¹⁵⁵Tm α decay (21.6 s) 1971To10,1991To08,1990Po13

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	NDS 110, 1 (2009)	20-Nov-2008		

Parent: ¹⁵⁵Tm: E=0; $J^{\pi}=11/2^{-}$; $T_{1/2}=21.6$ s 2; $Q(\alpha)=4572$ 5; % α decay=0.89 24

 155 Tm- J^{π} , T_{1/2} and related comments are mostly from evaluation of A=155 (2005Re01).

¹⁵⁵Tm-J^{π}: favored α transition to the ¹⁵¹Ho g.s. ($J^{\pi}=11/2^{-}$). Probable Gamow-Teller transition to the 226 level establishes $J^{\pi}=11/2^{-}$ and $9/2^{-}$, respectively, for the parent and daughter states in this transition, as well as configurations= π h_{11/2} and ν h_{9/2}

for the two states. This assignment is also supported by the level systematics in this region.

¹⁵⁵Tm-T_{1/2}: from 1991To08, α (t). Others: 26 s 3 (1992Ha10); 23 s 3 (1990Po13), γ (t); 25 s 4 (1977Ag01), γ (t). Note that the value 39 s 3 as reported by 1971To10 from α (t) is not correct, since it included a contribution from the 45-s ¹⁵⁵Tm isomer.

¹⁵⁵Tm- $\Re \alpha$ decay: $\Re A=0.89\ 24$ from weighted average of 1.2 6 (1990Po13) and 0.84 26 (1992Ha10), both from the ratio of α -particle to γ -ray intensities in this decay. 1990Po13 do not state what γ 's were used in their analysis. 1992Ha10 report $\Re \alpha=2.1$ 3, assuming that I $\gamma(226\gamma)$ represents 100% of the ε decays. This I γ value was corrected to 40% 11 by the evaluator, based on the present decay scheme (see the comment in the ¹⁵⁵Tm ε Decay (21.6 s) dataset). From the calculated α -decay half-life, $\Re \alpha \approx 0.9$ is deduced. The α decay of this level is also discussed by 1994To10. Others: ≈ 1 (1991To08), <4 (systematics of E α vs T_{1/2}).

1991To08: ⁹⁵Mo(⁶⁴Zn,xnyp) E=291 MeV. Mass separated α =155 products. ¹⁵⁵Tm produced mainly by ε decay of ¹⁵⁵Yb. Measured a, $\Re \alpha$, T_{1/2}. See 1994To10 for a detailed discussion of results.

1990Po13: W(p,X) E=600 MeV. ¹⁵⁵Tm produced by spallation reaction with subsequent mass separation. Measured a, %α, T_{1/2}.
1971To10: produced in ¹⁴⁴Sm(¹⁴N,3n) reaction. Isotope identification on the basis of excitation functions, cross bombardment and parent-daughter relationship.

1992Ha10: measured $E\alpha$, $\%\alpha$, $T_{1/2}$.

 $T_{1/2}(^{155}$ Tm g.s.): from 1991To08. Others: 26 s 3 (1992Ha10), 23 s 3 (1990Po13), 25 s 4 (1977Ag02). $T_{1/2}=39$ s 3 (1971To10) from $\alpha(t)$ includes a contribution from 45-s 155 Tm isomer.

¹⁵¹Ho Levels

E(level)	\mathbf{J}^{π}
0.0	$(11/2^{-})$

 α radiations

Εα	E(level)	Comments			
4452 8	0.0	Eα: from 1992Ha10. Others: 4450 10 (1971To10), 4462 (1990Po13). This group is considered (1991To08) to			
		be a doublet, the other component is from the 44-s 155 Tm isomer			