¹⁵¹Er ε decay (23.5 s) 1991To08,1988Ba02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 110, 1 (2009)	20-Nov-2008

Parent: ¹⁵¹Er: E=0.0; $J^{\pi}=(7/2^{-})$; $T_{1/2}=23.5$ s 20; $Q(\varepsilon)=5366$ 20; $\%\varepsilon+\%\beta^{+}$ decay=100.0

1991To08: measured γ , $\gamma\gamma$. Source produced by ⁹⁵Mo(⁶⁴Zn,xnyp) E=291 MeV followed by mass separation of α =155 products. ¹⁵¹Er isotope as a daughter of ¹⁵⁵Yb α decay.

1988Ba02: γ , $\gamma\gamma$, $X\gamma$, ce, $\gamma(t)$. Source produced in ${}^{96}Mo({}^{58}Ni,2pn)$ and ${}^{92}Mo({}^{64}Zn,N4P)$ reactions. Mass-separated.

1998Fo06: measured $\beta\gamma$ coin using plastic scintillator-Ge detector system. Source produced by ${}^{96}Mo({}^{58}Ni,N2P)$ E=250 MeV

followed by mass separation.

Others: 1970To16, 1982Ba75.

Source produced in ⁹⁶Mo(⁵⁸Ni,2pn) and ⁹²Mo(⁶⁴Zn,N4P) reactions. Mass-separated.

log ft values are considered only approximate since the decay scheme is probably incomplete in view of the large decay energy available for ε decay.

¹⁵¹Ho Levels

E(level)	$J^{\pi^{\dagger}}$	Comments
0.0 41.08 22 141.18 20 397.66 20 638 30 9	$(11/2^{-}) (1/2^{+}) (3/2^{+}) (5/2^{+}) (7/2^{-}9/2^{-})$	
667.19 <i>10</i> 700.00 <i>22</i> 861.8 <i>3</i>	$(7/2^{-},9/2^{-})$ $(7/2^{+})$	
910.1 <i>3</i> 934.7 <i>3</i>		
1001.69 22 1129.14 <i>19</i> 1202.2 <i>5</i>		
1279.80 <i>13</i> 1377.80 <i>13</i> 1541.59 <i>23</i>		
1563.32 14		E(level): the adopted level energy is the average of two values obtained from the (poorly fitted) 694.4γ and 898.0γ .
1832.81 <i>13</i> 1860.92 <i>22</i> 1947.0 <i>4</i>	(5/2 ⁻ ,7/2 ⁻)	

[†] From 'Adopted Levels'. The 898 γ was omitted from the least-squares fitting procedure since its inclusion gave a large normalized χ^2 =7.6.

ε, β^+ radiations

 $Q(\varepsilon)$ =5130 110 (from $\beta\gamma$ coin measurement, 1998Fo06), this value is ≈ 200 keV lower than 5366 20 from 2003Au03 evaluation.

E(decay)	E(level)	$I\beta^+$	$I\varepsilon^{\ddagger}$	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(3419 20)	1947.0	1.1 2	2.1 3	5.2	3.2 5	av Eβ=1082.7 91; εK=0.549 5; εL=0.0834 8; εM+=0.02462 22
(3505 20)	1860.92	1.9 <i>3</i>	3.4 4	5.0	5.3 7	av Eβ=1121.6 91; εK=0.529 5; εL=0.0802 8; εM+=0.02369 22
(3533 20)	1832.81	7.1 4	12 1	4.4	19 <i>1</i>	av Eβ=1134.5 91; εK=0.522 5; εL=0.0792 8; εM+=0.02338 22
(3803 20)	1563.32	3.4 4	4.2 4	5.0	7.6 8	av E β =1256.9 92; ε K=0.460 5; ε L=0.0697 7; ε M+=0.02056 21

Continued on next page (footnotes at end of table)

 $^{151}{\rm Er}~\varepsilon$ decay (23.5 s)

ϵ, β^+ radiations (continued)								
E(decay)	E(level)	Ιβ ^{+‡}	$\mathrm{I}\varepsilon^{\ddagger}$	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments		
(3824 20)	1541.59	0.9 3	1.1 3	5.5	2.0 6	av E β =1267.4 92; ε K=0.455 5; ε L=0.0689 7; ε M+=0.02033 21		
(3988 20)	1377.80	1.1 3	1.1 4	5.6	2.2 7	av Eβ=1342.2 92; εK=0.420 5; εL=0.0635 7; εM+=0.01874 19		
(4086 20)	1279.80	<0.4	<0.4	>6.1	<0.8	av Eβ=1387.2 92; εK=0.400 4; εL=0.0604 7; εM+=0.01782 19 E(decay): measured β(endpoint)=2788 188 (β(641γ)		
						coin,1998Fo06).		
(4164 20)	1202.2	0.4 1	0.4 1	6.1	0.8 2	av $E\beta$ =1422.9 92; ε K=0.384 4; ε L=0.0580 6; ε M+=0.01712 18		
(4237 20)	1129.14	3.2 4	2.6 3	5.3	5.8 7	av $E\beta$ =1456.5 92; ε K=0.370 4; ε L=0.0559 6; ε M+=0.01649 18		
(4364 20)	1001.69	2.6 4	1.8 2	5.4	4.4 6	av Eβ=1515.2 93; εK=0.347 4; εL=0.0523 6; εM+=0.01543 17		
(4431 20)	934.7	1.0 4	0.68 24	5.9	1.7 6	av Eβ=1546.1 93; εK=0.335 4; εL=0.0505 6; εM+=0.01490 16		
(4456 20)	910.1	1.6 2	1.1 2	5.7	2.7 4	av Eβ=1557.5 93; εK=0.331 4; εL=0.0499 6; εM+=0.01471 16		
(4497 [#] 20)	868.92	1.2 8	0.7 5	5.9	1.9 13	av Eβ=1576.4 93; εK=0.324 4; εL=0.0488 6; εM+=0.01440 16		
(4504 20)	861.8	2.0 4	1.2 3	5.6	3.2 7	av Eβ=1579.8 93; εK=0.323 4; εL=0.0486 6; εM+=0.01434 16		
(4666 20)	700.00	4.1 3	2.2 2	5.4	6.3 5	av Eβ=1654.7 93; εK=0.297 3; εL=0.0447 5; εM+=0.01317 14		
(4699 20)	667.19	6.6 8	3.6 5	5.2	10.2 13	av Eβ=1670.0 93; εK=0.291 3; εL=0.0439 5; εM+=0.01295 14		
(4728 20)	638.30	10.6 9	5.6 5	5.0	16.2 <i>13</i>	av Eβ=1683.3 93; εK=0.287 3; εL=0.0432 5; εM+=0.01276 14 E(decay): measured β(endpoint)=3564 186 (β(638γ) coin,1998Fo06).		
(4968 20)	397.66	5.2 15	2.3 7	5.5	7.5 22	av Eβ=1795.2 94; εK=0.254 3; εL=0.0381 4; εM+=0.01125 12 E(decay): measured β(endpoint)=3661 184 (β(256γ) coin,1998Fo06).		

1991To08,1988Ba02 (continued)

[†] All values should be considered as approximate since there there is a gap of about 3.5 MeV between Q value and the highest known populated level.

[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

$\gamma(^{151}\text{Ho})$

Iy normalization: $\Sigma(I(\gamma+ce)(\gamma' \text{ s to g.s. and 141 level}))=100$. No ε decay is expected to g.s., 41 and 141 level.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger\ddagger}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α #	Comments
100.1 <i>1</i>	27 5	141.18	(3/2+)	41.08	(1/2+)	M1	2.60	$\begin{aligned} &\alpha(\text{K})=2.19 \ 4; \ \alpha(\text{L})=0.325 \ 5; \ \alpha(\text{M})=0.0718 \ 11; \\ &\alpha(\text{N}+)=0.0192 \ 3 \\ &\alpha(\text{N})=0.01667 \ 24; \ \alpha(\text{O})=0.00242 \ 4; \ \alpha(\text{P})=0.0001357 \ 20 \\ &I_{\gamma}: \ 33 \ 2 \ \text{from } \Sigma(\text{I}(\gamma+\text{ce})(\text{in}))=\text{I}(\gamma+\text{ce})(100.1\gamma). \\ &\text{Mult.: } \ \alpha(\text{K})\text{exp}=2.5 \ 4 \ \text{and } \text{K/L}=7.4 \ 16 \ (1988Ba02). \end{aligned}$

¹⁵¹₆₇Ho₈₄-3

¹⁵¹ Er ε decay (23.5 s) 1991To08,1988Ba02 (continued)									
γ ⁽¹⁵¹ Ho) (continued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π} Mult.		lt. $\alpha^{\#}$	Comments	
230.7 2 256.5 1	3.2 <i>4</i> 52 5	868.92 397.66	(5/2+)	638.30 141.18	(7/2 ⁻ ,9/2 ⁻) (3/2 ⁺)	M1	0.187	$\alpha(K)=0.1577 \ 23; \ \alpha(L)=0.0230 \ 4; \\ \alpha(M)=0.00508 \ 8; \ \alpha(N+)=0.001360 \\ 20 \\ \alpha(N)=0.001179 \ 17; \ \alpha(O)=0.0001718 \\ 25; \ \alpha(P)=9.70\times10^{-6} \ 14 $	
302.4 <i>2</i> 455.0 <i>2</i> 462.0 <i>2</i>	6.5 <i>5</i> 5.8 <i>4</i>	700.00 1832.81 1129.14	$(7/2^+)$ $(5/2^-, 7/2^-)$	397.66 1377.80 667.19	$(5/2^+)$ $(7/2^- 9/2^-)$			Mult.: α (K)exp=0.16 3 (1988Ba02).	
402.0 2 537.0 2 553.0 1	5.3 <i>16</i> 17.2 <i>15</i>	934.7 1832.81	(5/2 ⁻ ,7/2 ⁻)	397.66 1279.80	$(7/2^{+}, 9/2^{-})$ $(5/2^{+})$			I_{γ} : 2.2 0 (1968Ba02). I_{γ} : 9.7 30 (1988Ba02).	
558.8 <i>I</i> 638.3 <i>I</i> 641.5 <i>I</i> 667.2 <i>I</i> 694.4 <i>I</i>	12.6 <i>12</i> 100 17 <i>2</i> 51 <i>3</i> 14.4 <i>16</i>	700.00 638.30 1279.80 667.19 1563.32	$(7/2^+)$ $(7/2^-, 9/2^-)$ $(7/2^-, 9/2^-)$	141.18 0.0 638.30 0.0 868.92	$(3/2^+)$ $(11/2^-)$ $(7/2^-,9/2^-)$ $(11/2^-)$				
720.6 2 739.5 1 768.9 2 860.5 1	9.8 20 12.6 20 8.2 10 13.3 18	861.8 1377.80 910.1 1001.69		141.18 638.30 141.18 141.18	(3/2 ⁺) (7/2 ⁻ ,9/2 ⁻) (3/2 ⁺) (3/2 ⁺)				
868.9 <i>1</i> 874.4 <i>2</i>	33 <i>3</i> 6.0 <i>17</i>	868.92 1541.59		0.0 667.19	$(11/2^{-})$ $(7/2^{-},9/2^{-})$			I_{γ} : 22 3 (1988Ba02).	
898.0 2	8.9 15	1563.32		667.19	(7/2 ⁻ ,9/2 ⁻)			E_{γ} : poor fit. Level-energy difference=896.1. This γ ray energy was not included in the least-squares fit procedure.	
987.9 2 992.0 2	12.8 <i>18</i> 16.1 <i>20</i>	1129.14 1860.92		141.18 868.92	$(3/2^+)$			I_{γ} : 5.0 <i>11</i> (1988Ba02).	
$1061.0 \ 4^{x} 1073.0^{@} \ 2$	≈2.5 ≈3.6	1202.2		141.18	(3/2 ⁺)			γ reported only by 1988Ba02, isotopic	
1194.5 2 1435.2 2 1549.3 3 ^x 1935.1 3 ^x 2133.7 3	17.8 20 17.7 <i>13</i> 9.7 <i>15</i> 11 2 4.0 <i>10</i>	1832.81 1832.81 1947.0	$(5/2^-,7/2^-)$ $(5/2^-,7/2^-)$	638.30 397.66 397.66	(7/2 ⁻ ,9/2 ⁻) (5/2 ⁺) (5/2 ⁺)			assignment uncertain.	

[†] From 1991To08. Values from 1988Ba02 are in general agreement with 1991To08 but less complete.

[‡] For absolute intensity per 100 decays, multiply by 0.328 9.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹⁵¹₆₇Ho₈₄-4

151 Er ε decay (23.5 s) 1991To08,1988Ba02

¹⁵¹₆₇Ho₈₄

4