¹⁵⁵Tm α decay (45 s) **1971To10,1991To08,1990Po13**

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	NDS 110, 1 (2009)	20-Nov-2008		

Parent: ¹⁵⁵Tm: E=41 6; $J^{\pi}=1/2^+$; $T_{1/2}=45$ s 3; $Q(\alpha)=4572$ 5; % α decay<2.0

¹⁵⁵Tm-Energy, J^{π} , T_{1/2} and related comments are mostly from evaluation A=155 (2005Re01).

¹⁵⁵Tm-E: from the inability to resolve the 4462-keV α peak into the expected two components from the two activities in ¹⁵⁵Tm to the corresponding two states (separated by 41 keV) in ¹⁵¹Ho, 1990Po13 conclude that the ¹⁵⁵Tm isomer lies 41 6 keV above the ¹⁵⁵Tm g.s.

¹⁵⁵Tm-J^{π}: favored α transition to the 41, $J^{\pi}=1/2^+$, state in ¹⁵¹Ho. Assignment supported by the level systematics in this region. ¹⁵⁵Tm-T_{1/2}: weighted average of 44 s 4 (1991To08), γ (t), and 47 s 6 (1990Po13), α (t).

¹⁵⁵Tm- $\Re \alpha$ decay: $\Re A < 2$, deduced by the evaluator of A=155 (2005Re01) from the calculated α half-life for HF>1.

1991To08: ⁹⁵Mo(⁶⁴Zn,xnyp) E=291 MeV. Mass separated α =155 products. ¹⁵⁵Tm produced mainly by ε decay of ¹⁵⁵Yb. Measured a, $\%\alpha$, T_{1/2}.

1990Po13: W(p,X) E=600 MeV. ¹⁵⁵Tm produced by spallation reaction with subsequent mass separation. Measured a, $\%\alpha$, T_{1/2}. 1971To10: produced in ¹⁴⁴Sm(¹⁴N,3n) reaction. Isotope identification on the basis of excitation functions, cross bombardment and

parent-daughter relationship.

 $T_{1/2}$ (¹⁵⁵Tm isomer): from weighted average of 44 s 4 (1991To08) and 47 s 6 (1990Po13). E(¹⁵⁵Tm isomer)≈41 (1991To08), 41 6 (1990Po13).

¹⁵¹Ho Levels

E(level)	J^{π}	Comments
41.0 2	$(1/2^+)$	E(level): the α group is thought to feed the low-spin ¹⁵¹ Ho isomer on the basis that the 4.60-MeV α line from the decay of the low spin ¹⁵¹ Ho isomer showed an appreciably longer half life than 47 s due to the feeding
		from a parent which has approximately the same half-life.

α radiations

Eα	E(level)	Comments			
4450 10	41.0	$E\alpha$: from 1971To10. Other: 4462 (1990Po13). This group is considered (1991To08) to be a doublet, the other			
		component is from the 21.6-s ¹⁵⁵ Tm g.s.			