <i>21</i>           | 189.054  | $(3/2)^{-}$               |
|                        |                       | 1738.4 <i>3</i>        | 34 6                   | 105.7524 | 5/2-                      |
|                        |                       | 1844.2 <i>3</i>        | 100 13                 | 0.0      | 3/2+                      |
| 1878.09                | (1/2, 3/2, 5/2)       | 1689.1 <i>3</i>        | 13 <i>3</i>            | 189.054  | $(3/2)^{-}$               |
|                        |                       | 1820.5 <i>3</i>        | 33 6                   | 57.6741  | $(3/2)^{-}$               |
|                        |                       | 1878.0 2               | 100 13                 | 0.0      | 3/2+                      |
| 1907.9                 |                       | 1802.0 <i>3</i>        | 51 26                  | 105.7524 | 5/2-                      |
|                        |                       | 1850.3 <i>3</i>        | 100 32                 | 57.6741  | $(3/2)^{-}$               |
| 1951.94                |                       | 1420.02 10             | 100                    | 531.85   | $(5/2^-, 7/2^-)$          |
| 2094.31                | 1/2,3/2,5/2+          | 1028.52 10             | 100                    | 1065.72? |                           |
| 2033.2+x               | $(33/2^+)$            | 512.6                  | 100                    | 1520.6+x | $(29/2^+)$                |
| 2312.5                 | $(1/2^{-}, 3/2, 5/2)$ | 2206.7 <i>3</i>        | 58 16                  | 105.7524 | 5/2-                      |
|                        |                       | 2254.8 <i>3</i>        | 100 30                 | 57.6741  | (3/2)-                    |
|                        |                       | 2312.7 4               | 35 18                  | 0.0      | 3/2+                      |
|                        |                       |                        |                        |          |                           |

9

## $\gamma(^{151}\text{Nd})$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$        | $E_{\gamma}^{\dagger}$                                | $I_{\gamma}^{\dagger}$   | $E_f \qquad J_f^{\pi}$                                | $E_i$ (level)                  | $\mathbf{J}_i^{\pi}$     | $E_{\gamma}^{\dagger}$            | $I_{\gamma}^{\dagger}$      | $E_f$                           | $\mathbf{J}_f^{\pi}$                                               |
|------------------------|-----------------------------|-------------------------------------------------------|--------------------------|-------------------------------------------------------|--------------------------------|--------------------------|-----------------------------------|-----------------------------|---------------------------------|--------------------------------------------------------------------|
| 2341.4                 | (1/2 <sup>-</sup> ,3/2,5/2) | 2235.6 <i>3</i><br>2283.7 <i>3</i><br>2341.6 <i>4</i> | 47 10<br>100 26<br>37 23 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2429.8<br>2600.8+x<br>3220.8+x | $(37/2^+)$<br>$(41/2^+)$ | 2372.1 <i>3</i><br>567.6<br>620.0 | 100 <i>33</i><br>100<br>100 | 57.6741<br>2033.2+x<br>2600.8+x | $     \begin{array}{r}             \hline                        $ |
| 2429.8                 |                             | 2324.1 4                                              | 39 <i>33</i>             | 105.7524 5/2-                                         |                                |                          |                                   |                             |                                 |                                                                    |

<sup>†</sup> Mostly from <sup>150</sup>Nd(n, $\gamma$ ). A number of  $\gamma$ 's not classified in (n, $\gamma$ ) work (1976Pi13) have been placed by the evaluator. If a  $\gamma$  is suspected of being partially due to a contaminant, the intensity is given as an upper limit.

<sup>‡</sup> From ce data in  $(n,\gamma)$  and <sup>151</sup>Pr  $\beta^-$  decay.

<sup>#</sup> From (d,p $\gamma$ ). Intensities estimated by the evaluator are from the published spectra given in 1984Ka12.

<sup>@</sup> Half of I $\gamma$  reported in (n, $\gamma$ ) assigned to this location.

<sup>&</sup>  $\gamma$  from <sup>151</sup>Pr  $\beta^-$  only.

<sup>*a*</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>b</sup> Multiply placed with undivided intensity.

<sup>c</sup> Placement of transition in the level scheme is uncertain.

#### Level Scheme

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given



#### Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given



Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

 $--- \rightarrow \gamma$  Decay (Uncertain)





<sup>151</sup><sub>60</sub>Nd<sub>91</sub>

Legend

### Adopted Levels, Gammas



Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given



 $^{151}_{60}\text{Nd}_{91}$ 



<sup>151</sup><sub>60</sub>Nd<sub>91</sub>

