Adopted Levels, Gammas

		Туре	Author	History Citation	Literature Cutoff Date						
	Full Evaluation Ba		Balraj Singh	NDS 110, 1 (2009)	20-Nov-2008						
$Q(\beta^-) = -5356 \ 18; \ S(n) = 9748 \ 16; \ S(p) = 1602 \ 9; \ Q(\alpha) = 4695.0 \ 18 \ 2017Wa10$ $Q(\varepsilon) = 5130 \ 9; \ S(2n) = 18119 \ 16; \ S(2p) = 6712 \ 9; \ Q(\varepsilon p) = 194 \ 11 \ 2017Wa10$ Additional information 1. Additional information 2. Mass measurement (Penning trap): 2000Be42. Nuclear structure calculations (and syst): 2008A109, 1998Zh23, 1996Zh09, 1993To07, 1993Pa04, 1986B114.											
¹⁵¹ Ho Levels											
			Cross Re	eference (XREF) Flags							
		A 15 B 15 C 15	5^{1} Er ε decay (23) 5^{1} Er ε decay (0.1) 5^{5} Tm α decay (21)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	α decay (45 s) Si,5n γ) ⁶ O,6n γ)						
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} XRE	EF		Comments						
0.0#	(11/2 ⁻)	35.2 s <i>I</i> ABC	EF $\%\varepsilon + \%\beta^+ = (1982B)$ $ 1/2 = 5$ $\%\alpha$ from r (1982B) $T_{1/2}: \alpha(t)$ $J^{\pi}:$ shell-m structure available	$%ε+%β^+=78 3; %α=22 3$ $^{1/2}=5.05 \text{ fm } 3 \text{ (2004An14 evaluation).}$ %α from weighted average of 28 7 (1991To08), 22 3 (1990Po13), 22 3 (1982Ba75), 18 5 (1974Sc19), 20 5 (1963Ma17). T _{1/2} : α(t) (1982Bo04). Other: 34.0 s 5 (1993Al03). J ^π : shell-model consideration and analogy to ¹⁵³ Ho. Spin=11/2 from hyperfine structure using collinear laser spectroscopy (1988NeZZ), but no details are							
41.0 2	(1/2 ⁺)	47.2 s <i>13</i> A CD	$ \begin{array}{c} & \text{advintor} \\ & & & \\ & & $	warnable. %α=80 +15-20; %ε+%β ⁺ =20 +20-15 Additional information 3. E(level): deduced from ¹⁵¹ Er ε decay (23.5 s) (1991To08). %α: from 1991To08. Others: 47 8 (1990Po13), >40 (1982Ba75), 19 4 (1974Sc19), 28 +28-14 (1963Ma17). T _{1/2} : α(t): weighted average of 47.9 s 13 (1982Bo04) 42 s 4 (1963Ma17) and 47 s 2 (1970To16). J ^π : α decay properties (1987Li09) and shell model consideration. Probable s _{1/2} proton state. Spin=1/2 from hyperfine structure using collinear laser spacetracecone (1082No77), but no details are available.							
141.12 22 397.60 24	(3/2 ⁺) (5/2 ⁺)	A A	J^{π} : M1 γ J^{π} : M1 γ	J^{π} : M1 γ to (1/2 ⁺) and probable $d_{3/2}$ proton state. J^{π} : M1 γ to (3/2 ⁺), probable ε feeding from (7/2 ⁻) and possible							
638.29 9 667.18 10 699.93 24 789.50 [#] 10 861.7 3 868.92 10 910.0 3 934.6 3 1001.62 24 1129.10 16 1202.1 5 1279.79 12 1377.79 13 1387 10 [#] 15	$(7/2^{-},9/2^{-})$ $(7/2^{-},9/2^{-})$ $(7/2^{+})$ $(15/2^{-})$	A A B A A A A A A A A A A A A A A	J^{π} : probab J^{π} : probab J^{π} : γ' s to EF	ble allowed ε feeding f ole allowed ε feeding f $(3/2^+)$ and $(5/2^+)$; prol	rom $(7/2^-)$ and γ to $(11/2^-)$. rom $(7/2^-)$ and γ to $(11/2^-)$. bable $g_{7/2}$ proton state.						
1507.10 15	(1)/2)										

¹⁵¹Ho Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2}	XREF	Comments
1541.58 23			A	
1563.32 14			A	E(level): the adopted level energy is the average of two values obtained from the (poorly fitted) 694.4 γ and 898.0 γ .
1684.32 [#] 18	$(23/2^{-})$		B EF	
1791.09 [#] 22	$(21/2^{-})$		B EF	
1832.79 12	$(5/2^-, 7/2^-)$		Α	J ^{π} : probable allowed ε feeding from (7/2 ⁻) and γ to (5/2 ⁺).
1860.92 22			Α	
1946.9 <i>4</i>			Α	
2098.41 20	$(25/2^{-})$		B EF	Configuration= $(\pi h_{1/2}^5) \otimes (\nu f_{7/2})(\nu h_{9/2})$; seniority=3.
2227.22 21	$(27/2^{-})$		B EF	Configuration= $(\pi h_{11/2}^3) \otimes (\nu f_{7/2})(\nu h_{9/2})$; seniority=1.
2615.40 21	(27/2)		EF	Configuration= $(\pi h_{11/2}^{5})(^{150}\text{Gd} \ 3^{-}) \otimes (\nu t_{7/2}^{2})(\nu t_{7/2})(\nu t_{13/2}).$
2851.4? [©] 3	$(27/2^{-})$		EF	
2880.11 23	(29/2)		EF	Configuration= $(\pi h_{1/2}^5)^{(150}$ Gd $3^-) \otimes (v f_{7/2}^2) (v f_{7/2})(v i_{13/2}).$
3144.33 23	(29/2)		EF	$C_{ab} = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$
3135.57 23	(31/2) (33/2)		EF FF	Configuration= $(\pi n_{11/2}) \otimes (\nu_{17/2}) (\nu_{13/2}).$
3522.67.24	(33/2)		EF	
$3623.94^{@}23$	$(31/2^{-})$		FF	
3970.1 4	(35/2)		E	Configuration = $(\pi h_{2,n}^2) \otimes (v d_{2/2}) (v f_{2,n}^2)$
$4109.86^{@}.24$	$(35/2^{-})$		- FF	$(111/2)^{-1}(11/2)^{-1}(11/2)^{-1}$
1355 0 [@] 3	$(39/2^{-})$		FF	
4561 7 5	(39/2)		F	Configuration $-(\pi h^2) \otimes (v d_{2/2})(v f_{\pi/2})(v h_{2/2})$
4811 5 3	$(43/2^{-})$	≈1 ns	EF	Configuration= $(\pi h^3) \otimes (vf_{3/2})(vh_{3/2})$ seniority=3
1011.5 5	(13/2)	1115		$T_{1/2}$: from $\gamma(t)$ in $\frac{127}{128}$ i 5n $\gamma(t)$ (1994Zh08).
5293.5 4	(41/2)		EF	
5578.2? 4	(43/2)		EF	
5642.5 4	(45/2)		EF	
5835.9 4	(45/2)		EF	
58/5.3 4	$(4^{7}/2)$		EF	Configuration= $(\pi h_{11/2}^{1}) \otimes (\nu h_{9/2})(\nu_{113/2}).$
6184.0 4	(49/2)		EP EE	Configuration= $(\pi n_{11/2}^{5}) \otimes (\nu n_{9/2}) (\nu n_{13/2}).$
6513 7 4			F	
6522.7? 5			Ē	
6534.6 5			EF	
6659.8 4			EF	
6805.7? 5			E	
6850.5? 5			E	
0907.3 4			E FF	
7099.2.5			EF	
7128.8? 5			E	
7192.4 4			EF	
7326.4? 5			E	
7/54.3 4			E	
8025.570	(>57/2)	0.2 m 20	E	$T_{\rm res} = \alpha(t) = \frac{127}{29} \frac{127}{29} \frac{10047}{10047} \frac{10047}{100}$ Others 14 ns 3 (10016112)
8540.9 5	(237/2)	9.2 IIS 20	LF	$J_{1/2}$: $\gamma(t)$ in $t^{2-1}(t^{-5}, 51, 51\gamma)$ (1994Zh08). Other: 14 hs 5 (1961O112). J^{π} : from multiplicity=17±2 and assumption (by 1994Zh08) that an average yrast transition removes 1.65±0.16 units of angular momentum. $J(\text{isomer})=J(g,s,)+1.65(\text{multiplicity})=(67/2)\pm5.$
8651.7 6			Е	
9053.5? 6			E	
9531.9? 7			EF	
9958.7? 7			E	

¹⁵¹Ho Levels (continued)

[†] From least-squares fit to $E\gamma'$ s. The 898 γ from 1564 level was was omitted from the least-squares fitting procedure as it resulted in a poor fit with normalized χ^2 =7.5.

[‡] For high-spin (J>11/2) levels, the assignments are mainly based on multipolarities of selected transitions (about 12 in all) from $\gamma(\theta)$, $\gamma(\text{lin pol})$ and intensity-balance arguments. The shell-model predictions are also used. Ascending spins are assumed as the excitation energy rises.

 $\gamma(^{151}\text{Ho})$

Band(A): $\pi h_{11/2}^3 \otimes v f_{7/2}^2$. Multiplet of states with seniority=1.

^(a) Band(B): $\pi h_{11/2}^{3} \otimes v f_{7/2}^{2}$. Multiplet of states with seniority=3.

F.(level)	Iπ	Бţ	T †	Fc	Iπ	Mult	a &	Comments
	J _i	Lγ	ıγ	Lf	J <i>f</i>	Iviuit.	u	Comments
141.12	(3/2+)	100.1 <i>I</i>	100	41.0	(1/2+)	M1	2.60	$\alpha(K)=2.19 4; \alpha(L)=0.325 5;$ $\alpha(M)=0.0718 11; \alpha(N+)=0.0192 3$ $\alpha(N)=0.01667 24; \alpha(O)=0.00242 4;$ $\alpha(P)=0.0001357 20$ Mult.: from $\alpha(K)$ exp and K/L ratio in ¹⁵¹ Er ε decay (23.5 s)
397.60	(5/2+)	256.5 1	100	141.12	(3/2+)	M1	0.187	$\alpha(K)=0.1577\ 23;\ \alpha(L)=0.0230\ 4;\alpha(M)=0.00508\ 8;\ \alpha(N+)=0.001360\ 20\ \alpha(N)=0.001179\ 17;\ \alpha(O)=0.0001718\ 25;\alpha(P)=9.70\times10^{-6}\ 14\ Mult.:\ from\ \alpha(K)exp\ in\ ^{151}Er\ \varepsilon\ decay\ (23.5\ s).$
638.29	$(7/2^-, 9/2^-)$	638.3 1	100	0.0	$(11/2^{-})$			
667.18	(7/2 ⁻ ,9/2 ⁻)	667.2 1	100	0.0	$(11/2^{-})$			
699.93	$(7/2^+)$	302.4 2	52 4	397.60	$(5/2^+)$			
		558.8 <i>1</i>	100 10	141.12	$(3/2^+)$			
789.50	$(15/2^{-})$	789.5 1	100	0.0	$(11/2^{-})$			
861.7		720.6 2	100	141.12	$(3/2^{+})$			
868.92		230.7 2	9.7 12	638.29	$(7/2^{-}, 9/2^{-})$			
010.0		868.9 1	100 9	0.0	$(11/2^{-})$			
910.0		768.9 2	100	141.12	$(3/2^+)$			
934.6		537.0 2	100	397.60	$(5/2^+)$			
1001.62		860.5 1	100	141.12	$(3/2^{-})$			
1129.10		402.0 2	38 3 100 14	141 12	(1/2, 9/2)			
1202.1		987.92	100 14	141.12	(3/2)			
1202.1		641.5 1	100	638.20	(3/2) $(7/2^{-}0/2^{-})$			
1277.70		730 5 1	100	638.29	$(7/2^{-}, 9/2^{-})$			
1377.79	$(10/2^{-})$	597.6.1	100	789 50	(1/2, 3/2)			
1541 58	(1)/2)	874.4.2	100	667.18	$(13/2^{-})$ $(7/2^{-})$			
1563.32		694.4 1	100 11	868.92	(12,512)			
1505.52		898.0 2	62 10	667.18	(7/2 ⁻ ,9/2 ⁻)			E_{γ} : poor fit. Level-energy difference=896.1. This γ energy was not included in the least-squares fitting
1 (0 1 00	(22/2-)	207.0.1	100	1207 10	(10/2-)	(TO) (0)	0.0607	
1684.32	(23/2)	297.2 1	100	1387.10	(19/2)	(E2) ^e	0.0687	$\alpha(\mathbf{K})=0.0508 \ 8; \ \alpha(\mathbf{L})=0.01385 \ 20; \\ \alpha(\mathbf{M})=0.00322 \ 5; \ \alpha(\mathbf{N}+)=0.000831 \\ 12 \\ \alpha(\mathbf{N})=0.000722 \ 14 \\ \alpha(\mathbf{N})=0.000831 \\ \alpha($
						-		$\alpha(P)=2.62\times10^{-6} 4$
1791.09	(21/2 ⁻)	106.6 3		1684.32	(23/2 ⁻)	(M1) [@]	2.17 4	α (K)=1.83 3; α (L)=0.271 5; α (M)=0.0599 10; α (N+)=0.0160 3

Continued on next page (footnotes at end of table)

γ ⁽¹⁵¹Ho) (continued)</sup>

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.	α &	Comments
								α(N)=0.01390 23; α(O)=0.00202 4; α(P)=0.0001133 19 I _γ : from assumed (by evaluator) intensity balance at 1684 level in ¹⁵¹ Er ε decay, I(γ+ce)(106.6γ)/Iγ(404γ)≈100/ 57.
1791.09 1832.79	(21/2 ⁻) (5/2 ⁻ ,7/2 ⁻)	404.1 <i>3</i> 455.0 <i>2</i> 553.0 <i>1</i> 1194.5 <i>2</i> 1435 <i>2 2</i>	32.6 22 97 8 100 7 99 7	1387.10 1377.79 1279.79 638.29 397.60	$(19/2^{-})$ $(7/2^{-},9/2^{-})$ $(5/2^{+})$			
1860.92		992.0 2 1540 3 3	100	868.92 307.60	$(5/2^+)$			
2098.41	(25/2 ⁻)	307.3 2	23 7	1791.09	$(3/2^{-})$ $(21/2^{-})$			I _{γ} : from ¹⁵¹ Er ε (0.58 s). Other: 42 7 in high spin data.
		414.1 <i>1</i>	100 7	1684.32	(23/2 ⁻)	M1+E2 [‡]	0.039 14	$\begin{aligned} &\alpha(\mathbf{K}) = 0.032 \ 12; \ \alpha(\mathbf{L}) = 0.0054 \ 10; \\ &\alpha(\mathbf{M}) = 0.00120 \ 20; \\ &\alpha(\mathbf{N}+) = 0.00032 \ 6 \\ &\alpha(\mathbf{N}) = 0.00028 \ 5; \ \alpha(\mathbf{O}) = 3.9 \times 10^{-5} \\ &9; \ \alpha(\mathbf{P}) = 1.9 \times 10^{-6} \ 8 \\ &\delta: \ -0.19 \ 2 \ \text{or} \ -3.4 \ 5. \end{aligned}$
2227.22	(27/2 ⁻)	128.8 <i>I</i>	100 7	2098.41	(25/2 ⁻)	M1(+E2) [‡]	1.19 8	$\begin{aligned} &\alpha(\mathbf{K}) = 0.82 \ 25; \ \alpha(\mathbf{L}) = 0.29 \ 14; \\ &\alpha(\mathbf{M}) = 0.07 \ 4; \ \alpha(\mathbf{N}+) = 0.017 \ 9 \\ &\alpha(\mathbf{N}) = 0.015 \ 8; \ \alpha(\mathbf{O}) = 0.0020 \ 8; \\ &\alpha(\mathbf{P}) = 4.5 \times 10^{-5} \ 21 \\ &\delta: \ 0.5 \ 3 \ \text{or} \ 1.8 \ + 16 - 6. \end{aligned}$
2615.40 2851.4?	(27/2) $(27/2^{-})$	542.9 <i>3</i> 517.0 <i>1</i> 624.2 <i>3</i>	26 100 100	1684.32 2098.41 2227.22	(23/2 ⁻) (25/2 ⁻) (27/2 ⁻)			
2880.11	(29/2)	264.7 <i>1</i>		2615.40	(27/2)	(M1) [@]	0.1719	$\alpha(K)=0.1448 \ 21; \ \alpha(L)=0.0211 \ 3; \\ \alpha(M)=0.00466 \ 7; \\ \alpha(N+)=0.001248 \ 18 \\ \alpha(N)=0.001082 \ 16; \\ \alpha(O)=0.0001576 \ 23; \\ \alpha(P)=8 \ 90\times 10^{-6} \ 13 \\ \alpha(D)=0.00126 \ 13 \\ \alpha(D)=0.0001576 \ 23; \\ \alpha(D)=$
3144.33	(29/2)	653.0 <i>3</i> 529.0 <i>3</i>		2227.22 2615.40	$(27/2^{-})$ (27/2) $(27/2^{-})$			
3155.37	(31/2)	(11)		3144.33	(29/2)	— · · @		
		275.3 3	100	2880.11	(29/2)	(E1) [@]	0.0221	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0187 \ 3; \ \alpha(\mathbf{L}) = 0.00268 \ 4; \\ &\alpha(\mathbf{M}) = 0.000589 \ 9; \\ &\alpha(\mathbf{N}+) = 0.0001558 \ 23 \\ &\alpha(\mathbf{N}) = 0.0001357 \ 20; \\ &\alpha(\mathbf{O}) = 1.92 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{P}) = 9.68 \times 10^{-7} \ 14 \end{aligned}$
3314.5	(33/2)	540.0 <i>3</i> 159.1 <i>3</i> 434.4 <i>3</i>	60	2615.40 3155.37 2880.11	(27/2) (31/2) (29/2)			
3522.67	(33/2)	208.3 <i>3</i> 367.3 <i>1</i>		3314.5 3155.37	(33/2) (31/2)	(M1)	0.0717	$\begin{array}{l} \alpha({\rm K}){=}0.0605 \; 9; \; \alpha({\rm L}){=}0.00875 \; 13; \\ \alpha({\rm M}){=}0.00193 \; 3; \\ \alpha({\rm N}{+}){=}0.000517 \; 8 \\ \alpha({\rm N}){=}0.000448 \; 7; \end{array}$

Continued on next page (footnotes at end of table)

γ ⁽¹⁵¹Ho) (continued)</sup>

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.	α &	Comments
					(0.5./0)			α (O)=6.53×10 ⁻⁵ <i>10</i> ; α (P)=3.70×10 ⁻⁶ 6
3623.94	(31/2 ⁻)	172.6 3 1396.7 1	14 100 <i>14</i>	2851.4? 2227.22	(27/2 ⁻) (27/2 ⁻)	(E2) [‡]	1.69×10 ⁻³	$\alpha(K)=0.001392\ 20;\ \alpha(L)=0.000198\ 3;$ $\alpha(M)=4.34\times10^{-5}\ 6;$ $\alpha(N+)=5.29\times10^{-5}\ 8$ $\alpha(N)=1.006\times10^{-5}\ 14;\ \alpha(O)=1.455\times10^{-6}$ $21;\ \alpha(P)=7.99\times10^{-8}\ 12;$ $\alpha(IPF)=4.13\times10^{-5}\ 6$
3970.1	(35/2)	655.6 <i>3</i> 814.7 <i>3</i>	100 16	3314.5 3155.37	(33/2) (31/2) $(21/2^{-})$			
4109.80	(33/2)	483.9 1 587.2 1	100 10	3522.67	(31/2) (33/2)			
4355.9	(39/2 ⁻)	246.0 <i>1</i>	100	4109.86	(35/2 ⁻)	(E2) ^{‡@}	0.1241	$\alpha(K)=0.0875 \ 13; \ \alpha(L)=0.0282 \ 4; \ \alpha(M)=0.00661 \ 10; \ \alpha(N+)=0.001700 \ 24 \ \alpha(N)=0.001504 \ 22; \ \alpha(O)=0.000192 \ 3; \ \alpha(D)=4 \ 35\times10^{-6} \ 7$
4561.7	(39/2)	591.6 <i>3</i>		3970.1	(35/2)			$u(r) = 4.33 \times 10^{-7}$
4811.5	(43/2 ⁻)	455.6 <i>1</i>	100	4355.9	(39/2 ⁻)	(E2) [‡]	0.0202	B(E2)(W.u.)≈0.6 α (K)=0.01598 23; α (L)=0.00325 5; α (M)=0.000740 11; α (N+)=0.000194 3 α (N)=0.0001698 24: α (O)=2.30×10 ⁻⁵ 4:
								$\alpha(P)=8.81\times10^{-7}$ 13
5293.5	(41/2)	937.6 3	100	4355.9	$(39/2^{-})$			
55/8.2?	(43/2)	284.6 3	100	5293.5	(41/2)	5 #		
5642.5	(45/2)	831.13	100	4811.5	(43/2)	D"		
3633.9	(43/2)	1024 4 2	100 15	JJ70.21	(43/2)	D#		
5875.3	(47/2)	39.3 3	100 15	5835.9	(45/2)	D		
	(,=)	232.8 <i>1</i> 1063.9 <i>3</i>		5642.5 4811.5	(45/2) $(43/2^{-})$	D [#]		γ reported only by 1994Zh08.
6184.0 6225.4 6513.7	(49/2)	308.7 <i>1</i> 41.4 <i>3</i> 350.1 <i>3</i> 329.7 <i>3</i>	100	5875.3 6184.0 5875.3 6184.0	(47/2) (49/2) (47/2) (49/2)	D+Q [‡]		δ: -0.45 25 or -1.9 +6-20.
6522.7? 6534.6		338.7 <i>3</i> (21)		6184.0 6513.7	(49/2)			
6659.8		309.1 <i>3</i> 125.3 <i>3</i> 146.1 <i>3</i> 434 4 <i>3</i>		6225.4 6534.6 6513.7 6225.4				
6805.7?		621.7.3		6184.0	(49/2)			
6850.5?		1014.6 3		5835.9	(45/2)			
6907.5		723.4 3		6184.0	(49/2)			
7071.2		10/1.8 3		5835.9	(45/2)			
70/1.2		007.2 3 564 6 3	100	6534.6	(49/2)			
7128.8?		944.8 <i>3</i>	100	6184.0	(49/2)			
7192.4		1008.4 3		6184.0	(49/2)			
7326.4?		1142.4 3		6184.0	(49/2)			
7754.3		561.9 <i>3</i> 1094.5 <i>3</i>		7192.4 6659.8				

Continued on next page (footnotes at end of table)

$\gamma(^{151}\text{Ho})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	J_f^π
7754.3		1528.9 <i>3</i>	6225.4		8651.7		310.8 3	8340.9	(≥57/2)
		1570.3 <i>3</i>	6184.0	(49/2)	9053.5?		712.6 <i>3</i>	8340.9	(≥57/2)
8025.5?		954.3 <i>3</i>	7071.2		9531.9?		478.4 <i>3</i>	9053.5?	
8340.9	(≥57/2)	586.6 <i>3</i>	7754.3		9958.7?		1307.0 <i>3</i>	8651.7	
		1241.7 <i>3</i>	7099.2						

[†] From ¹⁵¹Er ε decay (23.5 s) for γ rays from low-spin (J<11/2) states and primarily from ¹⁴¹Pr(¹⁶O,6n γ) for γ rays from high-spin (J>9/2) states. Other two high-spin datasets: ¹⁵¹Er ε decay (0.58 s) and ¹²⁷I(²⁹Si,5n γ) are also considered in obtaining weighted averages when a level is populated in more than one of these three datasets.

[‡] From $\gamma(\theta)$ and linear polarization in ¹⁴¹Pr(¹⁶O,6n γ).

[#] $\gamma(\theta)$ consistent with $\Delta J=1$.

[@] From intensity-balance arguments in $^{127}I(^{29}Si,5n\gamma)$.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁵¹₆₇Ho₈₄

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level γ Decay (Uncertain) = 102,40 100 9910'1' (45/2) 5835.9 Ś. 2gg. 6 <u>5642.5</u> _5578.2 (45/2) 4 93.50 100 1 (43/2) T (41/2) 5293.5 + 45.6 (2.3) 100 | $(43/2^{-})$ <u>4811.5</u> ≈1 ns + 246,0 | - ³,6² -(39/2) 4561.7 (39/2-) 4355.9 <u>_8_8</u> 262 1, 5: 62 1, 0: 62 (35/2-) $\left. \left. \left| \frac{^{13_{0}}{2^{2_{0}}}, (c_{2})}{2^{2_{0}}} \right|^{10_{0}} \right|$ 4109.86 5<u>5</u>-814 (35/2) 3970.1 1 3073 (11) (31/2-) 3623.94 (33/2) -9 3522.67 434,4 159,1 (33/2) 3314.5 (31/2) (29/2) Т - 0330 - 3320 - 3042 3155.37 . 3144.33 (29/2)2880.11 0;15+ (27/2⁻) 2851.4 _ ¥ _ (27/2) + 41⁴/100/23×100/145×100/1 2615.40 $(27/2^{-})$ 2227.22 $(25/2^{-})$ 2098.41 1540 1946.9 $(21/2^{-})$ 1791.09 $(23/2^{-})$ 1684.32 $(5/2^+)$ 397.60 $(11/2^{-})$ 0.0 35.2 s *1*

¹⁵¹₆₇Ho₈₄

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁵¹₆₇Ho₈₄

Adopted Levels, Gammas

¹⁵¹₆₇Ho₈₄