| Туре            | Author       | History<br>Citation | Literature Cutoff Date |
|-----------------|--------------|---------------------|------------------------|
| Full Evaluation | Balraj Singh | NDS 110, 1 (2009)   | 20-Nov-2008            |

 $\begin{array}{l} Q(\beta^{-}) = -2565 \ 4; \ S(n) = 6496 \ 7; \ S(p) = 6685 \ 7; \ Q(\alpha) = 2653 \ 3 \\ Q(\varepsilon) = 464 \ 3; \ S(2n) = 15204 \ 7; \ S(2p) = 11631 \ 7 \\ 2017Wa10 \\ \mbox{Additional information 1.} \\ \mbox{Additional information 2.} \\ \mbox{Mass excess measurement: } 1975Ka25. \\ \mbox{Isotope shift measurement: } 1988A140. \\ \end{array}$ 

Theoretical work dealing with nuclear structure: 1979Sm01, 1977Bu28, 1977Kl04, 1977Sm01. SD structure theory and analysis: 2002Pa25, 1999Kh05, 1998Ha53.

#### 151Gd Levels

SD bands in <sup>151</sup>Gd are tentative.

#### Cross Reference (XREF) Flags

|                                           |                                      | A<br>B<br>C       | <sup>151</sup> Tb <i>e</i><br><sup>151</sup> Tb <i>e</i><br><sup>130</sup> Te( <sup>2</sup> | $\begin{array}{rcl} s \ decay \ (17.609 \ h) & D & {}^{149} \mathrm{Sm}(\alpha, 2n\gamma), {}^{150} \mathrm{Sm}(\alpha, 3n\gamma) \\ s \ decay \ (25 \ s) & E & {}^{152} \mathrm{Gd}(\mathrm{d}, \mathrm{t}) \\ {}^{66} \mathrm{Mg}, 5n\gamma) : \mathrm{SD} & F & {}^{152} \mathrm{Gd}({}^{3} \mathrm{He}, \alpha) \end{array}$                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------|--------------------------------------|-------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E(level) <sup>‡</sup>                     | J″†                                  | T <sub>1/2</sub>  | XREF                                                                                        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0 <sup>b</sup>                          | 7/2-                                 | 123.9 d <i>10</i> | EF                                                                                          | %ε=100; %α≈0.8×10 <sup>-6</sup><br>μ=0.77 6 (1989Ra17,1987Be33)<br>%α from Iα/I(K x ray)=0.8×10 <sup>-8</sup> +8-4 (1965Si06).<br>J <sup>π</sup> : atomic-beam method (1972Ek05) and L(d,t)=3.<br>T <sub>1/2</sub> : from 1984Gr15. Others: 1983Vo10, 1963Mi04, 1958An34, 1950He18.<br>μ: nuclear orientation (1987Be33). See also 2005St24 compilation of moments.                                                                                                                                                                                                                                                                 |
| 108.094 7                                 | 5/2-                                 | 2.80 ns 11        | A DEF                                                                                       | α decay theory: 2006Me15, 2003Gu13.<br>$\mu$ =-1.08 <i>I3</i> (1989Ra17,1977VaZJ,1977GrZF)<br>$\mu$ : from integral PAC (1976Ba26,1976Ba59). Others: -1.23 <i>I7</i><br>(1976Ba26,1976Ba59,1989Ra17), -1.35 <i>22</i> (1972Af04), -1.7 <i>4</i> (1975AfZZ). See<br>also 2005St24 compilation of moments.<br>J <sup>π</sup> : M1+E2 γ to 7/2 <sup>-</sup> and γγ(θ) in <sup>151</sup> Tb ε decay.<br>T <sub>1/2</sub> : weighted average of 3.00 ns <i>10</i> (ceγ(t), 1972Af03), 2.60 ns <i>13</i> (ceγ(t),<br>1970Mo14), 2.72 ns <i>25</i> (cece(t), 1969Ba64) and 2.66 ns <i>15</i> (γγ(t),                                       |
| 379.30 <sup><i>a</i></sup> 3<br>395.445 7 | 9/2 <sup>-</sup><br>3/2 <sup>-</sup> | 0.29 ns <i>3</i>  | B DEF<br>A DE                                                                               | I 969BOZR).<br>J <sup>π</sup> : from $\gamma(\theta)$ , $\gamma(\text{pol})$ data in ( $\alpha, \text{xn}\gamma$ ) and M1 $\gamma$ to 7/2 <sup>-</sup> .<br>$\mu$ =-2.48 75 (1989Ra17,1977VaZJ,1977GrZF)<br>$\mu$ : integral PAC (1977VaZJ,1977GrZF). Other: -1.35 41, -1.72 43, -2.24 62<br>(1975AfZZ). See also 2005St24 compilation of moments.<br>J <sup>π</sup> : $\gamma\gamma(\theta)$ in <sup>151</sup> Tb $\varepsilon$ decay and E2 $\gamma$ to 7/2 <sup>-</sup> .<br>T <sub>1/2</sub> : average of 0.31 ns 4 (ce $\gamma$ (t), 1972Af03), 0.24 ns 4 (ce $\gamma$ (t), 1970Mo14)<br>and 0.32 ns 4 (ce $ce$ (t), 1969Ba64) |
| 426.688 7<br>575.619 8                    | 5/2 <sup>-</sup><br>1/2 <sup>-</sup> | 0.23 ns <i>3</i>  | A DEF<br>A                                                                                  | $J^{\pi}$ : M1 $\gamma$ to 7/2 <sup>-</sup> and $\gamma$ from 1/2 <sup>-</sup> .<br>$J^{\pi}$ : from $\gamma\gamma(\theta)$ and M1+E2 $\gamma$ to 3/2 <sup>-</sup> .<br>Population in ( $\alpha$ ,xn $\gamma$ ) considered uncertain by the evaluator.<br>$T_{1/2}$ : average of 0.23 ns 3 (ce $\gamma$ (t), 1972Af03) and 0.23 ns 4 (cece(t), 1970Mo14).                                                                                                                                                                                                                                                                           |
| 584.78 <i>11</i><br>587.449 7             | 5/2,9/2<br>3/2 <sup>-</sup>          | 0.30 ns 2         | D<br>A DE                                                                                   | $J^{\pi}$ : $\Delta J=1 \gamma$ to 7/2 <sup>-</sup> .<br>$J^{\pi}$ : E2 $\gamma$ to 7/2 <sup>-</sup> and L(d,t)=1 L(n)=1 in (d,t).<br>$T_{1/2}$ : ce $\gamma$ (t) (1972Af03).                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Continued on next page (footnotes at end of table)

# <sup>151</sup>Gd Levels (continued)

| E(level) <sup>‡</sup>         | $J^{\pi^+}$                         | T <sub>1/2</sub> | Х | REF    | Comments                                                                                                                                 |
|-------------------------------|-------------------------------------|------------------|---|--------|------------------------------------------------------------------------------------------------------------------------------------------|
| 589.10 7                      | 3/2-,5/2,7/2-                       |                  |   | D      | $J^{\pi}$ : $\gamma'$ s to $3/2^{-}$ and $7/2^{-}$ .                                                                                     |
| 618.14 11                     | 5/2-,7/2-,9/2-                      |                  |   | D      | $J^{\pi}$ : M1 $\gamma$ to 7/2 <sup>-</sup> .                                                                                            |
| 620.602 13                    | $3/2^{-}, 5/2^{(-)}$                |                  | A | Е      | $J^{\pi}$ : (E2) $\gamma$ to $7/2^{-}$ and $\gamma$ from $1/2^{-}$ .                                                                     |
| 670.86 6                      | $(5/2,7/2)^{-}$                     |                  |   | DEF    | $J^{\pi}$ : M1.E2 $\gamma$ to $5/2^{-}$ and L(n)=(3) from $\sigma(d,t)/\sigma({}^{3}\text{He},\alpha)$ .                                 |
| 697?                          | (-,-,-,-)                           |                  |   | Е      |                                                                                                                                          |
| 705 98 <sup>b</sup> 3         | 11/2-                               |                  |   | DF     | $I^{\pi}$ : from $\gamma(\theta)$ and F2 $\gamma$ to $7/2^{-1}$                                                                          |
| 719.46 4                      | 9/2-                                |                  |   | D      | $J^{\pi}$ : $\gamma(\theta)$ and E2 $\gamma$ to $7/2^-$ . E1 $\gamma$ from $11/2^+$ .                                                    |
| 781 81 & 1                    | 11/2+                               |                  |   | D      | $I^{\pi}$ : $\gamma(\theta)$ E1 $\gamma(0)^{2-1}$ and $\gamma(0)^{1/2-1}$                                                                |
| 811 835 8                     | 3/2-                                |                  | Δ | F      | $J^{\pi}$ : F2 $\gamma$ to $7/2^{-}$ and F1 $\gamma$ from $1/2^{+}$                                                                      |
| 839.320.8                     | $1/2^{-}$                           | 0.28 ns 3        | A | DE     | $J^{\pi}$ : $\gamma \gamma(\theta)$ and E2 $\gamma$ to $5/2^{-1}$ .                                                                      |
| 057.520 0                     | 1/2                                 | 0.20 115 5       |   | 22     | $T_{1/2}$ : weighted average of 0.26 ns 3 (cev(t), 1972Af03) and 0.32 ns 5                                                               |
|                               |                                     |                  |   |        | $(ce\gamma(t), 1970Mo14).$                                                                                                               |
| $851.90^{@}$ 4                | $13/2^{+}$                          |                  |   | DEF    | $I^{\pi}$ , $\gamma(\theta)$ and $\gamma(\ln \text{ pol})$ of 146 $\gamma$ ; $\gamma$ to 11/2 <sup>+</sup>                               |
| 882?                          | 10/2                                |                  |   | E      | $(1, \gamma(0))$ and $\gamma(1, \gamma(0)) \neq 1, 0, \gamma, \gamma(0) \neq 1, 2$                                                       |
| 901.97 <sup>a</sup> 4         | 13/2-                               |                  | В | D      | $J^{\pi}$ : $\gamma(\theta)$ , $\gamma(\lim \text{pol})$ and E2 $\gamma$ to $9/2^{-}$ .                                                  |
| 905.58 9                      | $(3/2^{-}, 5/2^{-})$                |                  | Α |        | $J^{\pi}$ : (M1.E2) $\gamma$ to $7/2^{-}$ and $\gamma$ from $3/2^{(+)}$ .                                                                |
| 913.2                         | $(9/2^{-},11/2^{-})$                |                  |   | EF     | $J^{\pi}$ : L(n)=(5) from $\sigma(d,t)/\sigma({}^{3}\text{He},\alpha)$ . L-value indicates that this level is                            |
|                               | (7)= (7-7)= (7)                     |                  |   |        | different from the 913.6 level seen in $^{151}$ Th decay.                                                                                |
| 913.56 2                      | $(3/2^{-})$                         |                  | Α |        | $J^{\pi}$ : M1 $\gamma$ from (1/2 <sup>-</sup> ,3/2 <sup>-</sup> ), $\gamma$ to 7/2 <sup>-</sup> and from 1/2 <sup>+</sup> .             |
| 938.77 7                      | $(3/2^{-}, 5/2^{-}, 7/2^{-})$       |                  | A |        | $J^{\pi}$ : (M1,E2) $\gamma$ to 7/2 <sup>-</sup> and from (1/2,3/2) <sup>-</sup> .                                                       |
| 982.27 4                      | $(3/2)^+$                           |                  | A | EF     | $J^{\pi}$ : L(n)=2 in (d,t) and $\gamma$ to $1/2^{-}$ .                                                                                  |
| 1050 2                        | $1/2^{+}$                           |                  |   | EF     | $J^{\pi}$ : L(n)=0 in (d,t).                                                                                                             |
| 1052.20 2                     | 1/2-,3/2-                           |                  | A |        | $J^{\pi}$ : M1 $\gamma$ to 1/2 <sup>-</sup> .                                                                                            |
| 1076.95 12                    | (9/2 to 13/2) <sup>-</sup>          |                  |   | D      | $J^{\pi}$ : (E2) $\gamma$ to 9/2 <sup>-</sup> and no $\gamma$ 's to J<9/2.                                                               |
| 1087.59 2                     | 3/2-                                |                  | A | E      | $J^{\pi}$ : $\gamma\gamma(\theta)$ , M1 $\gamma$ to $1/2^{-}$ and $\gamma$ to $7/2^{-}$ .                                                |
| 1115.77 4                     | $13/2^+$                            |                  |   | D      | $J^{n}$ : $\gamma(\theta)$ of 331 $\gamma$ and 264 $\gamma$ . M1 $\gamma'$ s to 11/2 <sup>+</sup> and 13/2 <sup>+</sup> .                |
| 1157.90 2                     | $(3/2)^+$                           |                  | A |        | $J^{\pi}$ : E1 $\gamma$ to $3/2^{-}$ and $\gamma'$ s to $1/2^{-}$ and $5/2^{-}$ .                                                        |
| 1159 2                        | (5/2, 7/2, 9/2)                     |                  |   | EF     | $J^{\pi}$ : L(n)=(3,4) from $\sigma(d,t)/\sigma({}^{3}\text{He},\alpha)$ .                                                               |
| 1164.3? 2                     | $(13/2, 15/2^{+})$                  |                  |   | ע      | $J^{*}$ : $\gamma$ to 11/2' and from 1//2.                                                                                               |
| 1192.19 1                     | 1/2                                 |                  | A | E      | $J^{\pi}$ : $\gamma\gamma(\theta)$ <sup>151</sup> 1b $\varepsilon$ decay, L(n)=0 in (d,t) and E1 $\gamma$ to 1/2.                        |
| 1199.15 5                     | (1/2 ,3/2,5/2 )                     |                  | A |        | $J^{*}$ : $\gamma$ 's to 3/2 and 5/2 ; log $ft=9.5$ from $1/2^{(1)}$ .                                                                   |
| 1210.06" 8                    | 11/2-                               |                  | В | DEF    | $J^{\pi}$ : $\gamma(\theta)$ of 1211 $\gamma$ and E1 $\gamma$ to 13/2 <sup>+</sup> .                                                     |
| 1261 5                        | 2/0- 5/0-                           |                  |   | F      |                                                                                                                                          |
| 12/9.06 3                     | 3/2 ,5/2                            |                  | A | _      | $J^*: MI \gamma$ to $5/2$ , $\gamma$ 's to $1/2$ .                                                                                       |
| 1345.44 6                     | $17/2^{+}$                          |                  |   | D _    | $J^{\pi}$ : $\gamma(\theta)$ and E2 $\gamma$ to $13/2^{+}$ .                                                                             |
| 1351.5                        |                                     |                  |   | F      | -                                                                                                                                        |
| 1363.84 <sup>cc</sup> 5       | 15/2+                               |                  |   | D      | $J^{n}$ : $\gamma(\theta)$ and E1 $\gamma$ to $13/2^{-}$ .                                                                               |
| 1364 2                        | 1/0= 2/0= 5/0=                      |                  |   | E      |                                                                                                                                          |
| 13/3.95 2                     | 1/2, $3/2$ , $3/2$                  |                  | A |        | $J^{\pi}$ : M1 $\gamma$ to $3/2^{-}$ , to $7/2^{-}$                                                                                      |
| 1405.14 5                     | (11/2  to  15/2)                    |                  | A | Л      | J. MI $\gamma$ to $3/2$ , $\gamma$ to $1/2$ .<br>$I^{\pi}$ : $\gamma$ to $11/2^{-}$ and no $\gamma'$ s to low spin states                |
| $1425 00^{b} \epsilon$        | (11/2 to 15/2)                      |                  |   | D      | $\overline{M}$ , $\overline{E}_{2}$ at the $11/2^{-1}$ at the $12/2^{+1}$ and probable hand assignment                                   |
| 1455.00 0                     | (13/2)<br>$1/2^{-} 2/2^{-} 5/2^{-}$ |                  |   | D      | J. E2 $\gamma$ to $11/2$ , $\gamma$ to $15/2$ and probable band assignment.                                                              |
| 1430.38 3                     | 1/2 ,5/2 ,5/2                       |                  | A |        | J <sup><math>\sim</math></sup> : M11,E2 to 5/2 and log $j_l=8.0$ from this level. It is possible that there                              |
|                               |                                     |                  |   |        | are two closely spaced levels                                                                                                            |
| 1462 27# 0                    | $(12/2)^{-1}$                       |                  |   | D      | $M_{\rm e}$ cr(0) and M1 (E2 cr to 11/2 <sup>-</sup>                                                                                     |
| 1403.27 9                     | (15/2)<br>$(1/2^{-}, 2/2, 5/2^{-})$ |                  |   | U<br>F | $J^{-1}$ : $\gamma(\theta)$ and M1+E2 $\gamma$ to 11/2.                                                                                  |
| 14/1.00 9                     | (1/2, 3/2, 3/2)                     |                  | A | E<br>T | J. $\gamma$ to $3/2$ and $\log f = 7.5$ from $1/2^{-\gamma}$ .                                                                           |
| 1493.38 J                     | (1/2  to  3/2)                      |                  | A | г      | J. (1011) Y to $3/2$ and $\log f = 7.9$ from $1/2^{5/7}$ .                                                                               |
| 1505.41 2                     | $1/2^{,}, 3/2^{,}$                  |                  | A | р      | J. (W11,E2) $\gamma$ to $3/2^{-1}$ and $\log j l = 1.1$ from $1/2^{1/2}$ .<br>$I^{\pi_{1/2}} \alpha'_{s}$ to $11/2^{+1}$ and $13/2^{-1}$ |
| 1505.75 14<br>$1510.92^{a}$ 6 | (11/2  to  13/2)<br>$17/2^{-}$      |                  |   | ע<br>ח | J. $\gamma \le 0.11/2$ and $1.3/2$ .<br>$I^{\pi} : \gamma(A) = \gamma(\lim_{n \to \infty} n \log E^2) \times 10^{-13/2^{-13}}$           |
| 1552.70 14                    | $(3/2^{-} 5/2^{-})$                 |                  | Δ | ע      | $J^{\pi}$ , $\gamma$ 's to $1/2^{-}$ and $7/2^{-}$                                                                                       |
| 1577 56 4                     | $(1/2 \text{ to } 5/2^{-})$         |                  | Δ |        | $I^{\pi}$ : M1 F2 $\gamma$ to $(3/2^{-} 5/2^{-})$ and log $f_{t}=8.0$ from $1/2^{(+)}$                                                   |
| 1011.30 7                     | (12 10 5/2 )                        |                  | n |        | $5 \cdot 111, 22 \neq 00 (5/2, 5/2)$ and $10g_{1} = 0.0$ from $1/2^{-1}$ .                                                               |

Continued on next page (footnotes at end of table)

# <sup>151</sup>Gd Levels (continued)

| $E(level)^{\ddagger}$        | $J^{\pi}$                   | XI | REF | Comments                                                                                                                |
|------------------------------|-----------------------------|----|-----|-------------------------------------------------------------------------------------------------------------------------|
| 1676.61 7                    | $(17/2)^+$                  |    | D   | $J^{\pi}$ : $\gamma(\theta)$ and E2 $\gamma$ to $13/2^+$ . $\gamma$ to $17/2^+$ .                                       |
| 1701.40 7                    | 1/2,3/2,5/2(-)              | Α  |     | $J^{\pi}$ : log ft=8.5 from $1/2^{(+)}$ .                                                                               |
| 1707.68 <i>3</i>             | $1/2^{(-)}, 3/2^{(-)}$      | Α  |     | $J^{\pi}$ : (M1.E2) to 5/2 <sup>-</sup> and log ft=7.4 from 1/2 <sup>(+)</sup> .                                        |
| 1725.74 <sup>#</sup> 10      | $(15/2)^{-}$                |    | D   | $J^{\pi}$ : $\gamma(\theta)$ and M1+E2 $\gamma$ to $(13/2)^{-}$ , $\gamma$ to $11/2^{-}$ and probable member of a band. |
| 1745.76 11                   | $1/2.3/2.5/2^{(-)}$         | Α  | -   | $J^{\pi}$ : log ft=8.3 from $1/2^{(+)}$ .                                                                               |
| 1778.56 2                    | $1/2^{-}.3/2^{-}$           | Α  |     | $J^{\pi}$ : M1.E2 $\gamma$ to $3/2^{-1}$ and log ft=7.2 from $1/2^{(+)}$ .                                              |
| 1788.96 5                    | $(1/2 \text{ to } 5/2^{-})$ | Α  |     | $J^{\pi}$ : (M1.E2) $\gamma$ to 5/2 <sup>-</sup> and log ft=8.1 from 1/2 <sup>(+)</sup> .                               |
| 1836.90 <i>3</i>             | (3/2) <sup>-</sup>          | Α  |     | $J^{\pi}$ : M1,E2 $\gamma$ to 3/2 <sup>-</sup> , log ft=7.7 from 1/2 <sup>(+)</sup> and $\gamma$ to 7/2 <sup>-</sup> .  |
| 1851.58 <mark>&amp;</mark> 6 | 19/2+                       |    | D   | $J^{\pi}$ : $\gamma(\theta)$ , E1 $\gamma$ to $17/2^{-}$ and E2 $\gamma$ to $15/2^{+}$ .                                |
| 1852.72 12                   | $(1/2^-, 3/2^-, 5/2^-)$     | Α  | -   | $J^{\pi}$ : (M1.E2) $\gamma$ to $(3/2)^{-}$ , $\gamma$ to $5/2^{-}$ and log ft=8.2 from $1/2^{(+)}$ .                   |
| 1852.97 <sup>@</sup> 7       | $(21/2)^+$                  |    | D   | $I^{\pi}$ , $\gamma(\theta)$ and ce data for 508 $\gamma$ and probable hand assignment                                  |
| 1890.80 13                   | $(1/2^{-}, 3/2, 5/2^{-})$   | Α  | -   | $J^{\pi}$ : log $ft=8.3$ from $1/2^{(+)}$ : $\gamma'$ s to $1/2^{-}$ and $5/2^{-}$ .                                    |
| 1941.11 14                   | $(1/2^{-},3/2,5/2^{-})$     | A  | F   | $J^{\pi}$ : log ft=8.6 from $1/2^{(+)}$ : $\gamma'$ s to $1/2$ and $5/2^{-}$ .                                          |
| 1970.91 13                   | $1/2.3/2.5/2^{(-)}$         | A  |     | $J^{\pi}$ : log ft=8.5 from $1/2^{(+)}$ and $\gamma$ to $1/2^{-}$ .                                                     |
| 1978.05 8                    | $(3/2^{-})$                 | Α  |     | $J^{\pi}$ : log $f^{1u}t=8.3$ from $1/2^{(+)}$ and $\gamma$ to $7/2^{-}$ .                                              |
| 2003.73 <sup>#</sup> 10      | $(17/2)^{-}$                |    | D   | $I^{\pi}$ : $\gamma(\theta)$ and M1 $\gamma$ to $(15/2)^{-1}$ .                                                         |
| 2012.15 24                   | $(1/2^{-}, 3/2, 5/2^{-})$   | Α  | -   | $J^{\pi}$ : log ft=8.8 from $1/2^{(+)}$ and $\gamma$ to $5/2^{-}$ .                                                     |
| 2034.36 2                    | 1/2-,3/2-                   | Α  |     | $J^{\pi}$ : M1,E2 $\gamma$ to $3/2^{-}$ and log $ft=7.0$ from $1/2^{(+)}$ .                                             |
| 2043.89 23                   | $(1/2, 3/2, 5/2^{-})$       | Α  |     | $J^{\pi}$ : log ft=8.4 from $1/2^{(+)}$ and $\gamma$ to $1/2^{-}$ .                                                     |
| 2070.97 4                    | 1/2-,3/2-                   | Α  |     | $J^{\pi}$ : M1,E2 $\gamma$ to $3/2^{-}$ and log ft=6.9 from $1/2^{(+)}$ .                                               |
| 2076.02 8                    | $1/2^{(-)}, 3/2$            | Α  |     | $J^{\pi}$ : log ft=7.7 from $1/2^{(+)}$ and $\gamma'$ s to $5/2^{-}$ .                                                  |
| 2077.86 <sup>b</sup> 12      | $(19/2^{-})$                |    | D   | $J^{\pi}$ : $\gamma$ to $(15/2)^{-}$ and probable band assignment.                                                      |
| 2099.01 16                   | $(1/2, 3/2, 5/2^{-})$       | Α  |     | $J^{\pi}$ : log ft=8.7 from $1/2^{(+)}$ .                                                                               |
| 2107.0 3                     | $(1/2, 3/2, 5/2^{-})$       | Α  |     | $J^{\pi}$ : log ft=9.2 from $1/2^{(+)}$ .                                                                               |
| 2116.09 5                    | $1/2^{(-)}, 3/2^{(-)}$      | Α  |     | $J^{\pi}$ : log ft=7.6 from 1/2 <sup>(+)</sup> and (M1,E2) $\gamma$ to 5/2 <sup>-</sup> .                               |
| 2128.72 11                   | $1/2^{(-)}, 3/2$            | Α  |     | $J^{\pi}$ : log $f^{lu}t=8.0$ from $1/2^{(+)}$ and $\gamma'$ s to $5/2^{-}$ .                                           |
| 2132.53 13                   | $1/2^{(-)}, 3/2$            | Α  |     | $J^{\pi}$ : log $f^{du}t=8.1$ from $1/2^{(+)}$ and $\gamma$ to $5/2^{-}$ .                                              |
| 2154.9 2                     | $(1/2, 3/2, 5/2^{-})$       | Α  |     | $J^{\pi}$ : log ft=8.8 from $1/2^{(+)}$ and $\gamma$ to $1/2^{-}$ .                                                     |
| 2173.19 8                    | $1/2^{(-)}, 3/2$            | Α  |     | $J^{\pi}$ : log ft=7.6 from $1/2^{(+)}$ and $\gamma$ 's to $5/2^{-}$ .                                                  |
| 2196.6 7                     | (17/2 to 21/2)              |    | D   | $J^{\pi}$ : $\gamma$ 's to $19/2^+$ and $(17/2)^+$ .                                                                    |
| 2205.94 11                   | $1/2^{(-)}, 3/2$            | Α  |     | $J^{\pi}$ : log ft=7.7 from $1/2^{(+)}$ and $\gamma$ to $5/2^{-}$ .                                                     |
| 2220.9 3                     | 1/2,3/2                     | Α  |     | $J^{\pi}$ : log $f^{tu}t=8.3$ from $1/2^{(+)}$ .                                                                        |
| 2243.8 <i>3</i>              | $1/2^{(-)}, 3/2$            | Α  |     | $J^{\pi}$ : log $f^{1}ut = 7.8$ from $1/2^{(+)}$ and $\gamma$ to $5/2^{-}$ .                                            |
| 2246.95 9                    | 1/2(-),3/2                  | Α  |     | $J^{n}$ : log $f^{1u}t=7.6$ from $1/2^{(+)}$ and $\gamma$ to $5/2^{-}$ .                                                |
| 2256.7 2                     | 1/2,3/2                     | Α  |     | $J^{n}: \log f^{n} t = 7.7$ from $1/2^{(+)}$ .                                                                          |
| 2295.02" 12                  | $(19/2)^{-}$                |    | D   | $J^{\pi}$ : M1 $\gamma$ to $(17/2)^{-}$ , $\gamma$ to $(15/2)^{-}$ and probable band assignment.                        |
| 2297.3 <sup>u</sup> 6        | $(21/2^{-})$                |    | D   | $J^{\prime\prime}$ : $\gamma(\theta)$ of $/86\gamma$ and probable band assignment.                                      |
| 2317.7 3                     | $1/2^{(-)}, 3/2$            | A  |     | $J^{\pi}: \log f^{1\alpha} t = 7.5$ from $1/2^{(1)}$ and $\gamma$ to $5/2$ .                                            |
| 2324.32 14                   | 1/2(),3/2                   | Α  | _   | $J^{*}$ : log $f^{1}t = 1.2$ from $1/2^{(1)}$ and $\gamma$ to $5/2$ .                                                   |
| 2325.11 9                    | 23/2*                       |    | D   | $J^{\pi}$ : $\gamma(\theta)$ and E2 $\gamma$ to $19/2^{+}$ .                                                            |
| 2391.50 5                    | 1/2,3/2                     | A  |     | $J': \log ft = 6.5 \text{ from } 1/2^{(+)}$ .                                                                           |
| 2400.5 2                     | 1/2(),3/2                   | Α  | _   | $J^{*}$ : log $f^{*}t=6.7$ from $1/2^{(\gamma)}$ and $\gamma$ to $5/2$ .                                                |
| 2405.4 5                     | $(25/2^+)$                  |    | D   | $J^{n}$ : $\gamma(\theta)$ of 552 $\gamma$ and probable band assignment.                                                |
| 2421.74 12                   | 1/2,3/2                     | A  |     | $J^{\pi}: \log ft = /.1 \text{ from } 1/2^{(+)}.$                                                                       |
| 2443.0 3                     | (1/2,3/2)                   | A  |     | $J^{\pi}: \log f^{1\alpha} t = 6.9 \text{ from } 1/2^{(1)}.$                                                            |
| 2444.86 8                    | 1/2,3/2                     | A  | _   | J:: $\log f = 0.5$ Irom $1/2^{1/2}$ .                                                                                   |
| 2600.05 <sup>#</sup> 14      | $(21/2^{-})$                |    | D   | $J^{n}$ : $\gamma'$ s to $1'/2^{-}$ , $19/2^{-}$ and probable band assignment.                                          |
| 2866.2° 5                    | $(27/2^+)$                  |    | D   | $J^{\mu}$ : $\gamma(\theta)$ and $\gamma(\text{pol})$ of 541 $\gamma$ .                                                 |
| 2915.24 <sup>#</sup> 17      | $(23/2)^{-}$                |    | D   | $J^{\pi}$ : E2 to $(19/2)^{-}$ and probable band assignment.                                                            |
| 3007.7 <sup>@</sup> 8        | $(29/2^+)$                  |    | D   | $J^{\pi}$ : $\gamma(\theta)$ of 602 $\gamma$ and probable band assignment.                                              |
| 3238.17 <sup>#</sup> 18      | (25/2 <sup>-</sup> )        |    | D   | $J^{\pi}$ : $\gamma$ 's to (21/2 <sup>-</sup> ) and (23/2) <sup>-</sup> ; probable band assignment.                     |
|                              |                             |    |     | Continued on next page (footnotes at end of table)                                                                      |

<sup>151</sup>Gd Levels (continued)

| E(level) <sup>‡</sup>                    | $J^{\pi \dagger}$           | XREF |                                      | Comments |  |
|------------------------------------------|-----------------------------|------|--------------------------------------|----------|--|
| 3728.2? 7                                | $(27/2 \text{ to } 31/2^+)$ | D    | $J^{\pi}$ : $\gamma$ to $(27/2^+)$ . |          |  |
| x <sup>C</sup>                           | $J \approx (57/2^+)$        | c    | ••••                                 |          |  |
| 746.4+x <sup>c</sup> 8                   | J+2                         | С    |                                      |          |  |
| 1535.3+x <sup>c</sup> 9                  | J+4                         | С    |                                      |          |  |
| 2366.6+x <sup>c</sup> 10                 | J+6                         | С    |                                      |          |  |
| 3240.1+x <sup>c</sup> 11                 | J+8                         | С    |                                      |          |  |
| 4156.4+x <sup>c</sup> 11                 | J+10                        | C    |                                      |          |  |
| $5116.2 + x^{c} II$                      | J+12                        | C    |                                      |          |  |
| $6120.4 + x^{\circ} I3$                  | J+14                        | C    |                                      |          |  |
| $7109.4 \pm x^{\circ} 13$                | J+10<br>L+19                | C    |                                      |          |  |
| 9200.1 + x = 14<br>$9410.3 + x^{c} = 14$ | $J^{+10}_{1+20}$            | C    |                                      |          |  |
| $10603.3 + x^{c} 14$                     | J+22                        | c    |                                      |          |  |
| $11846.4 + x^{c}$ 15                     | J+24                        | c    |                                      |          |  |
| 13141.0+x <sup>c</sup> 16                | J+26                        | С    |                                      |          |  |
| 14487.4+x <sup>c</sup> 17                | J+28                        | С    |                                      |          |  |
| 15886.5+x <sup>c</sup> 17                | J+30                        | С    |                                      |          |  |
| 17339.1+x <sup>c</sup> 18                | J+32                        | С    |                                      |          |  |
| 18846.3+x <sup>c</sup> 18                | J+34                        | C    |                                      |          |  |
| $20408.3 + x^{\circ} 19$                 | J+36                        | C    |                                      |          |  |
| $22026.2 + X^{\circ} 20$                 | J+38<br>L+40                | C    |                                      |          |  |
| $\frac{25}{01.0+x^{-22}}$                | J+40                        | C    |                                      |          |  |
| yu<br>Tarr da                            | J1≈(55/2 <sup>+</sup> )     | C    |                                      |          |  |
| /25.5+y <sup>a</sup> 8                   | J1+2                        | C    |                                      |          |  |
| $1493.9 + y^{a}$ 10                      | J1+4                        | C    |                                      |          |  |
| 2304.4+y <sup>a</sup> 13                 | J1+6                        | С    |                                      |          |  |
| 3157.0+y <sup>d</sup> 14                 | J1+8                        | С    |                                      |          |  |
| 4052.4+y <sup>d</sup> 14                 | J1+10                       | С    |                                      |          |  |
| 4991.2+y <sup>d</sup> 15                 | J1+12                       | С    |                                      |          |  |
| 5973.5+y <sup>d</sup> 15                 | J1+14                       | С    |                                      |          |  |
| $7001.0 + v^d$ 15                        | J1+16                       | с    |                                      |          |  |
| $8074.3 + v^{d}$ 16                      | I1+18                       | C    |                                      |          |  |
| $9194 4 \pm y^{d} 16$                    | 11+20                       | C    |                                      |          |  |
| $10262.7 \pm v^{d}$ 17                   | J1+20<br>J1+22              | c    |                                      |          |  |
| $10505.7 + y^{-1} 17$                    | J1+22                       | C    |                                      |          |  |
| 11581./+y <sup>2</sup> //                | J1+24                       | C    |                                      |          |  |
| 12850.3+y <sup>a</sup> 18                | J1+26                       | C    |                                      |          |  |
| $14170.7 + y^{a}$ 18                     | J1+28                       | C    |                                      |          |  |
| 15543.3+y <sup>a</sup> 19                | J1+30                       | С    |                                      |          |  |
| 16969.3+y <sup>d</sup> 19                | J1+32                       | С    |                                      |          |  |
| 18449.0+y <sup>d</sup> 20                | J1+34                       | С    |                                      |          |  |
| 19983.5+y <sup>d</sup> 21                | J1+36                       | С    |                                      |          |  |
| 21573.0+y <sup>d</sup> 23                | J1+38                       | С    |                                      |          |  |
| 23218 + y d 3                            | J1+40                       | С    |                                      |          |  |
| $24919 + v^d 3$                          | J1+42                       | С    |                                      |          |  |
| z <sup>e</sup>                           | J2≈(59/2 <sup>-</sup> )     | č    |                                      |          |  |
| 755.7+z <sup>e</sup> 4                   | J2+2                        | C    |                                      |          |  |
| 1561.3+z <sup>e</sup> 6                  | J2+4                        | С    |                                      |          |  |
| 2417.2+z <sup>e</sup> 11                 | J2+6                        | С    |                                      |          |  |

151Gd Levels (continued)

#### $\mathbf{J}^{\pi \dagger}$ E(level)<sup>‡</sup> $J^{\pi}$ XREF E(level)<sup>‡</sup> XREF 3324.0+z<sup>e</sup> 14 1662.8+v<sup>g</sup> 6 С J2+8 С J4+4 2558.1+v<sup>g</sup> 9 4282.6+z<sup>e</sup> 15 С J2+10С J4+6 5294.6+z<sup>e</sup> 16 3495.7+v<sup>g</sup> 9 С J2+12С J4+8 6360.7+z<sup>e</sup> 18 4474.9+v<sup>g</sup> 12 J2+14С J4+10 С 7481.4+z<sup>e</sup> 19 5498.7+v<sup>g</sup> 12 J2+16 С J4+12 С 8656.9+z<sup>e</sup> 21 6566.9+v<sup>8</sup> 13 J2+18 С J4+14 С 9887.3+z<sup>e</sup> 22 J2+20С 7681.0+v<sup>8</sup> 14 J4+16 С 11174.0+z<sup>e</sup> 22 12516.7+z<sup>e</sup> 22 8842.6+v<sup>g</sup> 15 J2+22 С J4+18 С 10052.3+v<sup>g</sup> 17 С С J2+24J4+2013916.1+z<sup>e</sup> 23 С 11313.6+v<sup>g</sup> 17 С J2+26J4+22 15372.4+z<sup>e</sup> 23 С 12626.1+v<sup>g</sup> 18 С J2+28 J4+24 16885.8+z<sup>e</sup> 24 13989.3+v<sup>g</sup> 19 С J2+30 С J4+26 18455.8+z<sup>e</sup> 24 15406.0+v<sup>g</sup> 20 J2+32 С J4+28 С 20083.5+z<sup>e</sup> 25 С 16875.6+v<sup>g</sup> 25 J4 + 30С $J_{2+34}$ 18400+v<sup>g</sup> 3 21769+z<sup>e</sup> 3 J2+36 С J4+32 С 23512+z<sup>e</sup> 3 19980+v<sup>g</sup> 4 J2+38С J4+34 С u**f** 21615+v<sup>g</sup> 4 J3≈(65/2<sup>-</sup>) С J4+36 С wh $832.8 + u^{f} 6$ J3+2С J5≈(61/2<sup>-</sup>) С 1706.8+u<sup>f</sup> 8 817.8+w<sup>h</sup> 7 J5+2 С J3+4С $2622.6 + u^{f} 9$ 1677.9+w<sup>h</sup> 15 J3+6 С J5+4 С 2577.7+w<sup>h</sup> 16 3580.9+u<sup>f</sup> 10 J3+8 С J5+6 С 3516.1+w<sup>h</sup> 17 4581.8+u<sup>f</sup> 10 J3+10J5+8 С С 5627.7+u<sup>f</sup> 11 4494.6+w<sup>h</sup> 18 J3+12С J5+10С 6718.8+u<sup>f</sup> 12 5515.7+w<sup>h</sup> 19 J3+14 С J5+12 С 7856.2+u<sup>f</sup> 13 6580.6+w<sup>h</sup> 20 J3+16 С J5+14 С 9042.1+u<sup>f</sup> 16 7688.7+w<sup>h</sup> 20 J3+18 С J5+16 С 10278.2+u<sup>f</sup> 16 8843.1+w<sup>h</sup> 21 J3 + 20С J5+18 С 11564.3+u<sup>f</sup> 17 10043.8+w<sup>h</sup> 22 J3+22 С J5+20С 12901.9+u<sup>f</sup> 17 11293.1+w<sup>h</sup> 22 J3+24 С J5+22С 14290.6+u<sup>f</sup> 18 12592.3+w<sup>h</sup> 24 J3+26 С J5+24С 15734.0+u<sup>f</sup> 19 13942+w<sup>h</sup> 3 J3+28 С С J5+26 15343+w<sup>h</sup> 3 17231.8+u<sup>f</sup> 22 J3+30 С J5+28 С 16795+w<sup>h</sup> 4 18783+u<sup>f</sup> 3 J3+32 С J5 + 30С 18300+w<sup>*h*</sup> 4 $20390 + u^{f} 4$ J3+34 J5+32 С С $19855 + w^{h} 4$ vg J4≈(63/2<sup>-</sup>) С J5+34 С $808.6 + v^{g} 4$ $J_{4+2}$ С

<sup>†</sup> For SD bands, all transitions are assumed as stretched quadrupoles.

<sup>‡</sup> For levels populated in  $\gamma$  ray studies, values are from least-squares fit to  $E\gamma$ 's. Normalized  $\chi^2=2.7$ . In other cases values are mainly from (d,t).

<sup>#</sup> Band(A): 11/2[505] band. From 1977K104 and 1977Sm01.

<sup>(@</sup> Band(B):  $i_{13/2}$  band.  $13/2^+$ ,  $17/2^+$ ,.. Sequence (1977K104).

<sup>&</sup> Band(C):  $i_{13/2}$  band.  $11/2^+$ ,  $15/2^+$ .. Sequence (1977Kl04).

<sup>a</sup> Band(D): h<sub>9/2</sub> band. From 1977Kl04.

<sup>b</sup> Band(E): f<sub>7/2</sub> band. From 1977K104.

#### <sup>151</sup>Gd Levels (continued)

- <sup>*c*</sup> Band(F): SD-1 band. Configuration= $\pi 6^2 v 7^2 v 5/2[402]^1$ ;  $\alpha = +1/2$ . From 1998ErZY and 1999ErZZ. <sup>*d*</sup> Band(f): SD-2 band. Configuration= $\pi 6^2 v 7^2 v 5/2[402]^1$ ;  $\alpha = -1/2$ . From 1998ErZY and 1999ErZZ Band intensity=92% 2 of SD-1 band.
- <sup>e</sup> Band(G): SD-3 band. Configuration= $\pi 6^2 v 7^1 v 5/2[402]^2$ ;  $\alpha = -1/2$ . From 1998ErZY and 1999ErZZ Band intensity=85% 2 of SD-1 band.
- <sup>*f*</sup> Band(H): SD-4 band. Configuration= $\pi 6^2 v 7^2 v 9/2[514]^1$ ;  $\alpha = +1/2$ . From 1998ErZY and 1999ErZZ Band intensity=77% 2 of SD-1 band.
- <sup>g</sup> Band(h): SD-5 band. Configuration= $\pi 6^2 v 7^2 v 9/2[514]^1$ ;  $\alpha = -1/2$ . From 1998ErZY and 1999ErZZ Band intensity=54% 2 of SD-1 band.
- <sup>*h*</sup> Band(I): SD-6 band. Configuration= $\pi 6^2 v 7^2 v 3/2[521]^1$ ;  $\alpha = +1/2$ . From 1998ErZY and 1999ErZZ Band intensity=38% 2 of SD-1 band.

|                        |                      |                        |                        |         |                      | Adop               | oted Levels   | , Gammas (co         | ontinued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------|----------------------|------------------------|------------------------|---------|----------------------|--------------------|---------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                      |                        |                        |         |                      |                    | <u> </u>      | ( <sup>151</sup> Gd) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f$   | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup> | $\delta^{\#}$ | α <b>&amp;</b>       | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 108.094                | 5/2-                 | 108.088 <i>10</i>      | 100                    | 0.0     | 7/2-                 | M1+E2              | -0.85 1       | 1.729                | B(M1)(W.u.)= $1.3 \times 10^{-3}$ <i>I</i> ; B(E2)(W.u.)= $42$ <i>3</i><br>$\alpha$ (K)= $1.185$ <i>17</i> ; $\alpha$ (L)= $0.422$ <i>7</i> ; $\alpha$ (M)= $0.0972$ <i>16</i> ; $\alpha$ (N+)= $0.0250$ <i>4</i><br>$\alpha$ (N)= $0.0219$ <i>4</i> ; $\alpha$ (O)= $0.00301$ <i>5</i> ; $\alpha$ (P)= $7.87 \times 10^{-5}$ <i>12</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 379.30                 | 9/2-                 | 271.2 3                | 0.7 1                  | 108.094 | 5/2-                 | [E2]               |               | 0.0825               | Mult., $\delta$ : from ce and $\gamma\gamma(\theta)$ in <sup>151</sup> Tb $\varepsilon$ decay.<br>$\alpha(K)=0.0620 \ 9; \ \alpha(L)=0.01599 \ 24; \ \alpha(M)=0.00364 \ 6; \ \alpha(N+)=0.000941 \ 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |                      | 379.39 4               | 100.0 4                | 0.0     | 7/2-                 | M1(+E2)            | <0.25         | 0.0509 10            | $\alpha(N)=0.000822 \ 12; \ \alpha(O)=0.0001157 \ 17; \ \alpha(P)=3.80\times10^{-6} \ 6 \\ \alpha(K)=0.0431 \ 9; \ \alpha(L)=0.00609 \ 10; \ \alpha(M)=0.001320 \ 20; \\ \alpha(N+)=0.000354 \ 6 \\ \alpha(D)=0.000354 \ 5 \ \alpha(D) \ 4 \ 71\times10^{-5} \ 8 \ \alpha(D) \ 2 \ 16\times10^{-6} \ 7 \\ \alpha(D)=0.000354 \ 6 \\ \alpha(D)=0.000354 $ |
| 395.445                | 3/2-                 | 287.357 10             | 100 3                  | 108.094 | 5/2-                 | M1+E2              | +0.21 2       | 0.1056               | $\alpha(N)=0.000504$ 5; $\alpha(O)=4.71\times10^{-5}$ 8; $\alpha(P)=5.16\times10^{-7}$<br>Mult., $\delta$ : ce data in ( $\alpha$ ,xn $\gamma$ ).<br>B(M1)(W.u.)= $2.0\times10^{-3}$ 2; B(E2)(W.u.)= $0.6$ 1<br>$\alpha(K)=0.0892$ 13; $\alpha(L)=0.01284$ 18; $\alpha(M)=0.00279$ 4;<br>$\alpha(N)=0.000748$ 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                      | 395.444 10             | 38 1                   | 0.0     | 7/2-                 | E2                 |               | 0.0265               | $\alpha(N)=0.000642 \ 9; \ \alpha(O)=9.94\times10^{-5} \ 14; \ \alpha(P)=6.56\times10^{-6} \ 10$<br>Mult., $\delta$ : from $\gamma\gamma(\theta)$ and ce data in <sup>151</sup> Tb $\varepsilon$ decay.<br>B(E2)(W.u.)=1.1 I<br>$\alpha(K)=0.0211 \ 3; \ \alpha(I)=0.00425 \ 6; \ \alpha(M)=0.000952 \ 14;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10( (88                | 5/0-                 | 219 (0.2               | 0.0.2                  | 100.004 | 5/2-                 |                    | -2            | 0.000.12             | $\alpha(N)=0.000216 \ 3; \ \alpha(D)=0.00425 \ 0; \ \alpha(N)=0.000552 \ 14; \\ \alpha(N)=0.000216 \ 3; \ \alpha(O)=3.14\times10^{-5} \ 5; \ \alpha(P)=1.378\times10^{-6} \ 20 \\ Mult.: \ from \ \gamma\gamma(\theta) \ and \ ce \ data \ in \ ^{151}Tb \ \varepsilon \ decay. $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 426.688                | 5/2-                 | 318.60 3               | 8.8 3                  | 108.094 | 5/2-                 | M1(+E2)            | <2            | 0.069 13             | $\alpha(K)=0.057 \ 13; \ \alpha(L)=0.0094 \ 4; \ \alpha(M)=0.00207 \ 5; \ \alpha(N+)=0.000549 \\ 20 \\ \alpha(N)=0.000473 \ 14; \ \alpha(O)=7.1\times10^{-5} \ 5; \ \alpha(P)=4.0\times10^{-6} \ 11 \\ Mult.\delta; \ from ce \ data \ in \ ^{151}Tb \ \varepsilon \ decay.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                      | 426.692 10             | 100 3                  | 0.0     | 7/2-                 | M1                 |               | 0.0380               | $\alpha(K)=0.0322 5; \ \alpha(L)=0.00450 7; \ \alpha(M)=0.000974 14; \ \alpha(N+)=0.000262 4 ; \ \alpha(O)=3.49\times10^{-5} 5; \ \alpha(P)=2.36\times10^{-6} 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 575.619                | 1/2-                 | 148.918 <i>11</i>      | 3.1 <i>I</i>           | 426.688 | 5/2-                 | [E2]               |               | 0.607                | Mult.: from ce data in <sup>151</sup> Tb $\varepsilon$ decay.<br>B(E2)(W.u.)=14 2<br>$\alpha$ (K)=0.376 6; $\alpha$ (L)=0.179 3; $\alpha$ (M)=0.0417 6; $\alpha$ (N+)=0.01061 15<br>$\alpha$ (N)=0.00933 13; $\alpha$ (O)=0.001253 18; $\alpha$ (P)=2.01×10 <sup>-5</sup> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                      | 180.186 <i>10</i>      | 100 4                  | 395.445 | 3/2-                 | M1+E2              | -0.08 3       | 0.381                | B(M1)(W.u.)=0.011 2; B(E2)(W.u.)=1.1 9<br>$\alpha$ (K)=0.322 5; $\alpha$ (L)=0.0464 7; $\alpha$ (M)=0.01009 15; $\alpha$ (N+)=0.00271 4<br>$\alpha$ (N)=0.00232 4; $\alpha$ (O)=0.000360 6; $\alpha$ (P)=2.39×10 <sup>-5</sup> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                      | 467.506 10             | 7.7 3                  | 108.094 | 5/2-                 | (E2)               |               | 0.01669              | Mult.,o: from ce and $\gamma\gamma(\theta)$ data.<br>B(E2)(W.u.)=0.12 2<br>$\alpha(K)=0.01349$ 19; $\alpha(L)=0.00249$ 4; $\alpha(M)=0.000555$ 8;<br>$\alpha(N+)=0.0001458$ 21<br>$\alpha(N)=0.0001263$ 18; $\alpha(O)=1.86\times10^{-5}$ 3; $\alpha(P)=8.99\times10^{-7}$ 13<br>Mult.: from ce and $\gamma\gamma(\theta)$ data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

 $\neg$ 

From ENSDF

 $^{151}_{64}\mathrm{Gd}_{87}$ -7

 $^{151}_{64}\mathrm{Gd}_{87}$ -7

# $\gamma(^{151}\text{Gd})$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                 | $E_{\gamma}^{\dagger}$             | $I_{\gamma}^{\dagger}$                       | $E_f  J_f^{\pi}$                                                             | Mult. <sup>#</sup> | δ#      | α <b>&amp;</b> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|--------------------------------------|------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|--------------------|---------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 584.78                 | 5/2,9/2                              | 476.5 <i>2</i><br>584.84 <i>12</i> | 12 <i>4</i><br>100 <i>8</i>                  | 108.094 5/2 <sup>-</sup><br>0.0 7/2 <sup>-</sup>                             |                    |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 587.449                | 3/2-                                 | 160.762 10                         | 3.1 1                                        | 426.688 5/2-                                                                 | M1(+E2)            | <1      | 0.510 17       | B(M1)(W.u.)= $2.3 \times 10^{-4} 3$ ; B(E2)(W.u.)< $2.5$<br>$\alpha$ (K)= $0.41 4$ ; $\alpha$ (L)= $0.080 17$ ; $\alpha$ (M)= $0.018 4$ ; $\alpha$ (N+)= $0.0047 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        |                                      | 191.96 2                           | 23 1                                         | 395.445 3/2-                                                                 | M1+E2              | -0.12 5 | 0.320          | $\begin{aligned} \alpha(N) &= 0.0041 \; 9; \; \alpha(O) &= 0.00060 \; 11; \; \alpha(P) &= 2.9 \times 10^{-3} \; 5 \\ B(M1)(W.u.) &= 1.0 \times 10^{-3} \; 1; \; B(E2)(W.u.) &= 0.2 \; + 2 - 1 \\ \alpha(K) &= 0.270 \; 4; \; \alpha(L) &= 0.0391 \; 7; \; \alpha(M) &= 0.00850 \; 15; \\ \alpha(N+) &= 0.00228 \; 4 \\ \alpha(N) &= 0.00195 \; 4; \; \alpha(O) &= 0.000303 \; 5; \; \alpha(P) &= 2.00 \times 10^{-5} \; 4 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |                                      | 479.357 10                         | 98 <i>3</i>                                  | 108.094 5/2                                                                  | E2(+M1)            | >1      | 0.019 4        | Mult., $\delta$ : $\gamma\gamma(\theta)$ and ce data in <sup>151</sup> Tb $\varepsilon$ decay.<br>B(E2)(W.u.)=0.65 5; B(M1)(W.u.)<1.4×10 <sup>-4</sup><br>$\alpha$ (K)=0.015 3; $\alpha$ (L)=0.0026 3; $\alpha$ (M)=0.00057 6;<br>$\alpha$ (N+)=0.000150 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        |                                      | 587.46 2                           | 100 <i>3</i>                                 | 0.0 7/2                                                                      | E2                 |         | 0.00923        | $\alpha(N)=0.000129 \ I3; \ \alpha(O)=1.94\times10^{-5} \ 22; \ \alpha(P)=1.0/\times10^{-6} \ 23$<br>B(E2)(W.u.)=0.24 2<br>$\alpha(K)=0.00760 \ I1; \ \alpha(L)=0.001276 \ I8; \ \alpha(M)=0.000282 \ 4; \\ \alpha(N+)=7.44\times10^{-5} \ I1$<br>$\alpha(N)=6 \ 43\times10^{-5} \ 9; \ \alpha(O)=0 \ 60\times10^{-6} \ I4; \ \alpha(P)=5 \ 16\times10^{-7} \ 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 589.10                 | 3/2-,5/2,7/2-                        | 193.74 8<br>480.4 2<br>589 2 2     | 20 <i>3</i><br>39 <i>17</i><br>100 <i>22</i> | 395.445 3/2 <sup>-</sup><br>108.094 5/2 <sup>-</sup><br>0.0 7/2 <sup>-</sup> | [D,E2]             |         | 0.19 13        | $a(1) = 0.43 \times 10^{-9}, a(0) = 9.00 \times 10^{-14}, a(1) = 5.10 \times 10^{-9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 618.14                 | 5/2-,7/2-,9/2-                       | 617.89 <i>12</i>                   | 100 22                                       | $0.0 	 7/2^{-1}$                                                             | M1(+E2)            | <2      | 0.012 3        | $\alpha(K)=0.0103\ 24;\ \alpha(L)=0.0015\ 3;\ \alpha(M)=0.00032\ 6;$<br>$\alpha(N+)=8.6\times10^{-5}\ 15$<br>$\alpha(N)=7\ 4\times10^{-5}\ 12;\ \alpha(D)=1\ 14\times10^{-5}\ 24;\ \alpha(D)=7\ 4\times10^{-7}\ 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 620.602                | 3/2 <sup>-</sup> ,5/2 <sup>(-)</sup> | 193.94 <i>12</i>                   | 32 13                                        | 426.688 5/2-                                                                 | [M1,E2]            |         | 0.28 4         | $\alpha(N) = 7.4 \times 10^{-1} I3, \ \alpha(O) = 1.14 \times 10^{-2} I1, \ \alpha(P) = 7.4 \times 10^{-1} I9$<br>$\alpha(K) = 0.22 \ 5; \ \alpha(L) = 0.048 \ 11; \ \alpha(M) = 0.011 \ 3; \ \alpha(N+) = 0.0028$<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                                      | 225.12 4                           | 15 <i>1</i>                                  | 395.445 3/2-                                                                 | [M1,E2]            |         | 0.18 3         | $\begin{aligned} \alpha(N) = 0.0025 \ 6; \ \alpha(O) = 0.00036 \ 7; \ \alpha(P) = 1.5 \times 10^{-3} \ 5 \\ \alpha(K) = 0.14 \ 4; \ \alpha(L) = 0.029 \ 4; \ \alpha(M) = 0.0064 \ 11; \\ \alpha(N+) = 0.00169 \ 24 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |                                      | 512.5 5                            | 95 20                                        | 108.094 5/2-                                                                 | (M1,E2)            |         | 0.018 6        | $\begin{aligned} &\alpha(N) = 0.00147 \ 22; \ \alpha(O) = 0.000214 \ 21; \ \alpha(P) = 1.0 \times 10^{-5} \ 4 \\ &\alpha(K) = 0.015 \ 5; \ \alpha(L) = 0.0023 \ 5; \ \alpha(M) = 0.00051 \ 10; \\ &\alpha(N+) = 0.00014 \ 3 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                                      | 620.594 <i>16</i>                  | 100 5                                        | 0.0 7/2                                                                      | (E2)               |         | 0.00807        | $\alpha(N)=0.000117\ 22;\ \alpha(O)=1.8\times10^{-5}\ 4;\ \alpha(P)=1.1\times10^{-6}\ 4 \\ \alpha(K)=0.00666\ 10;\ \alpha(L)=0.001097\ 16;\ \alpha(M)=0.000242\ 4; \\ \alpha(N+)=6.39\times10^{-5}\ 9 \\ \alpha(N)=5\ 52\times10^{-5}\ 8;\ \alpha(O)=8\ 27\times10^{-6}\ 12;\ \alpha(P)=4\ 54\times10^{-7}\ 7 \\ \alpha(N)=5\ 52\times10^{-5}\ 8;\ \alpha(O)=8\ 27\times10^{-6}\ 12;\ \alpha(P)=4\ 54\times10^{-7}\ 7 \\ \alpha(P)=4\ 54\times10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}\ 10^{-7}$ |
| 670.86                 | (5/2,7/2) <sup>-</sup>               | 274.66 <sup>@</sup> 13<br>562.93 7 | 8 2<br>100 6                                 | 395.445 3/2 <sup>-</sup><br>108.094 5/2 <sup>-</sup>                         | M1,E2              |         | 0.015 5        | $E_{\gamma}: \text{ level energy difference} = 275.41.$<br>$\alpha(\text{K}) = 0.012 \ 4; \ \alpha(\text{L}) = 0.0018 \ 4; \ \alpha(\text{M}) = 0.00040 \ 8;$<br>$\alpha(\text{N}+) = 0.000106 \ 22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        |                                      | 671.01 11                          | 50 8                                         | 0.0 7/2-                                                                     |                    |         |                | $\alpha(N)=9.1\times10^{-5}$ 19; $\alpha(O)=1.4\times10^{-5}$ 4; $\alpha(P)=9.E-7$ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

 $\infty$ 

 $^{151}_{64}\mathrm{Gd}_{87}$ -8

|                        |                    |                        |                        |         |                      | $\gamma(^{15})$    | <sup>1</sup> Gd) (continu | ued)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------|--------------------|------------------------|------------------------|---------|----------------------|--------------------|---------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f$   | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup> | $\delta^{\#}$             | α <b>&amp;</b> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 705.98                 | 11/2-              | 326.7 2                | 1.9 4                  | 379.30  | 9/2-                 | M1,E2              |                           | 0.061 15       | $\alpha(K)=0.050\ 15;\ \alpha(L)=0.0086\ 5;\ \alpha(M)=0.00191\ 8;$                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                    | 705.93 4               | 100 <i>1</i>           | 0.0     | 7/2-                 | E2                 |                           | 0.00593        | $\alpha(N=.)=0.000435 \ 20; \ \alpha(O)=6.5\times10^{-5} \ 6; \ \alpha(P)=3.5\times10^{-6} \ 13$<br>$\alpha(K)=0.00494 \ 7; \ \alpha(L)=0.000779 \ 11; \ \alpha(M)=0.0001708 \ 24;$<br>$\alpha(N+)=4.53\times10^{-5} \ 7$                                                                                                                                                                                                                                                  |
| 719.46                 | 9/2-               | 719.38 5               | 100                    | 0.0     | 7/2-                 | E2(+M1)            | >1                        | 0.0068 12      | $\alpha(N)=3.91\times10^{-5} \ 6; \ \alpha(O)=5.90\times10^{-6} \ 9; \ \alpha(P)=3.39\times10^{-7} \ 5 \\ \alpha(K)=0.0057 \ 10; \ \alpha(L)=0.00085 \ 12; \ \alpha(M)=0.000186 \ 24; \\ \alpha(N+)=5.0\times10^{-5} \ 7$                                                                                                                                                                                                                                                  |
| 784.81                 | 11/2+              | 65.30 4                | 11.8 9                 | 719.46  | 9/2-                 | (E1)               |                           | 0.909          | $\alpha(N)=4.3\times10^{-5} 6; \alpha(O)=6.5\times10^{-6} 9; \alpha(P)=4.0\times10^{-7} 8$<br>$\alpha(K)=0.753 11; \alpha(L)=0.1226 18; \alpha(M)=0.0266 4;$<br>$\alpha(N+)=0.00687 10$                                                                                                                                                                                                                                                                                    |
|                        |                    | 78.71 4                | 25.6 3                 | 705.98  | 11/2-                | (E1)               |                           | 0.555          | $\alpha$ (N)=0.00598 9; $\alpha$ (O)=0.000853 12; $\alpha$ (P)=3.97×10 <sup>-5</sup> 6<br>$\alpha$ (K)=0.463 7; $\alpha$ (L)=0.0725 11; $\alpha$ (M)=0.01572 23;<br>$\alpha$ (N+)=0.00408 6                                                                                                                                                                                                                                                                                |
|                        |                    | 405.48 4               | 100 <i>I</i>           | 379.30  | 9/2-                 | E1                 |                           | 0.00764        | $ \begin{aligned} &\alpha(\mathbf{N}) = 0.00354 \ 5; \ \alpha(\mathbf{O}) = 0.000512 \ 8; \ \alpha(\mathbf{P}) = 2.50 \times 10^{-5} \ 4 \\ &\alpha(\mathbf{K}) = 0.00651 \ 10; \ \alpha(\mathbf{L}) = 0.000888 \ 13; \ \alpha(\mathbf{M}) = 0.000191 \ 3; \\ &\alpha(\mathbf{N}+) = 5.09 \times 10^{-5} \ 8 \\ &\alpha(\mathbf{N}) = 4.38 \times 10^{-5} \ 7; \ \alpha(\mathbf{O}) = 6.70 \times 10^{-6} \ 10; \ \alpha(\mathbf{P}) = 4.23 \times 10^{-7} \end{aligned} $ |
| 811.835                | 3/2-               | 191.2 5                | 5.6 11                 | 620.602 | 3/2-,5/2(-)          | [M1,E2]            |                           | 0.29 4         | o<br>$\alpha(K)=0.23 5; \alpha(L)=0.051 12; \alpha(M)=0.011 3;$<br>$\alpha(N+)=0.0030 8$                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                    | 236.14 3               | 3.2 2                  | 575.619 | 1/2-                 | [M1,E2]            |                           | 0.16 3         | $ \begin{array}{l} \alpha(\mathrm{N}) = 0.0026 \ 7; \ \alpha(\mathrm{O}) = 0.00037 \ 8; \ \alpha(\mathrm{P}) = 1.5 \times 10^{-5} \ 6 \\ \alpha(\mathrm{K}) = 0.12 \ 3; \ \alpha(\mathrm{L}) = 0.024 \ 3; \ \alpha(\mathrm{M}) = 0.0055 \ 8; \\ \alpha(\mathrm{N}+) = 0.00144 \ 17 \end{array} $                                                                                                                                                                           |
|                        |                    | 385.156 10             | 27 2                   | 426.688 | 5/2-                 | M1(+E2)            | <1                        | 0.044 6        | $\begin{aligned} &\alpha(N) = 0.00124 \ 16; \ \alpha(O) = 0.000182 \ 13; \ \alpha(P) = 8.E - 6 \ 3 \\ &\alpha(K) = 0.037 \ 5; \ \alpha(L) = 0.0056 \ 4; \ \alpha(M) = 0.00122 \ 7; \\ &\alpha(N+) = 0.000325 \ 19 \end{aligned}$                                                                                                                                                                                                                                           |
|                        |                    | 416.390 10             | 51 2                   | 395.445 | 3/2-                 | M1+E2              | +0.39 14                  | 0.0381 17      | $ \begin{array}{l} \alpha(\mathrm{N}) = 0.000279 \ 15; \ \alpha(\mathrm{O}) = 4.3 \times 10^{-5} \ 3; \ \alpha(\mathrm{P}) = 2.7 \times 10^{-6} \ 4 \\ \alpha(\mathrm{K}) = 0.0322 \ 15; \ \alpha(\mathrm{L}) = 0.00464 \ 13; \ \alpha(\mathrm{M}) = 0.001008 \ 25; \\ \alpha(\mathrm{N}+) = 0.000270 \ 7 \end{array} $                                                                                                                                                    |
|                        |                    |                        |                        |         |                      |                    |                           |                | $\alpha$ (N)=0.000232 6; $\alpha$ (O)=3.58×10 <sup>-5</sup> 11; $\alpha$ (P)=2.35×10 <sup>-6</sup><br>12                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                    | 703.75 10              | 100 3                  | 108.094 | 5/2-                 | M1+E2              | -0.25 2                   | 0.01046 16     | $\alpha(K)=0.00889 \ I3; \ \alpha(L)=0.001226 \ I8; \ \alpha(M)=0.000265 \ 4; \ \alpha(N+)=7.12\times10^{-5} \ II$                                                                                                                                                                                                                                                                                                                                                         |
|                        |                    |                        |                        |         |                      |                    |                           |                | $\alpha(N)=6.11\times10^{-5}$ 9; $\alpha(O)=9.50\times10^{-6}$ 14; $\alpha(P)=6.45\times10^{-7}$                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                    | 811.81 4               | 5.2 2                  | 0.0     | 7/2-                 | E2                 |                           | 0.00432        | $\alpha(K)=0.00362 5; \alpha(L)=0.000549 8; \alpha(M)=0.0001198 17; \alpha(N+)=3.18\times10^{-5} 5$                                                                                                                                                                                                                                                                                                                                                                        |
| 839.320                | 1/2-               | 218.65 <i>13</i>       | 0.10 1                 | 620.602 | 3/2-,5/2(-)          | [M1,E2]            |                           | 0.19 3         | $\alpha(N)=2.74\times10^{-5} 4; \ \alpha(O)=4.17\times10^{-6} 6; \ \alpha(P)=2.49\times10^{-7} 4 \\ \alpha(K)=0.15 4; \ \alpha(L)=0.032 5; \ \alpha(M)=0.0071 13; \\ \alpha(N+)=0.0019 3 \\ \alpha(N)=0.0016 3; \ \alpha(O)=0.00024 3; \ \alpha(P)=1.0\times10^{-5} 4 \\ \text{Additional information 3.}$                                                                                                                                                                 |

|                        |                                       |                                    |                                            |                               | A                                                        | Adopted Leve       | ls, Gammas    | (continued)    |                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------|---------------------------------------|------------------------------------|--------------------------------------------|-------------------------------|----------------------------------------------------------|--------------------|---------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                       |                                    |                                            |                               |                                                          | $\gamma(^{151}$    | Gd) (continu  | ued)           |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                  | $E_{\gamma}^{\dagger}$             | $I_{\gamma}^{\dagger}$                     | $E_f$                         | $\mathbf{J}_f^{\pi}$                                     | Mult. <sup>#</sup> | $\delta^{\#}$ | α <b>&amp;</b> | Comments                                                                                                                                                                                                                                                                                                                                                                                                          |
| 839.320                | 1/2-                                  | 251.863 10                         | 100 3                                      | 587.449                       | 3/2-                                                     | M1(+E2)            | -0.08 12      | 0.152 3        | B(M1)(W.u.)= $2.5 \times 10^{-3} 3$<br>$\alpha$ (K)= $0.1290 25$ ; $\alpha$ (L)= $0.0184 3$ ; $\alpha$ (M)= $0.00399 7$ ;<br>$\alpha$ (N+)= $0.001070 16$                                                                                                                                                                                                                                                         |
|                        |                                       | 263.707 17                         | 0.75 3                                     | 575.619                       | 1/2-                                                     | M1,E2              |               | 0.113 23       | $\alpha$ (N)=0.000918 <i>14</i> ; $\alpha$ (O)=0.0001425 <i>21</i> ; $\alpha$ (P)=9.54×10 <sup>-6</sup> <i>21</i><br>$\alpha$ (K)=0.091 <i>24</i> ; $\alpha$ (L)=0.0170 <i>9</i> ; $\alpha$ (M)=0.0038 <i>3</i> ;<br>$\alpha$ (N+)=0.00099 <i>6</i>                                                                                                                                                               |
|                        |                                       | 412.6 5                            | 0.06 2                                     | 426.688                       | 5/2-                                                     | [E2]               |               | 0.0235         | $\alpha(N)=0.00086\ 6;\ \alpha(O)=0.0001270\ 23;\ \alpha(P)=6.3\times10^{-6}\ 22$<br>Additional information 4.<br>B(E2)(W.u.)=0.0011 4<br>$\alpha(K)=0.0188\ 3;\ \alpha(L)=0.00370\ 6;\ \alpha(M)=0.000827\ 12;$<br>$\alpha(N+)=0.000217\ 4$                                                                                                                                                                      |
|                        |                                       | 443.879 10                         | 41 <i>I</i>                                | 395.445                       | 3/2-                                                     | M1+E2              | -0.57 4       | 0.0306 6       | $\alpha(N)=0.000188 \ 3; \ \alpha(O)=2.74\times10^{-5} \ 4; \ \alpha(P)=1.234\times10^{-6} \ 18$<br>B(M1)(W.u.)=1.9×10 <sup>-4</sup> \ 3; B(E2)(W.u.)=0.15 \ 2<br>$\alpha(K)=0.0258 \ 5; \ \alpha(L)=0.00378 \ 6; \ \alpha(M)=0.000824 \ 13;$<br>$\alpha(N+)=0.000220 \ 4$                                                                                                                                        |
|                        |                                       | 731.227 11                         | 29 1                                       | 108.094                       | 5/2-                                                     | E2                 |               | 0.00547        | $\alpha(N)=0.000189 \ 3; \ \alpha(O)=2.91\times10^{-5} \ 5; \ \alpha(P)=1.86\times10^{-6} \ 4$<br>Mult., $\delta$ : from ce and $\gamma\gamma(\theta)$ data.<br>B(E2)(W.u.)=0.031 $\ 4$<br>$\alpha(K)=0.00456 \ 7; \ \alpha(L)=0.000712 \ 10; \ \alpha(M)=0.0001559 \ 22; \ \alpha(N+)=4.14\times10^{-5} \ 6$                                                                                                     |
| 851.90                 | 13/2+                                 | 67.08 4                            | 36 1                                       | 784.81                        | 11/2+                                                    | (M1)               |               | 6.37           | $\alpha(N)=3.57\times10^{-5} 5; \ \alpha(O)=5.39\times10^{-6} 8; \ \alpha(P)=3.13\times10^{-7} 5 \\ \alpha(K)=5.37 8; \ \alpha(L)=0.781 \ 11; \ \alpha(M)=0.1698 \ 24; \\ \alpha(N+)=0.0455 \ 7$                                                                                                                                                                                                                  |
|                        |                                       | 146.03 4                           | 100 1                                      | 705.98                        | 11/2-                                                    | [E1]               |               | 0.1052         | $ \begin{array}{l} \alpha(\mathrm{N}) = 0.0391 \ 6; \ \alpha(\mathrm{O}) = 0.00605 \ 9; \ \alpha(\mathrm{P}) = 0.000402 \ 6 \\ \alpha(\mathrm{K}) = 0.0888 \ 13; \ \alpha(\mathrm{L}) = 0.01288 \ 18; \ \alpha(\mathrm{M}) = 0.00279 \ 4; \\ \alpha(\mathrm{N}+) = 0.000732 \ 11 \end{array} $                                                                                                                    |
| 901.97                 | 13/2-                                 | 196.00 <i>9</i><br>522.77 <i>4</i> | 1.3 <i>3</i><br>100 <i>1</i>               | 705.98<br>379.30              | 11/2 <sup>-</sup><br>9/2 <sup>-</sup>                    | E2                 |               | 0.01242        | $\begin{aligned} &\alpha(N) = 0.000633 \ 9; \ \alpha(O) = 9.41 \times 10^{-5} \ 14; \ \alpha(P) = 5.23 \times 10^{-6} \ 8 \\ &\alpha(K) = 0.01014 \ 15; \ \alpha(L) = 0.001783 \ 25; \ \alpha(M) = 0.000395 \ 6; \\ &\alpha(N+) = 0.0001040 \ 15 \\ &\alpha(N) = 9.00 \times 10^{-5} \ 13; \ \alpha(O) = 1.335 \times 10^{-5} \ 19; \ \alpha(P) = 6.82 \times 10^{-7} \end{aligned}$                              |
| 905.58                 | (3/2 <sup>-</sup> ,5/2 <sup>-</sup> ) | 905.6 5                            | 100                                        | 0.0                           | 7/2-                                                     | (M1,E2)            |               | 0.0046 12      | 10<br>$\alpha(K)=0.0039$ 11; $\alpha(L)=0.00055$ 13; $\alpha(M)=0.00012$ 3;<br>$\alpha(N+)=3.2\times10^{-5}$ 8                                                                                                                                                                                                                                                                                                    |
| 913.56                 | (3/2 <sup>-</sup> )                   | 326.1 5<br>518.18 5<br>805.47 2    | 5 <i>1</i><br>7.9 <i>4</i><br>100 <i>4</i> | 587.449<br>395.445<br>108.094 | 3/2 <sup>-</sup><br>3/2 <sup>-</sup><br>5/2 <sup>-</sup> | (M1)               |               | 0.00771        | $\alpha(N)=2.7\times10^{-5}$ 7; $\alpha(O)=4.2\times10^{-6}$ 10; $\alpha(P)=2.8\times10^{-7}$ 8<br>$\alpha(K)=0.00657$ 10; $\alpha(L)=0.000897$ 13; $\alpha(M)=0.000194$ 3;                                                                                                                                                                                                                                       |
|                        |                                       | 913.6 5                            | 18 4                                       | 0.0                           | 7/2-                                                     | (E2)               |               | 0.00333        | $\begin{aligned} &\alpha(N+)=5.20\times10^{-5} \ 8\\ &\alpha(N)=4.46\times10^{-5} \ 7; \ \alpha(O)=6.95\times10^{-6} \ 10; \ \alpha(P)=4.76\times10^{-7} \ 7\\ &\alpha(K)=0.00281 \ 4; \ \alpha(L)=0.000414 \ 6; \ \alpha(M)=9.01\times10^{-5} \ 13; \\ &\alpha(N+)=2.40\times10^{-5} \ 4\\ &\alpha(N)=2.07\times10^{-5} \ 3; \ \alpha(O)=3.15\times10^{-6} \ 5; \ \alpha(P)=1.94\times10^{-7} \ 3 \end{aligned}$ |

From ENSDF

 $^{151}_{64}\mathrm{Gd}_{87}$ -10

|                        |                                                         |                                                           |                                 |                               | Adopted                                                                                          | L <mark>evels, Gam</mark>  | mas (co  | ntinued)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------|---------------------------------------------------------|-----------------------------------------------------------|---------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------|----------------------------|----------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                         |                                                           |                                 |                               | <u>2</u>                                                                                         | v( <sup>151</sup> Gd) (cor | ntinued) |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| E <sub>i</sub> (level) | $\mathbf{J}^{\pi}_{i}$                                  | $E_{\gamma}^{\dagger}$                                    | $\mathrm{I}_{\gamma}^{\dagger}$ | $E_f$                         | ${ m J}_f^\pi$                                                                                   | Mult. <sup>#</sup>         | δ#       | α <b>&amp;</b>   | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 938.77                 | (3/2 <sup>-</sup> ,5/2 <sup>-</sup> ,7/2 <sup>-</sup> ) | 830.65 <i>10</i><br>938.7 <i>5</i>                        | 39 <i>3</i><br>100 <i>21</i>    | 108.094<br>0.0                | 5/2 <sup>-</sup><br>7/2 <sup>-</sup>                                                             | (M1,E2)                    |          | 0.0042 11        | $\alpha$ (K)=0.0036 <i>10</i> ; $\alpha$ (L)=0.00050 <i>12</i> ; $\alpha$ (M)=0.000109 <i>25</i> ; $\alpha$ (N+)=2.9×10 <sup>-5</sup> <i>7</i>                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 982.27                 | (3/2)+                                                  | 143.0 5                                                   | 72                              | 839.320                       | 1/2-                                                                                             | [E1]                       |          | 0.1113 <i>19</i> | $ \begin{aligned} &\alpha(N) = 2.5 \times 10^{-5} \ 6; \ \alpha(O) = 3.9 \times 10^{-6} \ 9; \ \alpha(P) = 2.6 \times 10^{-7} \ 8 \\ &\alpha(K) = 0.0939 \ 16; \ \alpha(L) = 0.01364 \ 24; \ \alpha(M) = 0.00295 \ 5; \\ &\alpha(N+) = 0.000775 \ 14 \\ &\alpha(N) = 0.000670 \ 12; \ \alpha(O) = 9.96 \times 10^{-5} \ 17; \ \alpha(P) = 5.52 \times 10^{-6} \\ &10 \end{aligned} $                                                                                                                                                                                      |
|                        |                                                         | 361.61 <i>6</i><br>556.3 <sup>@</sup> 2<br>586.8 <i>5</i> | 38 6<br>17 <i>I</i><br>100 20   | 620.602<br>426.688<br>395.445 | 3/2 <sup>-</sup> ,5/2 <sup>(-)</sup><br>5/2 <sup>-</sup><br>3/2 <sup>-</sup><br>5/2 <sup>-</sup> |                            |          |                  | $E_{\gamma}$ : level energy difference=555.58.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1052.20                | 1/2-,3/2-                                               | 240.36 2                                                  | 11 <i>I</i><br>18 <i>I</i>      | 811.835                       | 3/2 <sup>-</sup>                                                                                 | E2(+M1)                    | >2       | 0.127 6          | $\alpha$ (K)=0.095 6; $\alpha$ (L)=0.0248 6; $\alpha$ (M)=0.00566 15;<br>$\alpha$ (N+)=0.00146 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                                                         | 476.55 3                                                  | 100 4                           | 575.619                       | 1/2-                                                                                             | M1(+E2)                    | <1       | 0.025 4          | $\alpha(N)=0.00128 \ 4; \ \alpha(O)=0.000180 \ 4; \ \alpha(P)=5.9\times10^{-6} \ 6 \\ \alpha(K)=0.021 \ 3; \ \alpha(L)=0.0031 \ 3; \ \alpha(M)=0.00068 \ 6; \\ \alpha(N+)=0.000182 \ 15 \\ \alpha(N)=0.000156 \ 13; \ \alpha(O)=2.40\times10^{-5} \ 22; \ \alpha(P)=1.55\times10^{-6} \\ 24 $                                                                                                                                                                                                                                                                             |
|                        |                                                         | 656.78 4                                                  | 32 1                            | 395.445                       | 3/2-                                                                                             | (M1,E2)                    |          | 0.010 3          | $\alpha(K)=0.008 \ 3; \ \alpha(L)=0.0012 \ 3; \ \alpha(M)=0.00026 \ 6; \ \alpha(N+)=7.1\times10^{-5} \ 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1076.95                | (9/2 to 13/2) <sup>-</sup>                              | 697.64 11                                                 | 100                             | 379.30                        | 9/2-                                                                                             | (E2)                       |          | 0.00610          | $\begin{array}{l} \alpha(\text{N})=6.1\times10^{-3} \ 14; \ \alpha(\text{O})=9.3\times10^{-6} \ 23; \ \alpha(\text{P})=5.9\times10^{-7} \ 20 \\ \alpha(\text{K})=0.00507 \ 8; \ \alpha(\text{L})=0.000803 \ 12; \ \alpha(\text{M})=0.0001762 \\ 25; \ \alpha(\text{N}+)=4.67\times10^{-5} \ 7 \end{array}$                                                                                                                                                                                                                                                                |
| 1087.59                | 3/2-                                                    | 248.30 <i>3</i>                                           | 19 <i>1</i>                     | 839.320                       | 1/2-                                                                                             | M1(+E2)                    | <1       | 0.146 <i>13</i>  | $ \begin{aligned} \alpha(N) &= 4.03 \times 10^{-5} \ 6; \ \alpha(O) &= 6.08 \times 10^{-6} \ 9; \ \alpha(P) &= 3.48 \times 10^{-7} \ 5 \\ \alpha(K) &= 0.121 \ 14; \ \alpha(L) &= 0.0199 \ 9; \ \alpha(M) &= 0.00438 \ 25; \\ \alpha(N+) &= 0.00116 \ 6 \end{aligned} $                                                                                                                                                                                                                                                                                                   |
|                        |                                                         | 275.61 6                                                  | 2.9 4                           | 811.835                       | 3/2-                                                                                             | [M1,E2]                    |          | 0.099 21         | $ \begin{aligned} &\alpha(N) = 0.00100 \ 6; \ \alpha(O) = 0.000151 \ 4; \ \alpha(P) = 8.7 \times 10^{-6} \ 13 \\ &\alpha(K) = 0.080 \ 22; \ \alpha(L) = 0.0147 \ 4; \ \alpha(M) = 0.00327 \ 16; \\ &\alpha(N+) = 0.00086 \ 3 \end{aligned} $                                                                                                                                                                                                                                                                                                                              |
|                        |                                                         | 467.0 <i>5</i><br>500.1 <i>5</i>                          | 6.7 <i>14</i><br>20 <i>4</i>    | 620.602<br>587.449            | 3/2 <sup>-</sup> ,5/2 <sup>(-)</sup><br>3/2 <sup>-</sup>                                         | (M1,E2)                    |          | 0.020 6          | $\alpha(N)=0.00075 \ 3; \ \alpha(O)=0.0001103 \ 20; \ \alpha(P)=5.6\times10^{-6} \ 20$<br>$\alpha(K)=0.016 \ 5; \ \alpha(L)=0.0025 \ 5; \ \alpha(M)=0.00055 \ 10; \ \alpha(N+)=0.00015 \ 3$                                                                                                                                                                                                                                                                                                                                                                               |
|                        |                                                         | 512.0 5                                                   | 11 2                            | 575.619                       | 1/2-                                                                                             | (M1,E2)                    |          | 0.018 6          | $ \begin{aligned} &\alpha(N) = 0.000126 \ 23; \ \alpha(O) = 1.9 \times 10^{-5} \ 4; \ \alpha(P) = 1.2 \times 10^{-6} \ 4 \\ &\alpha(K) = 0.015 \ 5; \ \alpha(L) = 0.0024 \ 5; \ \alpha(M) = 0.00051 \ 10; \\ &\alpha(N+) = 0.00014 \ 3 \end{aligned} $                                                                                                                                                                                                                                                                                                                    |
|                        |                                                         | 660.94 <i>3</i><br>692.06 <i>4</i>                        | 32 <i>1</i><br>100 <i>6</i>     | 426.688<br>395.445            | 5/2 <sup>-</sup><br>3/2 <sup>-</sup>                                                             | M1+E2                      |          | 0.0087 25        | $\begin{aligned} &\alpha(\mathbf{N}) = 0.000118 \ 23; \ \alpha(\mathbf{O}) = 1.8 \times 10^{-5} \ 4; \ \alpha(\mathbf{P}) = 1.1 \times 10^{-6} \ 4 \\ &\alpha(\mathbf{K}) = 0.0073 \ 22; \ \alpha(\mathbf{L}) = 0.00106 \ 25; \ \alpha(\mathbf{M}) = 0.00023 \ 6; \\ &\alpha(\mathbf{N}+) = 6.2 \times 10^{-5} \ 15 \\ &\alpha(\mathbf{N}) = 5.3 \times 10^{-5} \ 12; \ \alpha(\mathbf{O}) = 8.2 \times 10^{-6} \ 20; \ \alpha(\mathbf{P}) = 5.2 \times 10^{-7} \ 17 \\ &\delta: \ +0.37 \ 8 \ \text{or} \ +9.9 \ 42 \ \text{from} \ \gamma\gamma(\theta). \end{aligned}$ |

|                        |                                                             |                                                                                  |                                                 |                                                              | Adopted Levels, Gammas (continued)                                                                                     |                          |                |                |                                                                                                                                                                                                                                                                                                                                                                |  |  |
|------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                        |                                                             |                                                                                  |                                                 |                                                              | $\gamma(^{15}$                                                                                                         | <sup>1</sup> Gd) (contin | ued)           |                |                                                                                                                                                                                                                                                                                                                                                                |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                                          | $E_{\gamma}^{\dagger}$                                                           | $I_{\gamma}^{\dagger}$                          | $E_f$                                                        | $\mathbf{J}_f^{\pi}$                                                                                                   | Mult. <sup>#</sup>       | δ <sup>#</sup> | α <b>&amp;</b> | Comments                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 1087.59                | 3/2-                                                        | 979.48 4                                                                         | 29 1                                            | 108.094                                                      | 5/2-                                                                                                                   | M1,E2                    | _              | 0.0038 10      | $\begin{aligned} &\alpha(\text{K}) = 0.0033 \ 9; \ \alpha(\text{L}) = 0.00045 \ 11; \ \alpha(\text{M}) = 9.8 \times 10^{-5} \\ &22; \ \alpha(\text{N}+) = 2.6 \times 10^{-5} \ 6 \\ &\alpha(\text{N}) = 2.3 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 3.5 \times 10^{-6} \ 8; \ \alpha(\text{P}) = 2.3 \times 10^{-7} \end{aligned}$                            |  |  |
| 1115.77                | 13/2+                                                       | 1087.6 5<br>214.67 <sup>@</sup> 15<br>263.76 4                                   | 1.4 <i>4</i><br>12 <i>4</i><br>100 <i>2</i>     | 0.0<br>901.97<br>851.90                                      | 7/2 <sup>-</sup><br>13/2 <sup>-</sup><br>13/2 <sup>+</sup>                                                             | M1(+E2)                  | <0.4           | 0.132 4        | <sup>7</sup><br>$E_{\gamma}$ : level energy difference=213.70.<br>$\alpha(K)=0.111 \ 4; \ \alpha(L)=0.0163 \ 3; \ \alpha(M)=0.00355 \ 7; \ \alpha(N+)=0.000950 \ 15$<br>$\alpha(N)=0.000816 \ 14; \ \alpha(O)=0.0001258 \ 18;$                                                                                                                                 |  |  |
|                        |                                                             | 330.93 4                                                                         | 84 <i>4</i>                                     | 784.81                                                       | 11/2+                                                                                                                  | M1(+E2)                  | <0.6           | 0.070 4        | $\alpha(P)=8.2\times10^{-6} 4$<br>$\alpha(K)=0.059 4; \alpha(L)=0.00866 18; \alpha(M)=0.00189 4; \alpha(N+)=0.000504 11$<br>$\alpha(N)=0.000433 9; \alpha(O)=6.67\times10^{-5} 18; \alpha(P)=4 3\times10^{-6} 4$                                                                                                                                               |  |  |
| 1157.90                | (3/2)+                                                      | 409.8 5<br>252.3 5<br>318.6 5<br>537.293 <i>13</i><br>582.35 <i>9</i><br>731.2 5 | 28 10<br>55 14<br>3 1<br>67 2<br>12 1<br>100 23 | 705.98<br>905.58<br>839.320<br>620.602<br>575.619<br>426.688 | $ \begin{array}{c} 11/2^{-} \\ (3/2^{-}, 5/2^{-}) \\ 1/2^{-} \\ 3/2^{-}, 5/2^{(-)} \\ 1/2^{-} \\ 5/2^{-} \end{array} $ |                          |                |                | <i>u</i> (1)=+.5×10 +                                                                                                                                                                                                                                                                                                                                          |  |  |
|                        |                                                             | 762.45 <i>3</i>                                                                  | 100 23<br>52 2                                  | 108.004                                                      | 3/2 <sup>-</sup>                                                                                                       | E1(+M2)                  | <0.1           | 0.00203 12     | $\begin{aligned} &\alpha(\mathbf{K}) = 0.00174 \ 10; \ \alpha(\mathbf{L}) = 0.000231 \ 15; \\ &\alpha(\mathbf{M}) = 5.0 \times 10^{-5} \ 4; \ \alpha(\mathbf{N}+) = 1.33 \times 10^{-5} \ 9 \\ &\alpha(\mathbf{N}) = 1.14 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 1.76 \times 10^{-6} \ 12; \\ &\alpha(\mathbf{P}) = 1.17 \times 10^{-7} \ 8 \end{aligned}$ |  |  |
| 1164.3?<br>1192.19     | (13/2 <sup>-</sup> ,15/2 <sup>+</sup> )<br>1/2 <sup>+</sup> | 379 <sup><i>a</i></sup> 1<br>139.95 5                                            | 100<br>0.46 <i>3</i>                            | 784.81<br>1052.20                                            | 11/2 <sup>+</sup><br>1/2 <sup>-</sup> ,3/2 <sup>-</sup>                                                                | [E1]                     |                | 0.1179         | $\alpha$ (K)=0.0995 <i>14</i> ; $\alpha$ (L)=0.01448 <i>21</i> ; $\alpha$ (M)=0.00313<br>5; $\alpha$ (N+)=0.000823 <i>12</i><br>$\alpha$ (N)=0.000711 <i>10</i> ; $\alpha$ (O)=0.0001056 <i>15</i> ;<br>$\alpha$ (P)=5.83×10 <sup>-6</sup> <i>9</i>                                                                                                            |  |  |
|                        |                                                             | 278.70 <i>4</i><br>380.356 <i>10</i>                                             | 0.92 <i>6</i><br>46 2                           | 913.56<br>811.835                                            | (3/2 <sup>-</sup> )<br>3/2 <sup>-</sup>                                                                                | E1(+M2)                  | <0.1           | 0.0098 9       | $\alpha(K)=0.0083 \ 8; \ \alpha(L)=0.00116 \ 13; \ \alpha(M)=0.00025 \ 3; \ \alpha(N+)=6.7\times10^{-5} \ 8 \ \alpha(N)=5.7\times10^{-5} \ 7; \ \alpha(O)=8.8\times10^{-6} \ 10;$                                                                                                                                                                              |  |  |
|                        |                                                             | 604.761 <i>16</i>                                                                | 32 1                                            | 587.449                                                      | 3/2-                                                                                                                   | E1(+M2)                  | <0.2           | 0.0039 9       | $\alpha(P)=5.5\times10^{-7} 7$<br>$\alpha(K)=0.0033 7; \alpha(L)=0.00046 11; \alpha(M)=0.000100$<br>$24; \alpha(N+)=2.7\times10^{-5} 7$<br>$\alpha(N)=2.3\times10^{-5} 6; \alpha(O)=3.5\times10^{-6} 9; \alpha(P)=2.3\times10^{-7}$                                                                                                                            |  |  |
|                        |                                                             | 616.561 <i>15</i>                                                                | 100 3                                           | 575.619                                                      | 1/2-                                                                                                                   | E1                       |                | 0.00298        | <sup>6</sup><br>$\alpha(K)=0.00255 \ 4; \ \alpha(L)=0.000340 \ 5;$<br>$\alpha(M)=7.32\times10^{-5} \ 11; \ \alpha(N+)=1.95\times10^{-5} \ 3$                                                                                                                                                                                                                   |  |  |

Т

|                        |                                                               |                                                                                     |                                                  |                                              | Adopted Le                                                                                                               | vels, Gamma               | s (cont | inued)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------|---------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                               |                                                                                     |                                                  |                                              | $\gamma(^{12}$                                                                                                           | <sup>51</sup> Gd) (contir | nued)   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$                                            | $E_{\gamma}^{\dagger}$                                                              | $I_{\gamma}^{\dagger}$                           | $E_f$                                        | $\mathbf{J}_f^\pi$                                                                                                       | Mult. <sup>#</sup>        | δ#      | α <sup>&amp;</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1192.19<br>1199.15     | 1/2 <sup>+</sup><br>(1/2 <sup>-</sup> ,3/2,5/2 <sup>-</sup> ) | 796.8 <i>5</i><br>578.6 <i>5</i>                                                    | 0.52 <i>11</i><br>25 7                           | 395.445<br>620.602                           | 3/2 <sup>-</sup><br>3/2 <sup>-</sup> ,5/2 <sup>(-)</sup>                                                                 | (M1,E2)                   | _       | 0.014 4            | $\alpha(N)=1.678\times10^{-5} 24; \ \alpha(O)=2.58\times10^{-6} 4; \\ \alpha(P)=1.691\times10^{-7} 24$ $\alpha(K)=0.011 4; \ \alpha(L)=0.0017 4; \ \alpha(M)=0.00037 8; \\ \alpha(N+)=9.8\times10^{-5} 21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1210.06                | 11/2-                                                         | 772.52 6<br>803.7 5<br>1091.04 9<br>358.04 9                                        | 57 4<br>25 7<br>100 4<br>30 5                    | 426.688<br>395.445<br>108.094<br>851.90      | 5/2 <sup>-</sup><br>3/2 <sup>-</sup><br>5/2 <sup>-</sup><br>13/2 <sup>+</sup>                                            | E1                        |         | 0.01029            | $\alpha(\text{N})=8.5\times10^{-5} \ 18; \ \alpha(\text{O})=1.3\times10^{-5} \ 3; \ \alpha(\text{P})=8.\text{E}-7 \ 3$<br>$\alpha(\text{K})=0.00876 \ 13; \ \alpha(\text{L})=0.001202 \ 17; \ \alpha(\text{M})=0.000259 \ 4; \ \alpha(\text{N}+)=6.89\times10^{-5} \ 10 \ \alpha(\text{N})=5.93\times10^{-5} \ 9; \ \alpha(\text{O})=9.05\times10^{-6} \ 13;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                                                               | 504.4 2                                                                             | 34 14                                            | 705.98                                       | 11/2-                                                                                                                    | M1,E2                     |         | 0.019 6            | $\alpha(P)=5.65\times10^{-7} 8$<br>$\alpha(K)=0.016 5; \alpha(L)=0.0024 5; \alpha(M)=0.00054 10;$<br>$\alpha(N+)=0.00014 3$<br>$\alpha(N)=0.000123 23; \alpha(Q)=1.9\times10^{-5} 4; \alpha(P)=1.1\times10^{-6} 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1279.06                | 3/2-,5/2-                                                     | 830.81 <i>14</i><br>1210.8 <i>4</i><br>365.5 <i>5</i><br>373.5 <i>5</i><br>439 60 8 | 100 5<br>41 7<br>3.8 <i>10</i><br>2.4 5<br>6 2 5 | 379.30<br>0.0<br>913.56<br>905.58<br>839.320 | 9/2 <sup>-</sup><br>7/2 <sup>-</sup><br>(3/2 <sup>-</sup> )<br>(3/2 <sup>-</sup> ,5/2 <sup>-</sup> )<br>1/2 <sup>-</sup> | D+Q<br>Q                  |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |                                                               | 658.58 <i>13</i>                                                                    | 21 2                                             | 620.602                                      | 3/2-,5/2(-)                                                                                                              | (M1,E2)                   |         | 0.010 <i>3</i>     | $\begin{aligned} &\alpha(\mathrm{K}) = 0.0083 \ 25; \ \alpha(\mathrm{L}) = 0.0012 \ 3; \ \alpha(\mathrm{M}) = 0.00026 \ 6; \\ &\alpha(\mathrm{N}+) = 7.0 \times 10^{-5} \ 16 \\ &\alpha(\mathrm{N}) = 6.0 \times 10^{-5} \ 14; \ \alpha(\mathrm{O}) = 9.3 \times 10^{-6} \ 23; \\ &\alpha(\mathrm{P}) = 5.9 \times 10^{-7} \ 20 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        |                                                               | 691.6 5<br>703.4 5                                                                  | 27 5<br>3.3 10                                   | 587.449<br>575.619                           | 3/2 <sup>-</sup><br>1/2 <sup>-</sup>                                                                                     |                           |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |                                                               | 852.36 6                                                                            | 9.6 5                                            | 426.688                                      | 5/2-                                                                                                                     | M1(+E2)                   | <1      | 0.0060 8           | $\alpha(K)=0.0051$ 7; $\alpha(L)=0.00071$ 8; $\alpha(M)=0.000153$ 16;<br>$\alpha(N+)=4.1\times10^{-5}$ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                               | 883.6 5                                                                             | 18 4                                             | 395.445                                      | 3/2-                                                                                                                     | (M1,E2)                   |         | 0.0049 13          | $\begin{aligned} \alpha(N) &= 3.5 \times 10^{-5} \ 4; \ \alpha(O) &= 5.5 \times 10^{-6} \ 6; \ \alpha(P) &= 3.7 \times 10^{-7} \ 5 \\ \alpha(K) &= 0.0041 \ 12; \ \alpha(L) &= 0.00058 \ 14; \ \alpha(M) &= 0.00013 \ 3; \\ \alpha(N+) &= 3.4 \times 10^{-5} \ 8 \\ \alpha(N) &= 2.9 \times 10^{-5} \ 7; \ \alpha(O) &= 4.5 \times 10^{-6} \ 11; \ \alpha(P) &= 2.9 \times 10^{-7} \\ \alpha(D) &= 0.00013 \ \alpha(D) &= $ |
|                        |                                                               | 1170.98 <i>3</i>                                                                    | 100 3                                            | 108.094                                      | 5/2-                                                                                                                     | M1                        |         | 0.00314            | $\alpha$ (K)=0.00268 4; $\alpha$ (L)=0.000362 5; $\alpha$ (M)=7.80×10 <sup>-5</sup><br>11; $\alpha$ (N+)=2.42×10 <sup>-5</sup> 4<br>$\alpha$ (N)=1.80×10 <sup>-5</sup> 3; $\alpha$ (O)=2.80×10 <sup>-6</sup> 4;<br>$\alpha$ (P)=1.03×10 <sup>-7</sup> 3; $\alpha$ (IPE)=3.23×10 <sup>-6</sup> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1345.44                | 17/2+                                                         | 1279.20 <i>13</i><br>229.59 7<br>493.57 6                                           | 4.8 5<br>1.6 4<br>100 1                          | 0.0<br>1115.77<br>851.90                     | 7/2 <sup>-</sup><br>13/2 <sup>+</sup><br>13/2 <sup>+</sup>                                                               | E2                        |         | 0.01444            | $\alpha(K)=0.01173 \ 17; \ \alpha(L)=0.00212 \ 3; \ \alpha(M)=0.000470 \ 7; \ \alpha(N+)=0.0001235 \ 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

 $^{151}_{64}\mathrm{Gd}_{87}$ -13

|                        |                  |                                 |                               |                            | Adopted                                    | Levels, Gam                    | mas (c        | ontinued)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------|------------------|---------------------------------|-------------------------------|----------------------------|--------------------------------------------|--------------------------------|---------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                  |                                 |                               |                            | ŝ                                          | $\gamma(^{151}\text{Gd})$ (cos | ntinued       | )              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| E <sub>i</sub> (level) | ${ m J}^{\pi}_i$ | $E_{\gamma}^{\dagger}$          | $I_{\gamma}^{\dagger}$        | $\mathrm{E}_{f}$           | $\mathrm{J}_f^\pi$                         | Mult. <sup>#</sup>             | $\delta^{\#}$ | α <b>&amp;</b> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                  |                                 |                               |                            | <u>/</u>                                   |                                |               |                | $\alpha$ (N)=0.0001069 <i>15</i> ; $\alpha$ (O)=1.580×10 <sup>-5</sup> <i>23</i> ;<br>$\alpha$ (P)=7.86×10 <sup>-7</sup> <i>11</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1363.84                | 15/2+            | 247.98 5                        | 16 2                          | 1115.77                    | 13/2+                                      | M1(+E2)                        | <1            | 0.147 13       | $\alpha(\mathbf{K})=0.121 \ 14; \ \alpha(\mathbf{L})=0.0200 \ 9; \ \alpha(\mathbf{M})=0.00440 \ 25; \ \alpha(\mathbf{N}+)=0.00117 \ 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |                  | 461.92 <i>4</i>                 | 100 3                         | 901.97                     | 13/2-                                      | E1                             |               | 0.00564        | $\alpha(N)=0.001016; \alpha(O)=0.0001524; \alpha(P)=8.7\times10^{-5}13$<br>$\alpha(K)=0.004817; \alpha(L)=0.00065210; \alpha(M)=0.000140420;$<br>$\alpha(N+)=3.74\times10^{-5}6$<br>$\alpha(N)=3.22\times10^{-5}5; \alpha(O)=4.02\times10^{-6}7; \alpha(P)=3.15\times10^{-7}5$                                                                                                                                                                                                                                                                                                                                                                    |
|                        |                  | 512.2 2                         | 39 15                         | 851.90                     | 13/2+                                      | M1,E2                          |               | 0.018 6        | $\alpha(N)=5.22\times10^{-5}, \alpha(D)=4.55\times10^{-7}, \alpha(T)=5.15\times10^{-5} \text{ s}$<br>$\alpha(K)=0.015 \ 5; \alpha(L)=0.0023 \ 5; \alpha(M)=0.00051 \ 10;$<br>$\alpha(N+)=0.00014 \ 3$<br>$\alpha(N)=0.000118 \ 22; \alpha(O)=1.8\times10^{-5} \ 4; \alpha(P)=1.1\times10^{-6} \ 4$                                                                                                                                                                                                                                                                                                                                                |
|                        |                  | 579.08 10                       | 57 5                          | 784.81                     | $11/2^{+}$                                 |                                |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1373.95                | 1/2-,3/2-,5/2-   | 216.04 3                        | 70 <i>3</i>                   | 1157.90                    | $(3/2)^+$                                  | [E1]                           |               | 0.0370         | $\alpha$ (K)=0.0314 5; $\alpha$ (L)=0.00443 7; $\alpha$ (M)=0.000957 14; $\alpha$ (N+)=0.000253 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                        |                  | 322.21 22                       | 28 2                          | 1052.20                    | 1/2-,3/2-                                  | [M1,E2]                        |               | 0.064 16       | $\alpha(N)=0.000218 \ 3; \ \alpha(O)=3.29\times10^{-5} \ 5; \ \alpha(P)=1.94\times10^{-6} \ 3$<br>$\alpha(K)=0.052 \ 15; \ \alpha(L)=0.0090 \ 5; \ \alpha(M)=0.00199 \ 7;$<br>$\alpha(N+)=0.000526 \ 25$<br>$\alpha(N)=0.000454 \ 10; \ \alpha(O)=6.9\times10^{-5} \ 6; \ \alpha(D)=2.7\times10^{-6} \ 13$                                                                                                                                                                                                                                                                                                                                        |
|                        |                  | 391.67 8<br>460.40 5<br>468 4 5 | 100 <i>13</i><br>36 2<br>11 3 | 982.27<br>913.56<br>905.58 | $(3/2)^+$<br>$(3/2^-)$<br>$(3/2^-, 5/2^-)$ |                                |               |                | $u(N)=0.000434$ 19; $u(O)=0.8\times10^{-6}$ 0; $u(P)=3.7\times10^{-6}$ 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        |                  | 534.67 4                        | 46 2                          | 839.320                    | 1/2-                                       | (E2)                           |               | 0.01172        | $\begin{aligned} &\alpha(\mathbf{K}) = 0.00958 \ 14; \ \alpha(\mathbf{L}) = 0.001670 \ 24; \ \alpha(\mathbf{M}) = 0.000370 \ 6; \\ &\alpha(\mathbf{N}+) = 9.74 \times 10^{-5} \ 14 \\ &\alpha(\mathbf{N}) = 8.42 \times 10^{-5} \ 12; \ \alpha(\mathbf{O}) = 1.251 \times 10^{-5} \ 18; \\ &\alpha(\mathbf{P}) = 6.46 \times 10^{-7} \ 9 \end{aligned}$                                                                                                                                                                                                                                                                                           |
|                        |                  | 562.5 <sup>@</sup> 1            | 43 2                          | 811.835                    | 3/2-                                       | M1(+E2)                        | <1            | 0.0167 22      | $\alpha(K)=0.0141 \ 19; \ \alpha(L)=0.00202 \ 20; \ \alpha(M)=0.00044 \ 4; \ \alpha(N+)=0.000117 \ 12 \ \alpha(N)=0.000101 \ 10; \ \alpha(O)=1.55\times10^{-5} \ 16; \ \alpha(P)=1.02\times10^{-6} \ 15 \ 15 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 16 \ 15 \ 15$ |
|                        |                  | 786.5 5                         | 13 2                          | 587.449                    | 3/2-                                       |                                |               |                | $E_{\gamma}$ . level energy unrefere = 302.21.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |                  | 798.23 6                        | 62 <i>3</i>                   | 575.619                    | 1/2-                                       |                                |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                  | 947.3 5                         | 36 8                          | 426.688                    | 5/2-                                       | (M1,E2)                        |               | 0.0041 11      | $\begin{aligned} &\alpha(\mathbf{K}) = 0.0035 \ 10; \ \alpha(\mathbf{L}) = 0.00049 \ 12; \ \alpha(\mathbf{M}) = 0.000106 \ 24; \\ &\alpha(\mathbf{N}+) = 2.9 \times 10^{-5} \ 7 \\ &\alpha(\mathbf{N}) = 2.4 \times 10^{-5} \ 6; \ \alpha(\mathbf{O}) = 3.8 \times 10^{-6} \ 9; \ \alpha(\mathbf{P}) = 2.5 \times 10^{-7} \ 7 \end{aligned}$                                                                                                                                                                                                                                                                                                      |
| 1405.14                | 3/2-,5/2-        | 593.3 5                         | 16 4                          | 811.835                    | 3/2-                                       |                                |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                  | 784.3 2                         | 24 2                          | 620.602                    | 3/2 <sup>-</sup> ,5/2 <sup>(-)</sup>       | (M1,E2)                        |               | 0.0064 18      | $\begin{aligned} &\alpha(\mathbf{K}) = 0.0055 \ 16; \ \alpha(\mathbf{L}) = 0.00078 \ 18; \ \alpha(\mathbf{M}) = 0.00017 \ 4; \\ &\alpha(\mathbf{N}+) = 4.5 \times 10^{-5} \ 11 \\ &\alpha(\mathbf{N}) = 3.9 \times 10^{-5} \ 9; \ \alpha(\mathbf{O}) = 6.0 \times 10^{-6} \ 15; \ \alpha(\mathbf{P}) = 3.9 \times 10^{-7} \ 12 \end{aligned}$                                                                                                                                                                                                                                                                                                     |
|                        |                  | 817.96 24                       | 6.9 9                         | 587.449                    | 3/2-                                       |                                |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                  | 1009.69 <i>3</i>                | 100 4                         | 395.445                    | 3/2-                                       | M1(+E2)                        | <2            | 0.0038 7       | $\alpha(K)=0.0032$ 7; $\alpha(L)=0.00044$ 8; $\alpha(M)=9.5\times10^{-5}$ 16;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|                        | Adopted Levels, Gammas (continued)                                      |                                     |                           |                    |                                                            |                    |               |                |                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|------------------------|-------------------------------------------------------------------------|-------------------------------------|---------------------------|--------------------|------------------------------------------------------------|--------------------|---------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                        |                                                                         |                                     |                           |                    | $\gamma(^{151}$                                            | Gd) (contin        | ued)          |                |                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$                                                      | $E_{\gamma}^{\dagger}$              | $I_{\gamma}^{\dagger}$    | $E_f$              | ${ m J}_f^\pi$                                             | Mult. <sup>#</sup> | $\delta^{\#}$ | α <b>&amp;</b> | Comments                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                        |                                                                         |                                     |                           |                    |                                                            |                    |               |                | $\alpha(N+)=2.6\times10^{-5} 5$<br>$\alpha(N)=2.2\times10^{-5} 4; \ \alpha(O)=3.4\times10^{-6} 6;$<br>$\alpha(P)=2.3\times10^{-7} 5$                                                                                                                                                                                                         |  |  |  |  |
| 1405.14                | 3/2-,5/2-                                                               | 1297.10 <i>9</i><br>1405.1 <i>4</i> | 17 2<br>6.9 7             | 108.094<br>0.0     | 5/2 <sup>-</sup><br>7/2 <sup>-</sup>                       |                    |               |                |                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 1425<br>1435.08        | (11/2 to 15/2)<br>(15/2) <sup>-</sup>                                   | 719 <sup>a</sup> 1<br>583.52 11     | 100<br>51 6               | 705.98<br>851.90   | 11/2 <sup>-</sup><br>13/2 <sup>+</sup>                     |                    |               |                |                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                        |                                                                         | 729.00 6                            | 100 5                     | 705.98             | 11/2-                                                      | E2                 |               | 0.00551        | $\alpha(K)=0.00459 \ 7; \ \alpha(L)=0.000717 \ 10; \\ \alpha(M)=0.0001572 \ 22; \ \alpha(N+)=4.17\times10^{-5} \ 6 \\ \alpha(N)=3.59\times10^{-5} \ 5; \ \alpha(O)=5.44\times10^{-6} \ 8; \\ \alpha(P)=3.15\times10^{-7} \ 5 $                                                                                                               |  |  |  |  |
| 1456.58                | 1/2-,3/2-,5/2-                                                          | 543.8 <i>1</i><br>644.78 <i>10</i>  | 9 <i>1</i><br>17 <i>1</i> | 913<br>811.835     | (9/2 <sup>-</sup> ,11/2 <sup>-</sup> )<br>3/2 <sup>-</sup> |                    |               |                |                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                        |                                                                         | 870.0 <sup>@</sup> 2                | 13 2                      | 587.449            | 3/2-                                                       | (M1,E2)            |               | 0.0050 14      | $\alpha(K)=0.0043 \ 12; \ \alpha(L)=0.00060 \ 14; \\ \alpha(M)=0.00013 \ 3; \ \alpha(N+)=3.5\times10^{-5} \ 8 \\ \alpha(N)=3.0\times10^{-5} \ 7; \ \alpha(O)=4.6\times10^{-6} \ 12; \\ \alpha(P)=3.0\times10^{-7} \ 9 \\ E : level energy difference=860 \ 13 \\ \end{tabular}$                                                              |  |  |  |  |
|                        |                                                                         | 880.79 15                           | 35 2                      | 575.619            | 1/2-                                                       |                    |               |                | $L_{\gamma}$ . level energy unreferee=609.15.                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                        |                                                                         | 1029.55 <sup>@</sup> 5              | 43 1                      | 426.688            | 5/2-                                                       |                    |               |                | $E_{\gamma}$ : level energy difference=1029.89.                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                        |                                                                         | 1061.59 <sup>@</sup> 5              | 100 5                     | 395.445            | 3/2-                                                       | M1,E2              |               | 0.0032 8       | $\alpha(K)=0.0027 7; \alpha(L)=0.00038 9; \alpha(M)=8.1\times10^{-5} 18; \alpha(N+)=2.2\times10^{-5} 5 \alpha(N)=1.9\times10^{-5} 4; \alpha(O)=2.9\times10^{-6} 7; \alpha(P)=1.9\times10^{-7} 5 E_{\gamma}: level energy difference=1061.13.$                                                                                                |  |  |  |  |
|                        |                                                                         | 1348.19 <sup>@</sup> 6              | 83 2                      | 108.094            | 5/2-                                                       |                    |               |                | $E_{\gamma}$ : level energy difference=1348.49.                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 1463.27                | (13/2)-                                                                 | 253.21 4                            | 100                       | 1210.06            | 11/2-                                                      | M1+E2              | -0.22 5       | 0.1483 24      | $\begin{aligned} &\alpha(\mathbf{K}) = 0.1251 \ 21; \ \alpha(\mathbf{L}) = 0.0182 \ 3; \ \alpha(\mathbf{M}) = 0.00396 \\ & 6; \ \alpha(\mathbf{N}+) = 0.001061 \ 16 \\ & \alpha(\mathbf{N}) = 0.000911 \ 14; \ \alpha(\mathbf{O}) = 0.0001407 \ 20; \\ & \alpha(\mathbf{P}) = 9.21 \times 10^{-6} \ 17 \end{aligned}$                        |  |  |  |  |
| 1477.66<br>1493.38     | (1/2 <sup>-</sup> ,3/2,5/2 <sup>-</sup> )<br>(1/2 to 5/2 <sup>-</sup> ) | 1369.56 9<br>405.67 9               | 100<br>5.8 5              | 108.094<br>1087.59 | 5/2 <sup>-</sup><br>3/2 <sup>-</sup>                       | (M1)               |               | 0.0433         | $\alpha$ (K)=0.0367 6; $\alpha$ (L)=0.00513 8; $\alpha$ (M)=0.001112<br>$16$ ; $\alpha$ (N+)=0.000299 5<br>$\alpha$ (N)=0.000256 4; $\alpha$ (O)=3.98×10 <sup>-5</sup> 6;<br>(D) 2.70×10 <sup>-6</sup> 4                                                                                                                                     |  |  |  |  |
|                        |                                                                         | 579.8 5                             | 7.9 16                    | 913.56             | (3/2 <sup>-</sup> )                                        | (M1,E2)            |               | 0.013 4        | $\alpha(\mathbf{r}) = 2.70 \times 10^{-5} 4$<br>$\alpha(\mathbf{K}) = 0.011 4; \ \alpha(\mathbf{L}) = 0.0017 4; \ \alpha(\mathbf{M}) = 0.00037 8;$<br>$\alpha(\mathbf{N}+) = 9.8 \times 10^{-5} 21$<br>$\alpha(\mathbf{N}) = 8.4 \times 10^{-5} 18; \ \alpha(\mathbf{O}) = 1.3 \times 10^{-5} 3;$<br>$\alpha(\mathbf{D}) = 8 \mathbf{E} 7 7$ |  |  |  |  |
|                        |                                                                         | 905.9 5                             | 100 21                    | 587.449            | 3/2-                                                       | (M1,E2)            |               | 0.0046 12      | $\alpha(L) = 0.0039 \ 11; \ \alpha(L) = 0.00055 \ 13;$                                                                                                                                                                                                                                                                                       |  |  |  |  |

Т

|                        |                                        |                                                                                                 |                                                    |                                                    | Adopted Levels                                                                                    | , Gammas (o        | continu       | ed)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------|---------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                        |                                        |                                                                                                 |                                                    |                                                    | $\gamma$ ( <sup>151</sup> G                                                                       | d) (continued      | d)            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                     | $E_{\gamma}^{\dagger}$                                                                          | $I_{\gamma}^{\dagger}$                             | $E_f$                                              | $\mathrm{J}_f^\pi$                                                                                | Mult. <sup>#</sup> | $\delta^{\#}$ | α <sup>&amp;</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 1493.38                | (1/2 to 5/2 <sup>-</sup> )             | 917.8 5                                                                                         | 6.3 16                                             | 575.619                                            | 1/2-                                                                                              | (M1,E2)            | _             | 0.0045 12          | $\begin{aligned} \alpha(M) = 0.00012 \ 3; \ \alpha(N+) = 3.2 \times 10^{-5} \ 8\\ \alpha(N) = 2.7 \times 10^{-5} \ 7; \ \alpha(O) = 4.2 \times 10^{-6} \ 10; \\ \alpha(P) = 2.8 \times 10^{-7} \ 8\\ \alpha(K) = 0.0038 \ 10; \ \alpha(L) = 0.00053 \ 13; \\ \alpha(M) = 0.00011 \ 3; \ \alpha(N+) = 3.1 \times 10^{-5} \ 7\\ \alpha(N) = 2.6 \times 10^{-5} \ 6; \ \alpha(O) = 4.1 \times 10^{-6} \ 10; \\ \alpha(P) = 2.7 \times 10^{-7} \ 8 \end{aligned}$ |  |  |
| 1505.41                | 1/2 <sup>(-)</sup> ,3/2 <sup>(-)</sup> | 1097.92 7<br>1385.42 9<br>591.8 5<br>666.1 5                                                    | 20.5 5<br>14.7 5<br>2.3 7<br>1.3 7                 | 395.445<br>108.094<br>913.56<br>839.320            | 3/2 <sup>-</sup><br>5/2 <sup>-</sup><br>(3/2 <sup>-</sup> )<br>1/2 <sup>-</sup>                   |                    |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                        |                                        | 884.8 5                                                                                         | 15 3                                               | 620.602                                            | 3/2 <sup>-</sup> ,5/2 <sup>(-)</sup>                                                              | (M1,E2)            |               | 0.0049 <i>13</i>   | $\alpha(K)=0.0041 \ 12; \ \alpha(L)=0.00058 \ 14; \\ \alpha(M)=0.00013 \ 3; \ \alpha(N+)=3.4\times10^{-5} \ 8 \\ \alpha(N)=2.9\times10^{-5} \ 7; \ \alpha(O)=4.5\times10^{-6} \ 11; \\ \alpha(P)=2.9\times10^{-7} \ 9$                                                                                                                                                                                                                                        |  |  |
|                        |                                        | 918.0 <i>5</i>                                                                                  | 3.9 7                                              | 587.449                                            | 3/2-                                                                                              | (M1,E2)            |               | 0.0045 12          | $\alpha(K) = 0.0038 \ 10; \ \alpha(L) = 0.00053 \ 12; \alpha(M) = 0.00011 \ 3; \ \alpha(N+) = 3.1 \times 10^{-5} \ 7 \alpha(N) = 2.6 \times 10^{-5} \ 6; \ \alpha(O) = 4.1 \times 10^{-6} \ 10; \alpha(P) = 2.7 \times 10^{-7} \ 8$                                                                                                                                                                                                                           |  |  |
| 1505.73                | (11/2 to 15/2)                         | 929.83 <i>11</i><br>1078.80 <i>7</i><br>1109.96 <i>2</i><br>1397.0 <i>1</i><br>603.75 <i>14</i> | 3.6 3<br>8.4 3<br>100 3<br>6.8 3<br>100 <i>1</i> 6 | 575.619<br>426.688<br>395.445<br>108.094<br>901.97 | 1/2 <sup>-</sup><br>5/2 <sup>-</sup><br>3/2 <sup>-</sup><br>5/2 <sup>-</sup><br>13/2 <sup>-</sup> |                    |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 1510.92                | 17/2-                                  | 721.0 <i>5</i><br>147.1 <i>2</i><br>346.58 <sup><i>a</i></sup> 14                               | 88 <i>36</i><br>9 <i>2</i><br>5.8 <i>13</i>        | 784.81<br>1363.84<br>1164.3?                       | $\frac{11/2^{+}}{15/2^{+}}$ $(13/2^{-}, 15/2^{+})$                                                |                    |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                        |                                        | 608.94 <i>4</i>                                                                                 | 100 2                                              | 901.97                                             | 13/2-                                                                                             | E2                 |               | 0.00845            | $\alpha(K)=0.00697 \ 10; \ \alpha(L)=0.001155 \ 17; \\ \alpha(M)=0.000255 \ 4; \ \alpha(N+)=6.73\times10^{-5} \ 10 \\ \alpha(N)=5.81\times10^{-5} \ 9; \ \alpha(O)=8.70\times10^{-6} \ 13; \\ \alpha(P)=4.75\times10^{-7} \ 7$                                                                                                                                                                                                                                |  |  |
| 1552.70                | $(3/2^{-}, 5/2^{-})$                   | 713.25 <i>15</i><br>1553.2 <i>3</i>                                                             | <500<br>100 <i>15</i>                              | 839.320<br>0.0                                     | $\frac{1/2^{-}}{7/2^{-}}$                                                                         |                    |               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 1 <i>311</i> .30       | (1/2 10 3/2 )                          | 664.0 <i>5</i><br>671.96 <i>9</i>                                                               | 9 2<br>15 2                                        | 913.56<br>905.58                                   | $(3/2)^+$<br>$(3/2^-)$<br>$(3/2^-,5/2^-)$                                                         | M1(+E2)            | <1            | 0.0107 <i>14</i>   | $\alpha(K)=0.0091 \ 12; \ \alpha(L)=0.00128 \ 14;$<br>$\alpha(M)=0.00028 \ 3; \ \alpha(N+)=7.4\times10^{-5} \ 8$<br>$\alpha(N)=6.4\times10^{-5} \ 7; \ \alpha(O)=9.9\times10^{-6} \ 11;$<br>$\alpha(P)=6.5\times10^{-7} \ 10$                                                                                                                                                                                                                                 |  |  |
|                        |                                        | 765.7 <i>5</i><br>956.93 <i>12</i>                                                              | 10 <i>1</i><br>14 <i>1</i>                         | 811.835<br>620.602                                 | 3/2 <sup>-</sup><br>3/2 <sup>-</sup> ,5/2 <sup>(-)</sup>                                          | M1,E2              |               | 0.0041 11          | $\alpha(K) = 0.0034 \ 9; \ \alpha(L) = 0.00048 \ 11;$<br>$\alpha(M) = 0.000104 \ 23; \ \alpha(N+) = 2.8 \times 10^{-5} \ 7$                                                                                                                                                                                                                                                                                                                                   |  |  |

Т

# $\gamma(^{151}\text{Gd})$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$         | $E_{\gamma}^{\dagger}$                                     | $I_{\gamma}^{\dagger}$              | $E_f$                         | $\mathbf{J}_f^{\pi}$                                     | Mult. <sup>#</sup> | α <b>&amp;</b> | Comments                                                                                                                                                                                                                      |
|------------------------|----------------------------|------------------------------------------------------------|-------------------------------------|-------------------------------|----------------------------------------------------------|--------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1577.56                | (1/2 to 5/2 <sup>-</sup> ) | 990.13 18                                                  | 12 <i>I</i>                         | 587.449                       | 3/2-                                                     |                    |                | $\alpha(N)=2.4\times10^{-5}$ 6; $\alpha(O)=3.7\times10^{-6}$ 9; $\alpha(P)=2.4\times10^{-7}$ 7                                                                                                                                |
|                        |                            | 1001.87 <i>11</i><br>1150.79 <i>10</i><br>1182 13 <i>4</i> | 11 <i>I</i><br>13 <i>I</i><br>100 3 | 575.619<br>426.688<br>395.445 | 1/2 <sup>-</sup><br>5/2 <sup>-</sup><br>3/2 <sup>-</sup> |                    |                |                                                                                                                                                                                                                               |
| 1676.61                | $(17/2)^+$                 | 331.1 1                                                    | 14 6                                | 1345.44                       | $17/2^+$                                                 |                    |                |                                                                                                                                                                                                                               |
|                        |                            | 560.89 7                                                   | 100 9                               | 1115.77                       | 13/2+                                                    | E2                 | 0.01037        | $\alpha(K)=0.00851 \ I2; \ \alpha(L)=0.001455 \ 21; \ \alpha(M)=0.000321 \ 5; \ \alpha(N+)=8.48\times10^{-5} \ I2 \ \alpha(N)=7.33\times10^{-5} \ I1; \ \alpha(O)=1.092\times10^{-5} \ I6; \ \alpha(P)=5.76\times10^{-7} \ 8$ |
|                        |                            | 824.2 4                                                    | 43 9                                | 851.90                        | $13/2^{+}$                                               |                    |                |                                                                                                                                                                                                                               |
| 1701.40                | $1/2, 3/2, 5/2^{(-)}$      | 795.8 <i>5</i>                                             | 70 20                               | 905.58                        | $(3/2^{-}, 5/2^{-})$                                     |                    |                |                                                                                                                                                                                                                               |
|                        |                            | 889.9 2                                                    | 70 6                                | 811.835                       | 3/2-                                                     |                    |                |                                                                                                                                                                                                                               |
|                        |                            | 1080.96 19                                                 | 90 10                               | 620.602                       | $3/2^{-}, 5/2^{(-)}$                                     |                    |                |                                                                                                                                                                                                                               |
|                        |                            | 1114.1 2                                                   | 100 10                              | 587.449                       | 3/2-                                                     |                    |                |                                                                                                                                                                                                                               |
|                        |                            | 1305.81 9                                                  | 80 10                               | 395.445                       | 3/2-                                                     |                    |                |                                                                                                                                                                                                                               |
| 1707.68                | $1/2^{(-)}, 3/2^{(-)}$     | 428.6 5                                                    | 7.0 13                              | 1279.06                       | 3/2-,5/2-                                                |                    |                |                                                                                                                                                                                                                               |
|                        |                            | 620.1 5                                                    | 4.8 9                               | 1087.59                       | 3/2-                                                     |                    |                |                                                                                                                                                                                                                               |
|                        |                            | 725.30 9                                                   | 4.8 5                               | 982.27                        | $(3/2)^+$                                                |                    | 0.00(0.10      |                                                                                                                                                                                                                               |
|                        |                            | 794.28 9                                                   | 13 1                                | 913.56                        | (3/2 <sup>-</sup> )                                      | (M1,E2)            | 0.0063 18      | $\alpha(K)=0.0053\ I5;\ \alpha(L)=0.00075\ I8;\ \alpha(M)=0.00016\ 4;$<br>$\alpha(N+)=4.4\times10^{-5}\ I1$                                                                                                                   |
|                        |                            | 969 16 26                                                  | 251                                 | 020.220                       | 1/0-                                                     |                    |                | $\alpha(N) = 3.8 \times 10^{-5}$ 9; $\alpha(O) = 5.8 \times 10^{-6}$ 14; $\alpha(P) = 3.8 \times 10^{-7}$ 12                                                                                                                  |
|                        |                            | 868.16 20                                                  | 3.5 4                               | 839.320                       | 1/2                                                      |                    |                |                                                                                                                                                                                                                               |
|                        |                            | 894.7° 2                                                   | 3.5 4                               | 811.835                       | 3/2-                                                     | (M1,E2)            | 0.0047 13      | $\alpha(K)=0.0040 \ II; \ \alpha(L)=0.00056 \ I3; \ \alpha(M)=0.00012 \ 3; \ \alpha(N+)=3.3\times10^{-5} \ 8$                                                                                                                 |
|                        |                            |                                                            |                                     |                               |                                                          |                    |                | $\alpha(N)=2.8\times10^{-5}$ 7; $\alpha(O)=4.3\times10^{-6}$ 11; $\alpha(P)=2.9\times10^{-7}$ 9<br>E <sub><math>\gamma</math></sub> : level energy difference=895.8.                                                          |
|                        |                            | 1087.1 5                                                   | 1.3 4                               | 620.602                       | $3/2^{-}, 5/2^{(-)}$                                     |                    |                |                                                                                                                                                                                                                               |
|                        |                            | 1120.2 5                                                   | 8.7 17                              | 587.449                       | 3/2-                                                     |                    |                |                                                                                                                                                                                                                               |
|                        |                            | 1132.0 5                                                   | 12 <i>I</i>                         | 575.619                       | 1/2-                                                     |                    |                | -                                                                                                                                                                                                                             |
|                        |                            | 1281.00 6                                                  | 20 1                                | 426.688                       | 5/2-                                                     | (M1,E2)            | 0.0021 5       | $\alpha(K)=0.0018 \ 4; \ \alpha(L)=0.00024 \ 5; \ \alpha(M)=5.3\times10^{-5} \ 11; \ \alpha(N+)=3.2\times10^{-5} \ 4$                                                                                                         |
|                        |                            |                                                            |                                     |                               |                                                          |                    |                | $\alpha$ (N)=1.21×10 <sup>-5</sup> 24; $\alpha$ (O)=1.9×10 <sup>-6</sup> 4; $\alpha$ (P)=1.3×10 <sup>-7</sup> 3;<br>$\alpha$ (IPF)=1.76×10 <sup>-5</sup> 10                                                                   |
|                        |                            | 1312.18 5                                                  | 100 3                               | 395.445                       | 3/2-                                                     | (M1,E2)            | 0.0020 4       | $\alpha(K) = 0.0017 \ 4; \ \alpha(L) = 0.00023 \ 5; \ \alpha(M) = 5.0 \times 10^{-5} \ 10; \ \alpha(N+) = 3.7 \times 10^{-5} \ 4$                                                                                             |
|                        |                            |                                                            |                                     |                               |                                                          |                    |                | $\alpha(N)=1.15\times10^{-5} 23; \ \alpha(O)=1.8\times10^{-6} 4; \ \alpha(P)=1.2\times10^{-7} 3; \ \alpha(IPF)=2.36\times10^{-5} 13$                                                                                          |
|                        |                            | 1599.60 4                                                  | 40 1                                | 108.094                       | 5/2-                                                     | (M1,E2)            | 0.00142 23     | $\alpha(K)=0.00111 \ 19; \ \alpha(L)=0.000149 \ 25; \ \alpha(M)=3.2\times10^{-5} \ 6; \ \alpha(N+)=0.000126 \ 9$                                                                                                              |
|                        |                            |                                                            |                                     |                               |                                                          |                    |                | $\alpha(N)=7.4\times10^{-6}$ 12; $\alpha(O)=1.15\times10^{-6}$ 20; $\alpha(P)=7.9\times10^{-8}$ 15; $\alpha(IPF)=0.000118$ 8                                                                                                  |

|                        |                                    |                                                         |                                       |                               | Adopted Levels,                                                                                     | Gammas (co         | ntinued)   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------|------------------------------------|---------------------------------------------------------|---------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------|--------------------|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                    |                                                         |                                       |                               | $\gamma(^{151}\text{Gd})$                                                                           | ) (continued)      |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| E <sub>i</sub> (level) | ${ m J}^{\pi}_i$                   | $E_{\gamma}^{\dagger}$                                  | $I_{\gamma}^{\dagger}$                | $E_f$                         | $\mathbf{J}_f^{\pi}$                                                                                | Mult. <sup>#</sup> | δ <b>#</b> | α <b>&amp;</b> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1725.74                | (15/2) <sup>-</sup>                | 262.42 4                                                | 100 3                                 | 1463.27                       | (13/2) <sup>-</sup>                                                                                 | M1+E2              | -0.18 5    | 0.1353 21      | $\alpha(K)=0.1143 \ 19; \ \alpha(L)=0.01647 \ 24; \\ \alpha(M)=0.00358 \ 6; \ \alpha(N+)=0.000959 \ 14 \\ \alpha(N)=0.000823 \ 12; \ \alpha(O)=0.0001274 \ 18; \\ \alpha(P)=8.43\times10^{-6} \ 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1745.76                | 1/2,3/2,5/2 <sup>(-)</sup>         | 515.1 <i>4</i><br>252.4 <i>5</i><br>807.0 <i>5</i>      | 31 <i>14</i><br>100 <i>23</i><br>45 9 | 1210.06<br>1493.38<br>938.77  | $11/2^{-}$<br>(1/2 to 5/2 <sup>-</sup> )<br>(3/2 <sup>-</sup> .5/2 <sup>-</sup> .7/2 <sup>-</sup> ) | [D,E2]             |            | 0.09 6         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        |                                    | 1125.28 14                                              | 64 5                                  | 620.602                       | 3/2 <sup>-</sup> ,5/2 <sup>(-)</sup>                                                                | (M1)               |            | 0.00345        | $\begin{aligned} &\alpha(\mathrm{K}) = 0.00294 \ 5; \ \alpha(\mathrm{L}) = 0.000398 \ 6; \\ &\alpha(\mathrm{M}) = 8.58 \times 10^{-5} \ 12; \ \alpha(\mathrm{N}+) = 2.39 \times 10^{-5} \ 4 \\ &\alpha(\mathrm{N}) = 1.98 \times 10^{-5} \ 3; \ \alpha(\mathrm{O}) = 3.08 \times 10^{-6} \ 5; \\ &\alpha(\mathrm{P}) = 2.12 \times 10^{-7} \ 3; \ \alpha(\mathrm{IPF}) = 8.41 \times 10^{-7} \ 13 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                        |                                    | 1158.3 <i>5</i><br>1318.86 <i>18</i><br>1350 3 <i>5</i> | 14 5<br>18 9<br>45 0                  | 587.449<br>426.688<br>305.445 | 3/2 <sup>-</sup><br>5/2 <sup>-</sup><br>3/2 <sup>-</sup>                                            |                    |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1778.56                | 1/2 <sup>-</sup> ,3/2 <sup>-</sup> | 499.5 5                                                 | 43 9<br>22 4                          | 1279.06                       | 3/2 <sup>-</sup> ,5/2 <sup>-</sup>                                                                  | (M1,E2)            |            | 0.020 6        | $\alpha(K)=0.016\ 5;\ \alpha(L)=0.0025\ 5;\ \alpha(M)=0.00055\ 10;\ \alpha(N+)=0.00015\ 3$<br>$\alpha(N)=0.000126\ 23;\ \alpha(O)=1.9\times10^{-5}\ 4;$<br>$\alpha(P)=1\ 2\times10^{-6}\ 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                                    | 691.0 <i>5</i><br>839.8 <i>5</i>                        | 11 2<br>5.3 9                         | 1087.59<br>938.77             | 3/2 <sup>-</sup><br>(3/2 <sup>-</sup> ,5/2 <sup>-</sup> ,7/2 <sup>-</sup> )                         | (M1,E2)            |            | 0.0055 15      | $\alpha(\mathbf{K}) = 0.0046 \ 13; \ \alpha(\mathbf{L}) = 0.00066 \ 16; \alpha(\mathbf{M}) = 0.00014 \ 4; \ \alpha(\mathbf{N}+) = 3.8 \times 10^{-5} \ 9 \alpha(\mathbf{N}) = 3.3 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 5.1 \times 10^{-6} \ 13; (\mathbf{M}) = 2.3 \times 10^{-7} \ 10 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                                    | 864.98 <i>3</i>                                         | 25 1                                  | 913.56                        | (3/2 <sup>-</sup> )                                                                                 | M1(+E2)            | <1         | 0.0058 7       | $\alpha(\mathbf{F}) = 5.3 \times 10^{-17} I0^{-10}$<br>$\alpha(\mathbf{K}) = 0.0049 \ 6; \ \alpha(\mathbf{L}) = 0.00068 \ 8;$<br>$\alpha(\mathbf{M}) = 0.000148 \ 16; \ \alpha(\mathbf{N} +) = 4.0 \times 10^{-5} \ 5$<br>$\alpha(\mathbf{N}) = 3.4 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 5.3 \times 10^{-6} \ 6;$<br>$\alpha(\mathbf{D}) = 2.5 \times 10^{-7} \ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        |                                    | 939.2 5                                                 | 5 1                                   | 839.320                       | 1/2-                                                                                                | (M1,E2)            |            | 0.0042 11      | $\alpha(\mathbf{r}) = 5.5 \times 10^{-5} \text{ s}$<br>$\alpha(\mathbf{K}) = 0.0036 \ 10; \ \alpha(\mathbf{L}) = 0.00050 \ 12;$<br>$\alpha(\mathbf{M}) = 0.000109 \ 25; \ \alpha(\mathbf{N}+) = 2.9 \times 10^{-5} \ 7$<br>$\alpha(\mathbf{N}) = 2.5 \times 10^{-5} \ 6; \ \alpha(\mathbf{O}) = 3.9 \times 10^{-6} \ 9;$<br>$\alpha(\mathbf{P}) = 2.6 \times 10^{-7} \ 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                                    | 966.25 <sup>@</sup> 11                                  | 5.3 5                                 | 811.835                       | 3/2-                                                                                                | M1,E2              |            | 0.0040 10      | $\alpha(\mathbf{K}) = 2.0 \times 10^{-5} \text{ G}$ $\alpha(\mathbf{K}) = 0.0034 \ 9; \ \alpha(\mathbf{L}) = 0.00047 \ 11;$ $\alpha(\mathbf{M}) = 0.000102 \ 23; \ \alpha(\mathbf{N}+) = 2.7 \times 10^{-5} \ 7$ $\alpha(\mathbf{N}) = 2.3 \times 10^{-5} \ 6; \ \alpha(\mathbf{O}) = 3.6 \times 10^{-6} \ 9;$ $\alpha(\mathbf{P}) = 2.4 \times 10^{-7} \ 7$ E : layer approximation of the second se |
|                        |                                    | 1158.0 <i>5</i><br>1191.13 <i>5</i>                     | 5.3 <i>13</i><br>24 <i>1</i>          | 620.602<br>587.449            | 3/2 <sup>-</sup> ,5/2 <sup>(-)</sup><br>3/2 <sup>-</sup>                                            | (M1,E2)            |            | 0.0025 6       | $\alpha$ (K)=0.0021 5; $\alpha$ (L)=0.00029 6;<br>$\alpha$ (M)=6.2×10 <sup>-5</sup> 13; $\alpha$ (N+)=2.2×10 <sup>-5</sup> 4<br>$\alpha$ (N)=1.4×10 <sup>-5</sup> 3; $\alpha$ (O)=2.2×10 <sup>-6</sup> 5;<br>$\alpha$ (P)=1.5×10 <sup>-7</sup> 4; $\alpha$ (IPF)=4.9×10 <sup>-6</sup> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Adopted Levels, Gammas (continued) |                            |                                                                                                          |                                                                             |                                                                         |                                                                                                                                                                                                               |                          |                |                                                                                                                                                                                                                                                                        |
|------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |                            |                                                                                                          |                                                                             |                                                                         | $\gamma(^{15})$                                                                                                                                                                                               | <sup>1</sup> Gd) (contin | ued)           |                                                                                                                                                                                                                                                                        |
| E <sub>i</sub> (level)             | $\mathbf{J}_i^\pi$         | $E_{\gamma}^{\dagger}$                                                                                   | $I_{\gamma}^{\dagger}$                                                      | $E_f$                                                                   | $\mathrm{J}_f^\pi$                                                                                                                                                                                            | Mult. <sup>#</sup>       | α <b>&amp;</b> | Comments                                                                                                                                                                                                                                                               |
| 1778.56                            | 1/2-,3/2-                  | 1202.96 5                                                                                                | 11.5 5                                                                      | 575.619                                                                 | 1/2-                                                                                                                                                                                                          | (M1,E2)                  | 0.0024 6       | $\alpha(K)=0.0021 \ 5; \ \alpha(L)=0.00028 \ 6; \ \alpha(M)=6.1\times10^{-5} \ 13; \\ \alpha(N+)=2.2\times10^{-5} \ 4 \\ \alpha(N)=1.4\times10^{-5} \ 3; \ \alpha(O)=2.2\times10^{-6} \ 5; \ \alpha(P)=1.5\times10^{-7} \ 4; \\ \alpha(IPF)=6.2\times10^{-6} \ 4$      |
|                                    |                            | 1351.9 5                                                                                                 | 39 9                                                                        | 426.688                                                                 | 5/2-                                                                                                                                                                                                          |                          |                | · ·                                                                                                                                                                                                                                                                    |
|                                    |                            | 1383.12 5                                                                                                | 49 <i>1</i>                                                                 | 395.445                                                                 | 3/2-                                                                                                                                                                                                          | (M1,E2)                  | 0.0018 4       | $\alpha(K)=0.0015 \ 3; \ \alpha(L)=0.00021 \ 4; \ \alpha(M)=4.4\times10^{-5} \ 9; \\ \alpha(N+)=5.3\times10^{-5} \ 5 \\ \alpha(N)=1.02\times10^{-5} \ 19; \ \alpha(O)=1.6\times10^{-6} \ 3; \ \alpha(P)=1.08\times10^{-7} \\ 23; \ \alpha(IPE)=4.11\times10^{-5} \ 24$ |
|                                    |                            | 1670.50 4                                                                                                | 100 4                                                                       | 108.094                                                                 | 5/2-                                                                                                                                                                                                          | (M1,E2)                  | 0.00134 20     | $\alpha(K)=0.00102 \ 17; \ \alpha(L)=0.000136 \ 21; \ \alpha(M)=2.9\times10^{-5} \ 5; \\ \alpha(N+)=0.000156 \ 11 \\ \alpha(N)=6.7\times10^{-6} \ 11; \ \alpha(O)=1.05\times10^{-6} \ 17; \ \alpha(P)=7.2\times10^{-8} \\ 13; \ \alpha(IPF)=0.000148 \ 10 $            |
| 1788.96                            | (1/2 to 5/2 <sup>-</sup> ) | 949.7 <i>3</i><br>977.1 5<br>1213 37 9                                                                   | 11 <i>I</i><br>30 7<br>36 2                                                 | 839.320<br>811.835<br>575.619                                           | $\frac{1/2^{-}}{3/2^{-}}$                                                                                                                                                                                     |                          |                |                                                                                                                                                                                                                                                                        |
|                                    |                            | 1362.21 5                                                                                                | 100 2                                                                       | 426.688                                                                 | 5/2 <sup>-</sup>                                                                                                                                                                                              | (M1,E2)                  | 0.0019 4       | $\alpha(K)=0.0016 \ 4; \ \alpha(L)=0.00021 \ 4; \ \alpha(M)=4.6\times10^{-5} \ 9; \ \alpha(N+)=4.8\times10^{-5} \ 5 \ \alpha(N)=1.06\times10^{-5} \ 20; \ \alpha(O)=1.6\times10^{-6} \ 4; \ \alpha(P)=1.11\times10^{-7} \ 24; \ \alpha(IPF)=3.54\times10^{-5} \ 21$    |
| 1836.90                            | (3/2)-                     | 1394.1 2<br>637.90 <i>13</i><br>679.1 5<br>749.24 9<br>897.83 <i>18</i><br>923.37 <i>13</i><br>997 29 23 | 27 2<br>11 <i>I</i><br>14 3<br>8.5 6<br>15 <i>I</i><br>10 <i>I</i><br>5 6 6 | 395.445<br>1199.15<br>1157.90<br>1087.59<br>938.77<br>913.56<br>839.320 | 3/2 <sup>-</sup><br>(1/2 <sup>-</sup> ,3/2,5/2 <sup>-</sup> )<br>(3/2) <sup>+</sup><br>3/2 <sup>-</sup><br>(3/2 <sup>-</sup> ,5/2 <sup>-</sup> ,7/2 <sup>-</sup> )<br>(3/2 <sup>-</sup> )<br>1/2 <sup>-</sup> |                          |                |                                                                                                                                                                                                                                                                        |
|                                    |                            | 1025.12 4                                                                                                | 100 3                                                                       | 811.835                                                                 | 3/2-                                                                                                                                                                                                          | M1,E2                    | 0.0035 9       | $\alpha(K)=0.0029 \ 8; \ \alpha(L)=0.00041 \ 9; \ \alpha(M)=8.8\times10^{-5} \ 20; \ \alpha(N+)=2.4\times10^{-5} \ 6 \ \alpha(N)=2.0\times10^{-5} \ 5; \ \alpha(O)=3.1\times10^{-6} \ 8; \ \alpha(P)=2.1\times10^{-7} \ 6$                                             |
|                                    |                            | 1217.4 <sup>@</sup> 2<br>1249.43 8<br>1260.7 <i>3</i>                                                    | 8 <i>1</i><br>27 <i>1</i><br>11 <i>3</i>                                    | 620.602<br>587.449<br>575.619                                           | 3/2 <sup>-</sup> ,5/2 <sup>(-)</sup><br>3/2 <sup>-</sup><br>1/2 <sup>-</sup>                                                                                                                                  |                          |                | $E_{\gamma}$ : level energy difference=1216.3.                                                                                                                                                                                                                         |
|                                    |                            | 1410.4 2                                                                                                 | 11 <i>I</i>                                                                 | 426.688                                                                 | 5/2-                                                                                                                                                                                                          | (M1,E2)                  | 0.0018 4       | $\alpha(K)=0.0015 \ 3; \ \alpha(L)=0.00020 \ 4; \ \alpha(M)=4.2\times10^{-5} \ 8; \ \alpha(N+)=6.1\times10^{-5} \ 5 \ \alpha(N)=9.8\times10^{-6} \ 18; \ \alpha(O)=1.5\times10^{-6} \ 3; \ \alpha(P)=1.03\times10^{-7} \ 22; \ \alpha(IPF)=4.9\times10^{-5} \ 3$       |
|                                    |                            | 1441.15 <i>17</i><br>1728.70 <i>13</i><br>1837 5 <i>4</i>                                                | 10 <i>1</i><br>13 <i>1</i><br>1 4 2                                         | 395.445<br>108.094                                                      | 3/2 <sup>-</sup><br>5/2 <sup>-</sup><br>7/2 <sup>-</sup>                                                                                                                                                      |                          |                | 22, a(ar) = 1.7/10 5                                                                                                                                                                                                                                                   |
| 1851.58                            | 19/2+                      | 340.65 4                                                                                                 | 100 3                                                                       | 1510.92                                                                 | 17/2-                                                                                                                                                                                                         | E1                       | 0.01162        | $\alpha$ (K)=0.00989 <i>14</i> ; $\alpha$ (L)=0.001361 <i>19</i> ; $\alpha$ (M)=0.000294 <i>5</i> ; $\alpha$ (N+)=7.80×10 <sup>-5</sup> <i>11</i>                                                                                                                      |

|               |                                                         |                                                                                               |                                                      |                                                                | Adopted Levels, (                                                                                                           | Gammas (co         | ntinued) | <u>)</u>       |                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------|----------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                                         |                                                                                               |                                                      |                                                                | $\gamma(^{151}\text{Gd})$                                                                                                   | (continued)        |          |                |                                                                                                                                                                                                                                                                                                                                                                                                |
| $E_i$ (level) | $J^{\pi}_i$                                             | $E_{\gamma}^{\dagger}$                                                                        | $I_{\gamma}^{\dagger}$                               | $\mathbf{E}_{f}$                                               | $\mathbf{J}_f^{\pi}$                                                                                                        | Mult. <sup>#</sup> | δ#       | α <b>&amp;</b> | Comments                                                                                                                                                                                                                                                                                                                                                                                       |
| 1851.58       | 19/2+                                                   | 487.77 6                                                                                      | 82 5                                                 | 1363.84                                                        | 15/2+                                                                                                                       | E2                 |          | 0.01490        | $\begin{aligned} &\alpha(N) = 6.71 \times 10^{-5} \ 10; \ \alpha(O) = 1.023 \times 10^{-5} \ 15; \\ &\alpha(P) = 6.36 \times 10^{-7} \ 9 \\ &\alpha(K) = 0.01209 \ 17; \ \alpha(L) = 0.00219 \ 3; \\ &\alpha(M) = 0.000487 \ 7; \ \alpha(N+) = 0.0001280 \ 18 \\ &\alpha(N) = 0.0001108 \ 16; \ \alpha(O) = 1.636 \times 10^{-5} \ 23; \\ &\alpha(P) = 8.09 \times 10^{-7} \ 12 \end{aligned}$ |
| 1852.72       | (1/2 <sup>-</sup> ,3/2 <sup>-</sup> ,5/2 <sup>-</sup> ) | 506.08 <i>15</i><br>914.0 <i>5</i><br>939.1 <i>5</i>                                          | 48 <i>16</i><br>19 <i>5</i><br>76 <i>14</i>          | 1345.44<br>938.77<br>913.56                                    | 17/2 <sup>+</sup><br>(3/2 <sup>-</sup> ,5/2 <sup>-</sup> ,7/2 <sup>-</sup> )<br>(3/2 <sup>-</sup> )                         | (M1,E2)            |          | 0.0042 11      | $\alpha(K)=0.0036 \ 10; \ \alpha(L)=0.00050 \ 12; \\ \alpha(M)=0.000109 \ 25; \ \alpha(N+)=2.9\times10^{-5} \ 7 \\ \alpha(N)=2.5\times10^{-5} \ 6; \ \alpha(O)=3.9\times10^{-6} \ 9; \\ \alpha(P)=2.6\times10^{-7} \ 8$                                                                                                                                                                        |
| 1852.97       | (21/2)+                                                 | 1232.1 5<br>1457.3 5<br>1744.61 <i>13</i><br>507.53 <i>4</i>                                  | 100 20<br>24 5<br>33 3<br>100                        | 620.602<br>395.445<br>108.094<br>1345.44                       | 3/2 <sup>-</sup> ,5/2 <sup>(-)</sup><br>3/2 <sup>-</sup><br>5/2 <sup>-</sup><br>17/2 <sup>+</sup>                           | E2                 |          | 0.01341        | $\alpha(K)=0.01092 \ 16; \ \alpha(L)=0.00195 \ 3;$<br>$\alpha(M)=0.000432 \ 6; \ \alpha(N+)=0.0001136 \ 16$<br>$\alpha(N)=9.83\times10^{-5} \ 14; \ \alpha(O)=1.455\times10^{-5} \ 21;$<br>$\alpha(D)=7.24\times10^{-7} \ 14$                                                                                                                                                                  |
| 1890.80       | (1/2 <sup>-</sup> ,3/2,5/2 <sup>-</sup> )               | 1051.5 <i>5</i><br>1269.1 <i>6</i><br>1315.10 <i>20</i><br>1464.3 <i>2</i>                    | 21 5<br>16 5<br>37 5<br>42 5                         | 839.320<br>620.602<br>575.619<br>426.688                       | $1/2^{-}$<br>$3/2^{-}, 5/2^{(-)}$<br>$1/2^{-}$<br>$5/2^{-}$                                                                 |                    |          |                | $u(r) = 1.54 \times 10^{-5} II$                                                                                                                                                                                                                                                                                                                                                                |
| 1941.11       | (1/2 <sup>-</sup> ,3/2,5/2 <sup>-</sup> )               | 1495.3 5<br>1129.3 5<br>1320.5 5<br>1364.8 7<br>1514.37 18<br>1545 9 3                        | 100 26<br>100 20<br>40 20<br>20 10<br>100 8<br>80 10 | 395.445<br>811.835<br>620.602<br>575.619<br>426.688<br>395.445 | 3/2<br>3/2 <sup>-</sup><br>3/2 <sup>-</sup> ,5/2 <sup>(-)</sup><br>1/2 <sup>-</sup><br>5/2 <sup>-</sup><br>3/2 <sup>-</sup> |                    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                |
| 1970.91       | 1/2,3/2,5/2 <sup>(-)</sup>                              | 1057.3 <i>5</i><br>1057.3 <i>5</i><br>1350.3 <i>5</i><br>1395.3 <i>5</i><br>1575 46 <i>14</i> | 100 22<br>22 11<br>56 11<br>67 3                     | 913.56<br>620.602<br>575.619<br>395.445                        | $(3/2^{-})$<br>$(3/2^{-})$<br>$3/2^{-}, 5/2^{(-)}$<br>$1/2^{-}$<br>$3/2^{-}$                                                |                    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                |
| 1978.05       | (3/2 <sup>-</sup> )                                     | 1040.5 8<br>1402.5 2<br>1869.87 9<br>1978.15 15                                               | 10 2<br>10 <i>1</i><br>100 6<br>6.5 <i>1</i> 6       | 938.77<br>575.619<br>108.094<br>0.0                            | $(3/2^-, 5/2^-, 7/2^-)$<br>$1/2^-$<br>$5/2^-$<br>$7/2^-$                                                                    |                    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                |
| 2003.73       | (17/2)-                                                 | 277.96 5                                                                                      | 100 5                                                | 1725.74                                                        | (15/2)-                                                                                                                     | M1(+E2)            | <0.5     | 0.113 5        | $\begin{aligned} &\alpha(\mathbf{K}) = 0.095 \ 5; \ \alpha(\mathbf{L}) = 0.01410 \ 21; \ \alpha(\mathbf{M}) = 0.00307 \\ &5; \ \alpha(\mathbf{N}+) = 0.000822 \ 13 \\ &\alpha(\mathbf{N}) = 0.000706 \ 11; \ \alpha(\mathbf{O}) = 0.0001086 \ 16; \\ &\alpha(\mathbf{P}) = 7.0 \times 10^{-6} \ 4 \end{aligned}$                                                                               |
|               |                                                         | 540.82 10                                                                                     | 95 15                                                | 1463.27                                                        | (13/2)-                                                                                                                     |                    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                |

From ENSDF

 $^{151}_{64}$ Gd $_{87}$ -20

 $^{151}_{64}\mathrm{Gd}_{87}\text{--}20$ 

|                        | Adopted Levels, Gammas (continued) |                        |                        |         |                                               |                    |                |                                                                                                                            |  |  |  |  |  |
|------------------------|------------------------------------|------------------------|------------------------|---------|-----------------------------------------------|--------------------|----------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                        |                                    |                        |                        |         | $\gamma(^{151}\text{Gd}$                      | l) (continued      | <u>])</u>      |                                                                                                                            |  |  |  |  |  |
| E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$                 | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f$   | $\mathbf{J}_f^{\pi}$                          | Mult. <sup>#</sup> | α <b>&amp;</b> | Comments                                                                                                                   |  |  |  |  |  |
| 2012.15                | $(1/2^-, 3/2, 5/2^-)$              | 1392.7 2               | 100 20                 | 620.602 | 3/2-,5/2(-)                                   |                    |                | $E_{\gamma}$ : level energy difference=1391.6.                                                                             |  |  |  |  |  |
|                        |                                    | 1584.8 2               | 80 8                   | 426.688 | 5/2-                                          |                    |                | ,                                                                                                                          |  |  |  |  |  |
| 2034.36                | 1/2-,3/2-                          | 456.74 <i>14</i>       | 3.8 5                  | 1577.56 | $(1/2 \text{ to } 5/2^{-})$                   |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 556.7 5                | 3.3 5                  | 1477.66 | $(1/2^-, 3/2, 5/2^-)$                         |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 576.9 6                | 4.3 5                  | 1456.58 | $1/2^{-}, 3/2^{-}, 5/2^{-}$                   |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 629.23 3               | 10.9 5                 | 1405.14 | 3/2, $3/21/2^{-} 3/2^{-} 5/2^{-}$             |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 755 78 16              | 103                    | 1279.06 | $\frac{1}{2}$ , $\frac{5}{2}$ , $\frac{5}{2}$ |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 835.2.5                | 2.9.10                 | 1199.15 | $(1/2^{-}, 3/2, 5/2^{-})$                     |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 842.15 5               | 13.4 5                 | 1192.19 | $1/2^+$                                       |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 876.68 24              | 2.4 5                  | 1157.90 | $(3/2)^+$                                     |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 946.8 <i>5</i>         | 7.7 14                 | 1087.59 | 3/2-                                          | (M1,E2)            | 0.0042 11      | $\alpha$ (K)=0.0035 <i>10</i> ; $\alpha$ (L)=0.00049 <i>12</i> ; $\alpha$ (M)=0.000107 <i>24</i> ;                         |  |  |  |  |  |
|                        |                                    |                        |                        |         |                                               |                    |                | $\alpha$ (N+)=2.9×10 <sup>-5</sup> 7                                                                                       |  |  |  |  |  |
|                        |                                    |                        |                        |         |                                               |                    |                | $\alpha(N)=2.5\times10^{-5} 6; \alpha(O)=3.8\times10^{-6} 9; \alpha(P)=2.5\times10^{-7} 7$                                 |  |  |  |  |  |
|                        |                                    | 982.1 5                | 11 2                   | 1052.20 | 1/2-,3/2-                                     | (M1,E2)            | 0.0038 10      | $\alpha(K)=0.0032 \ 9; \ \alpha(L)=0.00045 \ 11; \ \alpha(M)=9.8\times10^{-5} \ 22;$                                       |  |  |  |  |  |
|                        |                                    |                        |                        |         |                                               |                    |                | $\alpha$ (N+)=2.6×10 <sup>-5</sup> 6                                                                                       |  |  |  |  |  |
|                        |                                    | 1050 0 5               | 10.0                   | 000.07  | (2/2)+                                        |                    |                | $\alpha(N)=2.2\times10^{-5} 5; \alpha(O)=3.5\times10^{-6} 8; \alpha(P)=2.3\times10^{-7} 7$                                 |  |  |  |  |  |
|                        |                                    | 1052.0 5               | 10 2                   | 982.27  | (3/2)'<br>(3/2-5/2-7/2-)                      |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 1120.8.5               | 1.9 5                  | 930.77  | $(3/2^{-})$                                   |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 1128.8.5               | 1.9.5                  | 905.58  | $(3/2^{-}, 5/2^{-})$                          |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 1195.00 5              | 27 1                   | 839.320 | $1/2^{-}$                                     |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 1222.53 3              | 100 3                  | 811.835 | 3/2-                                          | M1,E2              | 0.0023 5       | $\alpha(K)=0.0020\ 5;\ \alpha(L)=0.00027\ 6;\ \alpha(M)=5.9\times10^{-5}\ 12;$<br>$\alpha(N+)=2.4\times10^{-5}\ 4$         |  |  |  |  |  |
|                        |                                    |                        |                        |         |                                               |                    |                | $\alpha(N)=1.3\times10^{-5} 3; \alpha(O)=2.1\times10^{-6} 5; \alpha(P)=1.4\times10^{-7} 4; \alpha(IPF)=8.6\times10^{-6} 5$ |  |  |  |  |  |
|                        |                                    | 1413.7 5               | 1.9 5                  | 620.602 | 3/2-,5/2(-)                                   |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 1446.86 6              | 15.3 5                 | 587.449 | 3/2-                                          |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 1458.7 5               | 2.4 5                  | 575.619 | 1/2-                                          |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 1607.6 5               | 1.0 5                  | 426.688 | 5/2                                           |                    |                |                                                                                                                            |  |  |  |  |  |
| 2042.00                |                                    | 1638.2 <sup>w</sup> 1  | 10.5 5                 | 395.445 | 3/2-                                          |                    |                | $E_{\gamma}$ : level energy difference=1638.9.                                                                             |  |  |  |  |  |
| 2043.89                | (1/2,3/2,5/2)                      | 1232.0 5               | 100 20                 | 811.835 | $\frac{3}{2}$                                 |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 1450.4 5               | 30.3                   | 575 619 | $\frac{3}{2}$ 1/2 <sup>-</sup>                |                    |                |                                                                                                                            |  |  |  |  |  |
| 2070.97                | $1/2^{-}.3/2^{-}$                  | 791.7 5                | 3.7 5                  | 1279.06 | $3/2^{-}.5/2^{-}$                             |                    |                |                                                                                                                            |  |  |  |  |  |
|                        | 1 )-1                              | 871.76 21              | 3.2 11                 | 1199.15 | $(1/2^-, 3/2, 5/2^-)$                         |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 878.89 21              | 9.0 11                 | 1192.19 | $1/2^+$                                       |                    |                |                                                                                                                            |  |  |  |  |  |
|                        |                                    | 913.1 5                | 4.3 11                 | 1157.90 | $(3/2)^+$                                     |                    |                | -                                                                                                                          |  |  |  |  |  |
|                        |                                    | 983.4 5                | 16 <i>3</i>            | 1087.59 | 3/2-                                          | (M1,E2)            | 0.0038 10      | $\alpha(K)=0.0032 \ 9; \ \alpha(L)=0.00045 \ 10; \ \alpha(M)=9.7\times10^{-5} \ 22;$                                       |  |  |  |  |  |
|                        |                                    |                        |                        |         |                                               |                    |                | $\alpha(N+)=2.6\times10^{-5} 6$                                                                                            |  |  |  |  |  |
|                        |                                    | 1018.99 <i>17</i>      | 4.3 4                  | 1052.20 | 1/2-,3/2-                                     |                    |                | $\alpha(N)=2.2\times10^{-5} 5; \alpha(O)=3.5\times10^{-6} 8; \alpha(P)=2.3\times10^{-7} 7$                                 |  |  |  |  |  |

 $^{151}_{64}\mathrm{Gd}_{87}$ -21

From ENSDF

 $^{151}_{64}\mathrm{Gd}_{87}$ -21

|                        |                                    |                                                     |                             |                               | $\gamma$ ( <sup>151</sup> G                                                    | d) (continue       | ed)            |                                                                                                                                                                                                                                                                                                                                              |
|------------------------|------------------------------------|-----------------------------------------------------|-----------------------------|-------------------------------|--------------------------------------------------------------------------------|--------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E <sub>i</sub> (level) | ${ m J}^{\pi}_i$                   | $E_{\gamma}^{\dagger}$                              | $I_{\gamma}^{\dagger}$      | $E_f$                         | ${f J}_f^\pi$                                                                  | Mult. <sup>#</sup> | α <b>&amp;</b> | Comments                                                                                                                                                                                                                                                                                                                                     |
| 2070.97                | 1/2 <sup>-</sup> ,3/2 <sup>-</sup> | 1132.2 <i>5</i><br>1157.4 <i>5</i>                  | 2.7 5<br>31 6               | 938.77<br>913.56              | (3/2 <sup>-</sup> ,5/2 <sup>-</sup> ,7/2 <sup>-</sup> )<br>(3/2 <sup>-</sup> ) | (M1,E2)            | 0.0026 6       | $\alpha(K)=0.0022 \ 6; \ \alpha(L)=0.00031 \ 7; \ \alpha(M)=6.7\times10^{-5} \ 14; \\ \alpha(N+)=2.0\times10^{-5} \ 4 \\ \alpha(N)=1.5\times10^{-5} \ 4; \ \alpha(O)=2.4\times10^{-6} \ 5; \ \alpha(P)=1.6\times10^{-7} \ 4; \\ \alpha(IPF)=2.15\times10^{-6} \ 12$                                                                          |
|                        |                                    | 1165.4 5                                            | 3.2 11                      | 905.58                        | $(3/2^{-}, 5/2^{-})$                                                           |                    |                |                                                                                                                                                                                                                                                                                                                                              |
|                        |                                    | 1259.1 5                                            | 10 2                        | 811.835                       | 3/2-                                                                           | (M1,E2)            | 0.0022 5       | $\alpha(\mathbf{K})=0.0019 \ 4; \ \alpha(\mathbf{L})=0.00025 \ 5; \ \alpha(\mathbf{M})=5.5\times10^{-5} \ 11; \\ \alpha(\mathbf{N}+)=2.9\times10^{-5} \ 4 \\ \alpha(\mathbf{N})=1.26\times10^{-5} \ 25; \ \alpha(\mathbf{O})=2.0\times10^{-6} \ 4; \ \alpha(\mathbf{P})=1.3\times10^{-7} \ 3; \\ \alpha(\mathbf{PE})=1.40\times10^{-5} \ 8 $ |
|                        |                                    | 1450 34 7                                           | 1225                        | 620 602                       | $3/2^{-}$ $5/2^{(-)}$                                                          |                    |                |                                                                                                                                                                                                                                                                                                                                              |
|                        |                                    | 1483.52 5                                           | 100 3                       | 587.449                       | 3/2-                                                                           | M1,E2              | 0.0016 3       | $\alpha(K)=0.00131\ 24;\ \alpha(L)=0.00018\ 3;\ \alpha(M)=3.8\times10^{-5}\ 7;\alpha(N)=8.3\times10^{-5}\ 7\alpha(N)=8.7\times10^{-6}\ 16;\ \alpha(O)=1.36\times10^{-6}\ 25;\ \alpha(P)=9.2\times10^{-8}\ 19;\ \alpha(IPF)=7.3\times10^{-5}\ 5$                                                                                              |
|                        |                                    | 1495.4 5                                            | 34 7                        | 575.619                       | 1/2-                                                                           |                    |                |                                                                                                                                                                                                                                                                                                                                              |
|                        |                                    | 1644.39 <i>13</i><br>1675.57 8<br>1962 37 <i>16</i> | 4.8 2<br>9.0 5<br>5 3 11    | 426.688<br>395.445<br>108.094 | 5/2 <sup>-</sup><br>3/2 <sup>-</sup><br>5/2 <sup>-</sup>                       |                    |                |                                                                                                                                                                                                                                                                                                                                              |
| 2076.02                | 1/2 <sup>(-)</sup> ,3/2            | 884.0 <i>5</i><br>1137.28 <i>11</i>                 | 54 <i>15</i><br>46 <i>4</i> | 1192.19<br>938.77             | $1/2^+$<br>(3/2 <sup>-</sup> ,5/2 <sup>-</sup> ,7/2 <sup>-</sup> )             |                    |                |                                                                                                                                                                                                                                                                                                                                              |
|                        |                                    | 1163.0 <i>1</i><br>1170.7 <i>5</i>                  | 100 8<br>100 <i>15</i>      | 913.56<br>905.58              | $(3/2^{-})$<br>$(3/2^{-}, 5/2^{-})$                                            |                    |                |                                                                                                                                                                                                                                                                                                                                              |
|                        |                                    | 1264.0 <i>3</i>                                     | 62 4                        | 811.835                       | 3/2-                                                                           |                    |                |                                                                                                                                                                                                                                                                                                                                              |
|                        |                                    | 1455.6 5                                            | 31 8                        | 620.602                       | 3/2-,5/2(-)                                                                    |                    |                |                                                                                                                                                                                                                                                                                                                                              |
|                        |                                    | 1500.4 2                                            | 31 6                        | 575.619                       | 1/2-                                                                           |                    |                |                                                                                                                                                                                                                                                                                                                                              |
|                        |                                    | 1649.33 12                                          | 62 3<br>54 15               | 426.688                       | $5/2^{-}$                                                                      |                    |                |                                                                                                                                                                                                                                                                                                                                              |
|                        |                                    | 1080.8 5                                            | 31 3                        | 108 094                       | 5/2<br>5/2 <sup>-</sup>                                                        |                    |                |                                                                                                                                                                                                                                                                                                                                              |
| 2077.86                | $(19/2^{-})$                       | 642.78 10                                           | 100                         | 1435.08                       | $(15/2)^{-}$                                                                   |                    |                |                                                                                                                                                                                                                                                                                                                                              |
| 2099.01                | $(1/2, 3/2, 5/2^{-})$              | 1511.55 <i>16</i>                                   | 100                         | 587.449                       | 3/2-                                                                           |                    |                |                                                                                                                                                                                                                                                                                                                                              |
| 2107.0                 | $(1/2, 3/2, 5/2^{-})$              | 1519.5 <i>3</i>                                     | 100                         | 587.449                       | 3/2-                                                                           |                    |                |                                                                                                                                                                                                                                                                                                                                              |
| 2116.09                | $1/2^{(-)}, 3/2^{(-)}$             | 837.0 5                                             | 83                          | 1279.06                       | 3/2-,5/2-                                                                      |                    |                |                                                                                                                                                                                                                                                                                                                                              |
|                        |                                    | 1177.4 5                                            | 63                          | 938.77                        | (3/2, 5/2, 7/2)                                                                |                    |                |                                                                                                                                                                                                                                                                                                                                              |
|                        |                                    | 1210.5 5                                            | 14.3                        | 905.58<br>811.835             | (3/2, 3/2)<br>$3/2^{-}$                                                        |                    |                |                                                                                                                                                                                                                                                                                                                                              |
|                        |                                    | 1495.5.5                                            | 14.3                        | 620.602                       | $3/2^{-}$ $5/2^{(-)}$                                                          |                    |                |                                                                                                                                                                                                                                                                                                                                              |
|                        |                                    | 1689.53 6                                           | 100 3                       | 426.688                       | 5/2-                                                                           | (M1,E2)            | 0.00132 20     | $\alpha(K)=0.00099 \ 16; \ \alpha(L)=0.000133 \ 21; \ \alpha(M)=2.9\times10^{-5} \ 5; \ \alpha(N+)=0.000164 \ 12 \ \alpha(N)=6.6\times10^{-6} \ 11; \ \alpha(Q)=1.02\times10^{-6} \ 16; \ \alpha(P)=7.0\times10^{-8}$                                                                                                                        |
|                        |                                    |                                                     |                             |                               |                                                                                |                    |                | $12; \alpha(\text{IPF})=0.000157 \ 11$                                                                                                                                                                                                                                                                                                       |
|                        |                                    | 1720.46 7                                           | 72 11                       | 395.445                       | 3/2-                                                                           |                    |                | , , ,                                                                                                                                                                                                                                                                                                                                        |

From ENSDF

<sup>151</sup><sub>64</sub>Gd<sub>87</sub>-22

# $\gamma(^{151}\text{Gd})$ (continued)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$              | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f$   | $\mathrm{J}_f^\pi$            |                                                | Comments |
|---------------|-----------------------------------|------------------------|------------------------|---------|-------------------------------|------------------------------------------------|----------|
| 2116.09       | $1/2^{(-)}, 3/2^{(-)}$            | 2007.9 4               | 62                     | 108.094 | 5/2-                          |                                                |          |
| 2128.72       | $1/2^{(-)}.3/2$                   | 1508.1.5               | 40 10                  | 620.602 | $3/2^{-}.5/2^{(-)}$           |                                                |          |
|               | -1- ,-1-                          | 1541.8 3               | 20 4                   | 587.449 | 3/2-                          |                                                |          |
|               |                                   | 1702.8 4               | 30 3                   | 426.688 | 5/2-                          |                                                |          |
|               |                                   | 1733.3 5               | 10 5                   | 395.445 | 3/2-                          |                                                |          |
|               |                                   | 2020.45 12             | 100 5                  | 108.094 | 5/2-                          |                                                |          |
| 2132.53       | $1/2^{(-)}, 3/2$                  | 1320.7 5               | 57 14                  | 811.835 | 3/2-                          |                                                |          |
|               |                                   | 1556.8 2               | 71 13                  | 575.619 | 1/2-                          |                                                |          |
|               |                                   | 1705.90 18             | 100 6                  | 426.688 | 5/2-                          |                                                |          |
|               |                                   | 1737.1 5               | 29 14                  | 395.445 | 3/2-                          |                                                |          |
| 2154.9        | $(1/2, 3/2, 5/2^{-})$             | 1579.3 5               | 100 50                 | 575.619 | $1/2^{-}$                     |                                                |          |
|               |                                   | 1759.43 21             | 100 15                 | 395.445 | 3/2-                          |                                                |          |
| 2173.19       | $1/2^{(-)}, 3/2$                  | 894.0 5                | 42                     | 1279.06 | 3/2-,5/2-                     |                                                |          |
|               |                                   | 974.14 9               | 100 4                  | 1199.15 | $(1/2^{-}, 3/2, 5/2^{-})$     |                                                |          |
|               |                                   | 1084.7 <sup>@</sup> 2  | 25 2                   | 1087.59 | 3/2-                          | $E_{\gamma}$ : level energy difference=1085.6. |          |
|               |                                   | 1235.2 8               | 17 4                   | 938.77  | $(3/2^{-}, 5/2^{-}, 7/2^{-})$ | ,                                              |          |
|               |                                   | 1259.4 5               | 84                     | 913.56  | $(3/2^{-})$                   |                                                |          |
|               |                                   | 1267.9 5               | 13 4                   | 905.58  | $(3/2^{-}, 5/2^{-})$          |                                                |          |
|               |                                   | 1361.2 5               | 25 4                   | 811.835 | 3/2-                          |                                                |          |
|               |                                   | 1585.6 5               | 84                     | 587.449 | 3/2-                          |                                                |          |
|               |                                   | 1746.7 5               | 17 3                   | 426.688 | 5/2-                          |                                                |          |
|               |                                   | 1777.6 5               | 50 13                  | 395.445 | 3/2-                          |                                                |          |
|               |                                   | 2064.98 19             | 8 1                    | 108.094 | 5/2-                          |                                                |          |
| 2196.6        | $(1^{\prime}/2 \text{ to } 21/2)$ | 345 1                  | 100 25                 | 1851.58 | 19/2+                         |                                                |          |
|               | 1 (2(-)) 2 (2                     | 520 1                  | 50 25                  | 16/6.61 | $(17/2)^{+}$                  |                                                |          |
| 2205.94       | $1/2^{(-)}, 3/2$                  | 1618.3 <i>3</i>        | 17 2                   | 587.449 | 3/2-                          |                                                |          |
|               |                                   | 1630.3 2               | 30.2                   | 575.619 | 1/2-                          |                                                |          |
|               |                                   | 1779.2.5               | 100 22                 | 426.688 | 5/2                           |                                                |          |
|               |                                   | 1811.0 2               | 15 2                   | 393.443 | 3/2<br>5/2-                   |                                                |          |
| 2220.9        | 1/2 3/2                           | 2097.42<br>130735      | 50 Z                   | 013 56  | $\frac{3/2}{(3/2^{-})}$       |                                                |          |
| 2220.9        | 1/2,3/2                           | 1633.4.5               | 100 20                 | 587 440 | (3/2)                         |                                                |          |
|               |                                   | 1825 4 3               | 40 4                   | 305 445 | 3/2-                          |                                                |          |
| 22/3 8        | $1/2^{(-)} 3/2$                   | 1044.2.4               | 100 17                 | 1100 15 | $(1/2^{-} 3/2 5/2^{-})$       |                                                |          |
| 2245.0        | 1/2 ,5/2                          | 1817 1 5               | 100 17                 | 426 688 | (1/2, 3/2, 3/2)<br>$5/2^{-}$  |                                                |          |
|               |                                   | 1848.3.5               | 67 34                  | 395.445 | 3/2-                          |                                                |          |
|               |                                   | 2136.2 4               | 57 7                   | 108.094 | 5/2-                          |                                                |          |
| 2246.95       | $1/2^{(-)}.3/2$                   | 1435.7 2               | 75 10                  | 811.835 | 3/2-                          |                                                |          |
|               | -,- ,-,-                          | 1626 3 5               | 50 25                  | 620.602 | $3/2^{-} 5/2^{(-)}$           |                                                |          |
|               |                                   | 1671.3 5               | 100 2.5                | 575.619 | 1/2-                          |                                                |          |
|               |                                   | 1820.10 10             | 100 8                  | 426.688 | 5/2-                          |                                                |          |
| 2256.7        | 1/2,3/2                           | 1669.2 5               | 75 25                  | 587.449 | 3/2-                          |                                                |          |

|                   |                                 |                                                                                                                          |                                                                                                                    |                                                                                                            | Adopted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Levels, Gan                   | nmas (contin   | nued)          |                                                                                                                                                                                                                                                                            |
|-------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                                 |                                                                                                                          |                                                                                                                    |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\gamma(^{151}\text{Gd})$ (co | ontinued)      |                |                                                                                                                                                                                                                                                                            |
| $E_i$ (level)     | $\mathbf{J}_i^{\pi}$            | $E_{\gamma}^{\dagger}$                                                                                                   | $I_{\gamma}^{\dagger}$                                                                                             | $E_f$                                                                                                      | $\mathbf{J}_{f}^{\pi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mult. <sup>#</sup>            | δ <sup>#</sup> | α <b>&amp;</b> | Comments                                                                                                                                                                                                                                                                   |
| 2256.7            | 1/2,3/2                         | 1681.1 5                                                                                                                 | 100 25                                                                                                             | 575.619                                                                                                    | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                |                |                                                                                                                                                                                                                                                                            |
| 2295.02           | (19/2) <sup>-</sup>             | 291.38 8                                                                                                                 | 81 6                                                                                                               | 2003.73                                                                                                    | (17/2) <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1(+E2)                       | +0.13 13       | 0.1027 23      | $\alpha$ (K)=0.0869 22; $\alpha$ (L)=0.01237 18; $\alpha$ (M)=0.00268<br>4; $\alpha$ (N+)=0.000720 10<br>$\alpha$ (N)=0.000618 9; $\alpha$ (O)=9.58×10 <sup>-5</sup> 14;<br>$\alpha$ (P)=6.41×10 <sup>-6</sup> 18                                                          |
| 2297.3<br>2317.7  | $(21/2^{-})$<br>$1/2^{(-)},3/2$ | 568.74 <i>15</i><br>786.4 <i>6</i><br>1479.1 <i>5</i><br>1890.6 <i>4</i><br>2209.6 <i>5</i>                              | 100 <i>31</i><br>100<br>100 <i>15</i><br>100 <i>10</i><br>50 <i>25</i>                                             | 1725.74<br>1510.92<br>839.320<br>426.688<br>108.094                                                        | (15/2) <sup>-</sup><br>17/2 <sup>-</sup><br>1/2 <sup>-</sup><br>5/2 <sup>-</sup><br>5/2 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                |                |                                                                                                                                                                                                                                                                            |
| 2324.32           | 1/2 <sup>(-)</sup> ,3/2         | 1748.7 4                                                                                                                 | 67 <i>10</i>                                                                                                       | 575.619                                                                                                    | $\frac{1}{2^{-}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                |                |                                                                                                                                                                                                                                                                            |
| 2325.11           | 23/2+                           | 473.53 6                                                                                                                 | 100 5                                                                                                              | 420.088                                                                                                    | 19/2 <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E2                            |                | 0.01612        | $\alpha$ (K)=0.01305 <i>19</i> ; $\alpha$ (L)=0.00240 <i>4</i> ; $\alpha$ (M)=0.000533<br><i>8</i> ; $\alpha$ (N+)=0.0001401 <i>20</i><br>$\alpha$ (N)=0.0001214 <i>17</i> ; $\alpha$ (O)=1.79×10 <sup>-5</sup> <i>3</i> ;<br>$\alpha$ (P)=8 71×10 <sup>-7</sup> <i>13</i> |
| 2391.50           | 1/2,3/2                         | 886.1 5<br>913.8 5<br>986.3 4<br>1112.4 5<br>1199.3 5<br>1339.01 17<br>1579.75 6<br>1803.85 19<br>1815.8 5<br>1995.76 17 | $ \begin{array}{r} 1.7 9 \\ 1.7 9 \\ 10 3 \\ 1.7 9 \\ 5 2 \\ 13 2 \\ 38 2 \\ 8.3 5 \\ 100 20 \\ 15 1 \end{array} $ | 1505.41<br>1477.66<br>1405.14<br>1279.06<br>1192.19<br>1052.20<br>811.835<br>587.449<br>575.619<br>395.445 | $\begin{array}{c} 1/2^{(-)}, 3/2^{(-)}\\ (1/2^{-}, 3/2, 5/2^{-})\\ 3/2^{-}, 5/2^{-}\\ 3/2^{-}, 5/2^{-}\\ 1/2^{+}\\ 1/2^{-}, 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 1/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2^{-}\\ 3/2$ |                               |                |                |                                                                                                                                                                                                                                                                            |
| 2400.5            | 1/2 <sup>(-)</sup> ,3/2         | 1974.3 <i>3</i><br>2005.0 <i>4</i><br>2291.6 <i>4</i>                                                                    | 100 <i>15</i><br>50 <i>10</i><br>100 <i>15</i>                                                                     | 426.688<br>395.445<br>108.094                                                                              | 5/2 <sup>-</sup><br>3/2 <sup>-</sup><br>5/2 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                |                |                                                                                                                                                                                                                                                                            |
| 2405.4<br>2421.74 | (25/2 <sup>+</sup> )<br>1/2,3/2 | 552.4 5<br>1439.4 5<br>1508.2 5<br>1834.3 5<br>1846.1 5                                                                  | 100<br>50 <i>13</i><br>25 <i>13</i><br>12 6<br>25 <i>13</i><br>100 <i>4</i>                                        | 1852.97<br>982.27<br>913.56<br>587.449<br>575.619                                                          | $(21/2)^+$<br>$(3/2)^+$<br>$(3/2^-)$<br>$3/2^-$<br>$1/2^-$<br>$2/2^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                |                |                                                                                                                                                                                                                                                                            |
| 2443.0<br>2444.86 | (1/2,3/2)<br>1/2,3/2            | 2026.28 13<br>2047.5 3<br>1531.3 5<br>1605.5 5<br>1633.02 8<br>1869.2 5                                                  | 100 4<br>100<br>10 5<br>37 11<br>100 5<br>47 10                                                                    | 395.445<br>395.445<br>913.56<br>839.320<br>811.835<br>575.619                                              | 5/2<br>3/2 <sup>-</sup><br>(3/2 <sup>-</sup> )<br>1/2 <sup>-</sup><br>3/2 <sup>-</sup><br>1/2 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                |                |                                                                                                                                                                                                                                                                            |
| 2600.05           | (21/2 <sup>-</sup> )            | 304.92 8<br>596.7 2                                                                                                      | 57 7<br>100 <i>14</i>                                                                                              | 2295.02<br>2003.73                                                                                         | $(19/2)^{-}$<br>$(17/2)^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                |                |                                                                                                                                                                                                                                                                            |

From ENSDF

|                        |                                              |                                            |                              |                              | $\gamma(^{151}\text{Gd})$                   | (continued)        | <u>.</u>       |                                                                                                                                                                                                                                                                                                                                                         |
|------------------------|----------------------------------------------|--------------------------------------------|------------------------------|------------------------------|---------------------------------------------|--------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                           | $E_{\gamma}^{\dagger}$                     | $I_{\gamma}^{\dagger}$       | $E_f$                        | $\mathbf{J}_{f}^{\pi}$                      | Mult. <sup>#</sup> | α <b>&amp;</b> | Comments                                                                                                                                                                                                                                                                                                                                                |
| 2866.2                 | (27/2+)                                      | 541.1 5                                    | 100                          | 2325.11                      | 23/2+                                       | (E2)               | 0.01136        | $\begin{aligned} &\alpha(\mathbf{K}) = 0.00930 \ 14; \ \alpha(\mathbf{L}) = 0.001613 \ 23; \\ &\alpha(\mathbf{M}) = 0.000357 \ 5; \ \alpha(\mathbf{N}+) = 9.41 \times 10^{-5} \ 14 \\ &\alpha(\mathbf{N}) = 8.13 \times 10^{-5} \ 12; \ \alpha(\mathbf{O}) = 1.209 \times 10^{-5} \ 18; \\ &\alpha(\mathbf{P}) = 6.28 \times 10^{-7} \ 9 \end{aligned}$ |
| 2915.24                | (23/2) <sup>-</sup>                          | 315.09 <i>12</i><br>620.5 <i>2</i>         | 22 6<br>100 22               | 2600.05<br>2295.02           | (21/2 <sup>-</sup> )<br>(19/2) <sup>-</sup> | E2                 | 0.00807        | $\alpha$ (K)=0.00667 <i>10</i> ; $\alpha$ (L)=0.001097 <i>16</i> ;<br>$\alpha$ (M)=0.000242 <i>4</i> ; $\alpha$ (N+)=6.39×10 <sup>-5</sup> <i>9</i><br>$\alpha$ (N)=5.52×10 <sup>-5</sup> <i>8</i> ; $\alpha$ (O)=8.27×10 <sup>-6</sup> <i>12</i> ;<br>$\alpha$ (P)=4.54×10 <sup>-7</sup> <i>7</i>                                                      |
| 3007.7<br>3238.17      | (29/2 <sup>+</sup> )<br>(25/2 <sup>-</sup> ) | 602.3 5<br>324 <sup>a</sup> 1<br>638.09.12 | 100                          | 2405.4<br>2915.24<br>2600.05 | $(25/2^+)$<br>$(23/2)^-$<br>$(21/2^-)$      |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 3728.2?                | (27/2 to 31/2 <sup>+</sup> )                 | 862.0 <sup><i>a</i></sup> 5                | 100 55                       | 2866.2                       | $(27/2^+)$                                  |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 746.4+x                | J+2                                          | 746.4 8                                    | 0.226 <sup>‡</sup> 15        | Х                            | J≈(57/2 <sup>+</sup> )                      |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 1535.3+x               | J+4                                          | 788.9 4                                    | 0.543 <sup>‡</sup> 22        | 746.4+x                      | J+2                                         |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 2366.6+x               | J+6                                          | 831.3 4                                    | 0.654 <sup>‡</sup> 18        | 1535.3+x                     | J+4                                         |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 3240.1+x               | J+8                                          | 873.5 <i>3</i>                             | 0.886 <sup>‡</sup> 19        | 2366.6+x                     | J+6                                         |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 4156.4+x               | J+10                                         | 916.3 <i>3</i>                             | 0.902 <sup>‡</sup> 19        | 3240.1+x                     | J+8                                         |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 5116.2+x               | J+12                                         | 959.8 <i>3</i>                             | 1.013 <sup>‡</sup> <i>19</i> | 4156.4+x                     | J+10                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 6120.4+x               | J+14                                         | 1004.2 6                                   | 0.993 <sup>‡</sup> 22        | 5116.2+x                     | J+12                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 7169.4+x               | J+16                                         | 1049.0 <i>3</i>                            | 1.002 <sup>‡</sup> <i>19</i> | 6120.4+x                     | J+14                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 8266.1+x               | J+18                                         | 1096.7 <i>3</i>                            | 0.996 <sup>‡</sup> 19        | 7169.4+x                     | J+16                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 9410.3+x               | J+20                                         | 1144.2 <i>3</i>                            | 0.999 <sup>‡</sup> 19        | 8266.1+x                     | J+18                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 10603.3+x              | J+22                                         | 1193.0 <i>3</i>                            | 1.026 <sup>‡</sup> <i>19</i> | 9410.3+x                     | J+20                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 11846.4+x              | J+24                                         | 1243.1 4                                   | 0.98 <sup>‡</sup> 2          | 10603.3+x                    | J+22                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 13141.0+x              | J+26                                         | 1294.6 6                                   | 0.993 <sup>‡</sup> 22        | 11846.4+x                    | J+24                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 14487.4+x              | J+28                                         | 1346.4 4                                   | 0.987 <sup>‡</sup> 19        | 13141.0+x                    | J+26                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 15886.5+x              | J+30                                         | 1399.1 4                                   | 0.828 <sup>‡</sup> 19        | 14487.4+x                    | J+28                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 17339.1+x              | J+32                                         | 1452.6 5                                   | 0.750 <sup>‡</sup> <i>19</i> | 15886.5+x                    | J+30                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 18846.3+x              | J+34                                         | 1507.2 4                                   | 0.440 <sup>‡</sup> 17        | 17339.1+x                    | J+32                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 20408.3+x              | J+36                                         | 1562.0 5                                   | 0.290 <sup>‡</sup> 16        | 18846.3+x                    | J+34                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 22026.2+x              | J+38                                         | 1617.8 7                                   | 0.240 <sup>‡</sup> 15        | 20408.3+x                    | J+36                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 23701.0+x              | J+40                                         | 1674.8 9                                   | 0.100 <sup>‡</sup> <i>13</i> | 22026.2+x                    | J+38                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 725.5+y                | J1+2                                         | 725.5 8                                    | 0.221 <sup>‡</sup> 16        | у                            | $J1{\approx}(55/2^+)$                       |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 1493.9+y               | J1+4                                         | 768.4 5                                    | 0.48 <sup>‡</sup> 3          | 725.5+y                      | J1+2                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 2304.4+y               | J1+6                                         | 810.5 9                                    | 0.696 <sup>‡</sup> 24        | 1493.9+y                     | J1+4                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |
| 3157.0+y               | J1+8                                         | 852.6 4                                    | 0.915 <sup>‡</sup> 20        | 2304.4+y                     | J1+6                                        |                    |                |                                                                                                                                                                                                                                                                                                                                                         |

 $^{151}_{64}\mathrm{Gd}_{87}$ -25

From ENSDF

 $^{151}_{64}\mathrm{Gd}_{87}$ -25

 $\gamma(^{151}\text{Gd})$  (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$       | $E_f$     | ${ m J}_f^\pi$          |
|------------------------|----------------------|------------------------|------------------------------|-----------|-------------------------|
| 4052.4+y               | J1+10                | 895.4 <i>3</i>         | 0.930 <sup>‡</sup> 19        | 3157.0+y  | J1+8                    |
| 4991.2+y               | J1+12                | 938.7 <i>3</i>         | 1.005 <sup>‡</sup> 20        | 4052.4+y  | J1+10                   |
| 5973.5+y               | J1+14                | 982.4 <i>3</i>         | 0.980 <sup>‡</sup> 19        | 4991.2+y  | J1+12                   |
| 7001.0+y               | J1+16                | 1027.4 3               | 1.004 <sup>‡</sup> 20        | 5973.5+y  | J1+14                   |
| 8074.3+y               | J1+18                | 1073.3 4               | 0.988 <sup>‡</sup> 19        | 7001.0+y  | J1+16                   |
| 9194.4+y               | J1+20                | 1120.1 4               | 0.969 <sup>‡</sup> 20        | 8074.3+y  | J1+18                   |
| 10363.7+y              | J1+22                | 1169.3 4               | 1.018 <sup>‡</sup> 21        | 9194.4+y  | J1+20                   |
| 11581.7+y              | J1+24                | 1218.0 4               | 0.991 <sup>‡</sup> 21        | 10363.7+y | J1+22                   |
| 12850.3+y              | J1+26                | 1268.6 4               | 1.004 <sup>‡</sup> 20        | 11581.7+y | J1+24                   |
| 14170.7+y              | J1+28                | 1320.4 4               | 1.035 <sup>‡</sup> 20        | 12850.3+y | J1+26                   |
| 15543.3+y              | J1+30                | 1372.6 4               | 0.918 <sup>‡</sup> 20        | 14170.7+y | J1+28                   |
| 16969.3+y              | J1+32                | 1426.0 5               | 0.810 <sup>‡</sup> 20        | 15543.3+y | J1+30                   |
| 18449.0+y              | J1+34                | 1479.7 5               | 0.552 <sup>‡</sup> 18        | 16969.3+y | J1+32                   |
| 19983.5+y              | J1+36                | 1534.4 7               | 0.421 <sup>‡</sup> 18        | 18449.0+y | J1+34                   |
| 21573.0+y              | J1+38                | 1589.5 10              | 0.326 <sup>‡</sup> 20        | 19983.5+y | J1+36                   |
| 23218+y                | J1+40                | 1645.3 11              | 0.117 <sup>‡</sup> 15        | 21573.0+y | J1+38                   |
| 24919+y                | J1+42                | 1700.8 13              | 0.063 <sup>‡</sup> 14        | 23218+y   | J1+40                   |
| 755.7+z                | J2+2                 | 755.7 4                | 0.594 <sup>‡</sup> 16        | Z         | J2≈(59/2 <sup>-</sup> ) |
| 1561.3+z               | J2+4                 | 805.6 4                | 0.705 <sup>‡</sup> 17        | 755.7+z   | J2+2                    |
| 2417.2+z               | J2+6                 | 855.9 9                | 1.021 <sup>‡</sup> 21        | 1561.3+z  | J2+4                    |
| 3324.0+z               | J2+8                 | 906.8 8                | 0.915 <sup>‡</sup> 18        | 2417.2+z  | J2+6                    |
| 4282.6+z               | J2+10                | 958.7 7                | 1.012 <sup>‡</sup> <i>18</i> | 3324.0+z  | J2+8                    |
| 5294.6+z               | J2+12                | 1012.0 5               | 0.973 <sup>‡</sup> 25        | 4282.6+z  | J2+10                   |
| 6360.7+z               | J2+14                | 1066.1 8               | 1.018 <sup>‡</sup> 24        | 5294.6+z  | J2+12                   |
| 7481.4+z               | J2+16                | 1120.7 6               | 0.993 <sup>‡</sup> 22        | 6360.7+z  | J2+14                   |
| 8656.9+z               | J2+18                | 1175.5 9               | 1.042 <sup>‡</sup> 22        | 7481.4+z  | J2+16                   |
| 9887.3+z               | J2+20                | 1230.4 4               | 1.056 <sup>‡</sup> <i>15</i> | 8656.9+z  | J2+18                   |
| 11174.0+z              | J2+22                | 1286.7 4               | 0.968 <sup>‡</sup> 14        | 9887.3+z  | J2+20                   |
| 12516.7+z              | J2+24                | 1342.7 4               | 0.845 <sup>‡</sup> 14        | 11174.0+z | J2+22                   |
| 13916.1+z              | J2+26                | 1399.4 4               | 0.792 <sup>‡</sup> 14        | 12516.7+z | J2+24                   |
| 15372.4+z              | J2+28                | 1456.3 5               | 0.718 <sup>‡</sup> <i>14</i> | 13916.1+z | J2+26                   |
| 16885.8+z              | J2+30                | 1513.4 5               | 0.563 <sup>‡</sup> 13        | 15372.4+z | J2+28                   |
| 18455.8+z              | J2+32                | 1570.0 5               | 0.428 <sup>‡</sup> <i>13</i> | 16885.8+z | J2+30                   |
| 20083.5+z              | J2+34                | 1627.7 6               | 0.225 <sup>‡</sup> 12        | 18455.8+z | J2+32                   |
| 21769+z                | J2+36                | 1685.6 9               | 0.135 <sup>‡</sup> 12        | 20083.5+z | J2+34                   |

| $\gamma(^{151}\text{Gd})$ (conti | nued) |
|----------------------------------|-------|
|----------------------------------|-------|

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$       | $E_f$     | $\mathbf{J}_f^{\pi}$    |
|---------------|----------------------|------------------------|------------------------------|-----------|-------------------------|
| 23512+z       | J2+38                | 1742.9 11              | 0.052 <sup>‡</sup> 11        | 21769+z   | J2+36                   |
| 832.8+u       | J3+2                 | 832.8 6                | 0.424 <sup>‡</sup> 17        | u         | J3≈(65/2 <sup>-</sup> ) |
| 1706.8+u      | J3+4                 | 874.0 4                | 0.713 <sup>‡</sup> <i>17</i> | 832.8+u   | J3+2                    |
| 2622.6+u      | J3+6                 | 915.8 5                | 0.925 <sup>‡</sup> 19        | 1706.8+u  | J3+4                    |
| 3580.9+u      | J3+8                 | 958.3 <i>3</i>         | 0.971 <sup>‡</sup> 18        | 2622.6+u  | J3+6                    |
| 4581.8+u      | J3+10                | 1000.9 4               | 1.013 <sup>‡</sup> <i>18</i> | 3580.9+u  | J3+8                    |
| 5627.7+u      | J3+12                | 1045.9 <i>3</i>        | 1.028 <sup>‡</sup> 18        | 4581.8+u  | J3+10                   |
| 6718.8+u      | J3+14                | 1091.1 4               | 1.035 <sup>‡</sup> 18        | 5627.7+u  | J3+12                   |
| 7856.2+u      | J3+16                | 1137.4 5               | 1.004 <sup>‡</sup> <i>19</i> | 6718.8+u  | J3+14                   |
| 9042.1+u      | J3+18                | 1185.9 9               | 0.99 <sup>‡</sup> 3          | 7856.2+u  | J3+16                   |
| 10278.2+u     | J3+20                | 1236.1 5               | 0.983 <sup>‡</sup> 21        | 9042.1+u  | J3+18                   |
| 11564.3+u     | J3+22                | 1286.1 4               | 0.983 <sup>‡</sup> 19        | 10278.2+u | J3+20                   |
| 12901.9+u     | J3+24                | 1337.5 4               | 0.987 <sup>‡</sup> 18        | 11564.3+u | J3+22                   |
| 14290.6+u     | J3+26                | 1388.7 4               | 0.848 <sup>‡</sup> 19        | 12901.9+u | J3+24                   |
| 15734.0+u     | J3+28                | 1443.4 6               | 0.662 <sup>‡</sup> 17        | 14290.6+u | J3+26                   |
| 17231.8+u     | J3+30                | 1497.8 12              | 0.544 <sup>‡</sup> 21        | 15734.0+u | J3+28                   |
| 18783+u       | J3+32                | 1551.5 15              | 0.398 <sup>‡</sup> 21        | 17231.8+u | J3+30                   |
| 20390+u       | J3+34                | 1606.2 17              | 0.329 <sup>‡</sup> 18        | 18783+u   | J3+32                   |
| 808.6+v       | J4+2                 | 808.6 4                | 0.391 <sup>‡</sup> 15        | v         | J4≈(63/2 <sup>-</sup> ) |
| 1662.8+v      | J4+4                 | 854.2 4                | 0.571 <sup>‡</sup> 15        | 808.6+v   | J4+2                    |
| 2558.1+v      | J4+6                 | 895.3 6                | 0.914 <sup>‡</sup> <i>19</i> | 1662.8+v  | J4+4                    |
| 3495.7+v      | J4+8                 | 937.5 <i>3</i>         | 0.987 <sup>‡</sup> 18        | 2558.1+v  | J4+6                    |
| 4474.9+v      | J4+10                | 979.2 7                | 0.93 <sup>‡</sup> <i>3</i>   | 3495.7+v  | J4+8                    |
| 5498.7+v      | J4+12                | 1023.9 4               | 1.048 <sup>‡</sup> 20        | 4474.9+v  | J4+10                   |
| 6566.9+v      | J4+14                | 1068.2 4               | 1.033 <sup>‡</sup> 18        | 5498.7+v  | J4+12                   |
| 7681.0+v      | J4+16                | 1114.1 5               | 1.023 <sup>‡</sup> 18        | 6566.9+v  | J4+14                   |
| 8842.6+v      | J4+18                | 1161.5 4               | 1.040 <sup>‡</sup> 18        | 7681.0+v  | J4+16                   |
| 10052.3+v     | J4+20                | 1209.8 8               | 0.968 <sup>‡</sup> 23        | 8842.6+v  | J4+18                   |
| 11313.6+v     | J4+22                | 1261.3 5               | 1.011 <sup>‡</sup> <i>19</i> | 10052.3+v | J4+20                   |
| 12626.1+v     | J4+24                | 1312.5 5               | 0.968 <sup>‡</sup> 19        | 11313.6+v | J4+22                   |
| 13989.3+v     | J4+26                | 1363.2 6               | 0.989 <sup>‡</sup> 19        | 12626.1+v | J4+24                   |
| 15406.0+v     | J4+28                | 1416.7 6               | 0.818 <sup>‡</sup> 18        | 13989.3+v | J4+26                   |
| 16875.6+v     | J4+30                | 1469.6 15              | 0.543 <sup>‡</sup> 21        | 15406.0+v | J4+28                   |
| 18400+v       | J4+32                | 1524.0 15              | 0.444 <sup>‡</sup> <i>17</i> | 16875.6+v | J4+30                   |
| 19980+v       | J4+34                | 1580.5 17              | 0.236 <sup>‡</sup> 16        | 18400+v   | J4+32                   |

## $\gamma(^{151}\text{Gd})$ (continued)

| $21615+v$ J4+36 $1635.2\ I8$ $0.149^{\ddagger}\ I4$ $19980+v$ J4+34 $817.8+w$ J5+2 $817.8\ 7$ $0.220^{\ddagger}\ I9$ wJ5 $\approx$ (61/2) $1677.9+w$ J5+4 $860.0\ I3$ $0.365^{\ddagger}\ I8$ $817.8+w$ J5+2 $2577.7+w$ J5+6 $899.8\ 5$ $0.501^{\ddagger}\ I6$ $1677.9+w$ J5+4 $3516.1+w$ J5+8 $938.4\ 7$ $0.596^{\ddagger}\ I9$ $2577.7+w$ J5+6 $4494.6+w$ J5+10 $978.5\ 4$ $0.876^{\ddagger}\ I9$ $3516.1+w$ J5+8 $5515.7+w$ J5+12 $1021.2\ 6$ $0.888^{\ddagger}\ I7$ $4494.6+w$ J5+10 $6580.6+w$ J5+14 $1064.9\ 5$ $0.989^{\ddagger}\ I9$ $5515.7+w$ J5+12 $7688.7+w$ J5+16 $1108.0\ 4$ $1.015^{\ddagger}\ I7$ $6580.6+w$ J5+14 $843.1+w$ J5+18 $1154.4\ 7$ $0.971^{\ddagger}\ I8$ $7688.7+w$ J5+16 | 2- |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| $817.8+w$ $J5+2$ $817.87$ $0.220^{\ddagger}$ $19$ w $J5\approx(61/2)$ $1677.9+w$ $J5+4$ $860.0$ $I3$ $0.365^{\ddagger}$ $I8$ $817.8+w$ $J5+2$ $2577.7+w$ $J5+6$ $899.85$ $0.501^{\ddagger}$ $I6$ $1677.9+w$ $J5+4$ $3516.1+w$ $J5+8$ $938.47$ $0.596^{\ddagger}$ $I9$ $2577.7+w$ $J5+6$ $4494.6+w$ $J5+10$ $978.54$ $0.876^{\ddagger}$ $I9$ $3516.1+w$ $J5+8$ $5515.7+w$ $J5+12$ $1021.26$ $0.888^{\ddagger}$ $I7$ $4494.6+w$ $J5+10$ $6580.6+w$ $J5+14$ $1064.95$ $0.989^{\ddagger}$ $I9$ $5515.7+w$ $J5+12$ $7688.7+w$ $J5+16$ $1108.04$ $1.015^{\ddagger}$ $I7$ $6580.6+w$ $J5+14$ $843.1+w$ $J5+18$ $1154.47$ $0.971^{\ddagger}$ $I8$ $7688.7+w$ $J5+16$                                          | 2- |
| $1677.9+w$ $J5+4$ $860.0$ $I3$ $0.365^{\ddagger}$ $I8$ $817.8+w$ $J5+2$ $2577.7+w$ $J5+6$ $899.8$ $5$ $0.501^{\ddagger}$ $I6$ $1677.9+w$ $J5+4$ $3516.1+w$ $J5+8$ $938.4$ $7$ $0.596^{\ddagger}$ $I9$ $2577.7+w$ $J5+6$ $4494.6+w$ $J5+10$ $978.5$ $4$ $0.876^{\ddagger}$ $I9$ $3516.1+w$ $J5+8$ $5515.7+w$ $J5+12$ $1021.2$ $6$ $0.888^{\ddagger}$ $I7$ $4494.6+w$ $J5+10$ $6580.6+w$ $J5+14$ $1064.9$ $5$ $0.989^{\ddagger}$ $I9$ $5515.7+w$ $J5+12$ $7688.7+w$ $J5+16$ $1108.0$ $4$ $1.015^{\ddagger}$ $I7$ $6580.6+w$ $J5+14$ $843.1+w$ $J5+18$ $1154.4$ $7$ $0.971^{\ddagger}$ $I8$ $7688.7+w$ $J5+16$                                                                                           |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| $3516.1+w$ $J5+8$ $938.47$ $0.596^{\ddagger}$ $19$ $2577.7+w$ $J5+6$ $4494.6+w$ $J5+10$ $978.54$ $0.876^{\ddagger}$ $19$ $3516.1+w$ $J5+8$ $5515.7+w$ $J5+12$ $1021.26$ $0.888^{\ddagger}$ $17$ $4494.6+w$ $J5+10$ $6580.6+w$ $J5+14$ $1064.95$ $0.989^{\ddagger}$ $19$ $5515.7+w$ $J5+12$ $7688.7+w$ $J5+16$ $1108.04$ $1.015^{\ddagger}$ $17$ $6580.6+w$ $J5+14$ $8843.1+w$ $J5+18$ $1154.47$ $0.971^{\ddagger}$ $18$ $7688.7+w$ $J5+16$                                                                                                                                                                                                                                                            |    |
| 4494.6+wJ5+10978.5 $4$ $0.876^{\ddagger}$ $19$ $3516.1+w$ $J5+8$ 5515.7+wJ5+12 $1021.2$ $6$ $0.888^{\ddagger}$ $17$ $4494.6+w$ $J5+10$ 6580.6+wJ5+14 $1064.9$ $5$ $0.989^{\ddagger}$ $19$ $5515.7+w$ $J5+12$ 7688.7+wJ5+16 $1108.0$ $4$ $1.015^{\ddagger}$ $17$ $6580.6+w$ $J5+14$ 8843.1+wJ5+18 $1154.4$ $7$ $0.971^{\ddagger}$ $18$ $7688.7+w$ $J5+16$                                                                                                                                                                                                                                                                                                                                              |    |
| 5515.7+w       J5+12       1021.2 6       0.888 <sup>‡</sup> 17       4494.6+w       J5+10         6580.6+w       J5+14       1064.9 5       0.989 <sup>‡</sup> 19       5515.7+w       J5+12         7688.7+w       J5+16       1108.0 4       1.015 <sup>‡</sup> 17       6580.6+w       J5+14         8843.1+w       J5+18       1154.4 7       0.971 <sup>‡</sup> 18       7688.7+w       J5+16                                                                                                                                                                                                                                                                                                   |    |
| 6580.6+wJ5+141064.950.989 <sup>‡</sup> 195515.7+wJ5+127688.7+wJ5+161108.041.015 <sup>‡</sup> 176580.6+wJ5+148843.1+wJ5+181154.470.971 <sup>‡</sup> 187688.7+wJ5+16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 7688.7+w J5+16 1108.0 4 1.015 <sup>‡</sup> 17 6580.6+w J5+14<br>8843.1+w J5+18 1154.4 7 0.971 <sup>‡</sup> 18 7688.7+w J5+16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 8843.1+w J5+18 1154.4 7 0.971 <sup>‡</sup> 18 7688.7+w J5+16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 10043.8+w J5+20 1200.7 5 1.038 <sup>‡</sup> 20 8843.1+w J5+18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 11293.1+w J5+22 1249.3 5 1.026 <sup>‡</sup> 20 10043.8+w J5+20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| 12592.3+w J5+24 1299.2 8 1.027 <sup>‡</sup> 15 11293.1+w J5+22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| 13942+w J5+26 1349.8 9 0.957 <sup>‡</sup> 24 12592.3+w J5+24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 15343+w J5+28 1400.7 <i>12</i> 0.970 <sup>‡</sup> 23 13942+w J5+26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 16795+w J5+30 1451.8 <i>16</i> 0.785 <sup>‡</sup> <i>19</i> 15343+w J5+28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| 18300+w J5+32 1505.0 <i>15</i> 0.478 <sup>‡</sup> <i>18</i> 16795+w J5+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| 19855+w J5+34 1555.3 <i>18</i> 0.186 <sup>‡</sup> <i>17</i> 18300+w J5+32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |

<sup>†</sup> From <sup>151</sup>Tb  $\varepsilon$  decay for levels which are commonly populated. Intensities are relative photon branching ratios unless otherwise noted.

<sup>‡</sup> Relative intensity within each band normalized to  $\approx 1$  for the most intense transition in an SD band.

<sup>#</sup> From ce and/or  $\gamma\gamma(\theta)$  data.

28

<sup>@</sup> Poor energy fit in the decay scheme.

<sup>&</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>*a*</sup> Placement of transition in the level scheme is uncertain.

## Level Scheme

Intensities: Relative photon branching from each level

|                                   | 88<br>8                                                                                                   |                 |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------|
|                                   |                                                                                                           |                 |
| <u>J5+34</u>                      |                                                                                                           | 19855+w         |
| J5+32                             |                                                                                                           | 18300+w         |
| J5+30                             | <u>↓ <sup>3</sup> <u></u>, <sup>0</sup> <u></u>, <u>6</u></u>                                             | 16795+w         |
| J5+28                             |                                                                                                           | 15343+w         |
| J5+26                             | <u>+ 5<sup>°</sup></u>                                                                                    | 13942+w         |
| J5+24                             | <u>, , , , , , , , , , , , , , , , , </u>                                                                 | 12592.3+w       |
| J5+22                             | <u>↓ ? ```````````````````````````````````</u>                                                            | 11293.1+w       |
| J5+20                             |                                                                                                           | 10043.8+w       |
| J5+18                             | v <sup>×</sup> ° ° ° ∞_∞                                                                                  | 8843.1+w        |
| J5+16                             |                                                                                                           | 7688.7+w        |
| <u>J5+14</u>                      | <u> </u>                                                                                                  | 6580.6+w        |
| J5+12                             | <u> </u>                                                                                                  | 5515.7+w        |
| J5+10                             | <u> </u>                                                                                                  | 4494.6+w        |
| <u>J5+8</u>                       | <u> </u>                                                                                                  | <u>3516.1+w</u> |
| <u>J5+6</u><br>I5+4               |                                                                                                           | 25//./+W        |
| <u>J5+2</u>                       |                                                                                                           | 817.8+w         |
| J5≈(61/2 <sup>-</sup> )           |                                                                                                           |                 |
| J4+36                             |                                                                                                           | 21615+v         |
| <u>J4+34</u>                      |                                                                                                           | <u>19980+v</u>  |
| J4+32                             | <u>↓ ``8</u> °°`                                                                                          | 18400+v         |
| J4+30                             | <u>↓ , , , , , , , , , , , , , , , , , , ,</u>                                                            | 16875.6+v       |
| J4+28                             |                                                                                                           | 15406.0+v       |
| J4+26                             |                                                                                                           | 13989.3+v       |
| <u>J4+24</u>                      | \$`\$`\$`                                                                                                 | 12626.1+v       |
| J4+22                             |                                                                                                           | 11313.6+v       |
| J4+20                             | <u>↓ ♡ _ ♡ _ ♡ _ </u>                                                                                     | 10052.3+v       |
| J4+18                             | ↓ <sup>2</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup>                           | 8842.6+v        |
| J4+16                             | ↓ <sup>1</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup> <sup>1</sup>                                        | 7681.0+v        |
| J4+14                             | ↓ <sup>4</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup> | 6566.9+v        |
| J4+12                             | <u>♥ &amp; ~ ~ ~ ~</u>                                                                                    | 5498.7+v        |
| J4+10                             | <u> </u>                                                                                                  | 4474.9+v        |
| J4+8                              | <u> </u>                                                                                                  | 3495.7+v        |
| <u>J4+6</u>                       |                                                                                                           | <u>2558.1+v</u> |
| <u>J4+4</u><br>I4+2               |                                                                                                           | 808 6+v         |
| $\frac{J12}{J4\approx(63/2^{-})}$ |                                                                                                           | v               |
| J3+34                             |                                                                                                           | 20390+u         |
| J3+32                             |                                                                                                           | <u>18783+u</u>  |
| <u>J3+30</u>                      | ¥ <sup>×</sup> _2 <sup>×</sup> _2 <sup>∞</sup>                                                            | 17231.8+u       |
| <u>J3+28</u>                      |                                                                                                           | 15734.0+u       |
| J3+26                             |                                                                                                           | 14290.6+u       |
| J3+24                             | ↓ <sup>∞</sup> <u>∞</u>                                                                                   | 12901.9+u       |
| <u>J3+22</u>                      |                                                                                                           | 11564.3+u       |
| <u>J3+20</u>                      |                                                                                                           | 10278.2+u       |
| 7/2-                              |                                                                                                           | 0.0             |

123.9 d 10

<sup>151</sup><sub>64</sub>Gd<sub>87</sub>

#### Level Scheme (continued)

Intensities: Relative photon branching from each level

| (9 <sup>6</sup> )                  |                                                                                                                                               |                             |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                                    | 3                                                                                                                                             | 10278 2                     |
| <u>J3+20</u>                       | ,                                                                                                                                             | <u>102/8.2+u</u>            |
|                                    | -~-~~                                                                                                                                         | <u> </u>                    |
| <u>J3+16</u>                       | <u>3</u> , <u>7</u>                                              | <u>/856.2+u</u>             |
| <u>J3+14</u> <b>▼</b>              | - <u>8</u> - <u>9</u> - <u>8</u> -                                                                                                            | <u> </u>                    |
| <u>J3+12</u><br><u>J3+10</u>       | <u> </u>                                                                                                                                      |                             |
| <u>J3+10</u><br>I3+8               | <sup>−</sup> ↓ <sup>*</sup> <sup>*</sup> <sup>−</sup> <sup>*</sup> <sup>−</sup> <sup>*</sup> <sup>−</sup> <sup>−</sup> <sup>−−−−−−−−−−−</sup> | <u>4581.8+u</u><br>3580.9+u |
| J3+6                               |                                                                                                                                               | 2622.6+u                    |
| J3+4                               |                                                                                                                                               | 1706.8+u                    |
| $\frac{J3+2}{I22(65/2^{-})}$       |                                                                                                                                               | <u>832.8+u</u>              |
| $\frac{13}{12+38}$                 |                                                                                                                                               | 23512+z                     |
| J2+36                              | <b>∀</b> <sup>©</sup> <sup>©</sup> <sup>°</sup> ∞                                                                                             | 21769+z                     |
| <u>J2+34</u>                       |                                                                                                                                               | 20083.5+z                   |
| J2+32                              |                                                                                                                                               | 18455.8+z                   |
| J2+30                              | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                               | 16885.8+z                   |
| J2+28                              |                                                                                                                                               | 15372.4+z                   |
| J2+26                              | ↓ <sup>2</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup> <sup>2</sup>                                                                            | 13916.1+z                   |
| J2+24                              |                                                                                                                                               | 12516.7+z                   |
| J2+22                              | ↓ <sup>2</sup> <sup>2</sup> <del>2</del> 2                                                                                                    | 11174.0+z                   |
| 12+20                              |                                                                                                                                               | 9887.3+z                    |
| 12+18                              |                                                                                                                                               | 8656 9+z                    |
| <u>12+16</u>                       |                                                                                                                                               | 7481 4+7                    |
| <u>12+14</u>                       |                                                                                                                                               | <u>6360</u> 7+z             |
| J2+12                              |                                                                                                                                               | 5294.6+z                    |
| J2+10                              |                                                                                                                                               | 4282.6+z                    |
| J2+8                               |                                                                                                                                               | 3324.0+z                    |
| J2+6                               | ¥¥¢ <u>°</u> ,č_,©                                                                                                                            | 2417.2+z                    |
| <u>J2+4</u>                        |                                                                                                                                               | <u> </u>                    |
| $\frac{J2+2}{J2\approx(59/2^{-})}$ | ×                                                                                                                                             |                             |
| <u>J1+42</u>                       | St. St.                                                                                                                                       | 24919+y                     |
| <u>J1+40</u>                       | ¥,_\$,_\$                                                                                                                                     | 23218+y                     |
| <u>J1+38</u>                       | ¥~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                              | 21573.0+y                   |
| <u>J1+36</u>                       |                                                                                                                                               | 19983.5+y                   |
| <u>J1+34</u>                       | ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓                                                                                                         | 18449.0+y                   |
| <u>J1+32</u>                       |                                                                                                                                               | 16969.3+y                   |
| <u>J1+30</u>                       |                                                                                                                                               | 15543.3+y                   |
| <u>J1+28</u>                       | <u>↓ ,                               </u>                                                                                                     | 14170.7+y                   |
| <u>J1+26</u>                       |                                                                                                                                               | 12850.3+y                   |
| <u>J1+24</u>                       |                                                                                                                                               | 11581.7+y                   |
| <u>J1+22</u>                       |                                                                                                                                               | 10363.7+y                   |
| J1+20                              |                                                                                                                                               | 9194.4+y                    |
| 7/2-                               |                                                                                                                                               | 0.0                         |

123.9 d 10

 $^{151}_{64}\mathrm{Gd}_{87}$ 

Legend

## Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$  Decay (Uncertain)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9194.4+v         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8074 3+v         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7001.0+y         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5973 5+y         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4991 2+v         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4052.4+y         |
| J1+8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3157.0+y         |
| $J_{1+6}$ $J_{1$ | 2304.4+y         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1493.9+y         |
| <u>J1+2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 725.5+y          |
| <u>J1≈(55/2<sup>+</sup>)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y                |
| <u>J+40</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>23/01.0+x</u> |
| <u>J+38</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22026.2+x        |
| <u>1+36</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20408.3+x        |
| J+34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18846.3+x        |
| J+32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17339.1+x        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15886 5+x        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15666.51%        |
| $J+28$ $\downarrow$ $\checkmark$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14487.4+x        |
| <u>J+26</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13141.0+x        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11846.4+x        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10603.3+x        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9410.3+x         |
| <u>J+18</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8266.1+x         |
| <u>J+16</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7169.4+x         |
| <u>J+14</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6120.4+x         |
| <u>J+12</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5116.2+x         |
| <u>J+10</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4156.4+x         |
| J+8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3240.1+x         |
| J+6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2366 6+x         |
| J+4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | © 1535.3+x       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≈746.4+x         |
| $\frac{J \approx (5/l/2^+)}{(27/2 \text{ to } 31/2^+)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X                |
| <u>(27/2<sup>+</sup>)</u> ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| 7/2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0              |

123.9 d 10

<sup>151</sup><sub>64</sub>Gd<sub>87</sub>

Legend

#### Level Scheme (continued)

Intensities: Relative photon branching from each level

---- ► γ Decay (Uncertain)



 $^{151}_{64}\text{Gd}_{87}$ 

#### Level Scheme (continued)



## Level Scheme (continued)



#### Level Scheme (continued)



#### Level Scheme (continued)



36

#### Level Scheme (continued)



 $^{151}_{64}\text{Gd}_{87}$ 

#### Level Scheme (continued)





Level Scheme (continued)





#### Level Scheme (continued)





 $^{151}_{64}\text{Gd}_{87}$ 



 $^{151}_{64}\text{Gd}_{87}$ 





Intensities: Relative photon branching from each level

44

From ENSDF

#### Level Scheme (continued)



 $^{151}_{64}\mathrm{Gd}_{87}$ 



<sup>151</sup><sub>64</sub>Gd<sub>87</sub>

| J1+42 2                     | 4919+y  |
|-----------------------------|---------|
|                             |         |
| J1+40 <sup>1701</sup> 2     | 3218+y  |
| J1+38 1645 215              | 573.0+y |
| J1+36 <sup>1590</sup> 199   | 983.5+y |
| J1+34 <sup>1534</sup> 184   | 449.0+y |
| J1+32 <sup>1480</sup> 169   | 969.3+y |
| J1+30 <sup>1426</sup> 155   | 543.3+y |
| J1+28 <sup>1373</sup> 141   | 170.7+y |
| J1+26 <sup>1320</sup> 128   | 850.3+y |
| J1+24 <sup>1269</sup> 115   | 581.7+y |
| J1+22 1218 103              | 363.7+y |
| J1+20 1169 91               | 194.4+y |
| J1+18 1120 80               | 074.3+y |
| J1+16 1073 70               | 001.0+y |
| J1+14 1027 59               | 973.5+y |
| J1+12 982 4                 | 991.2+y |
| J1+10 939 40                | 052.4+y |
| J1+8 895 31                 | 157.0+y |
| J1+6 853 23                 | 304.4+y |
|                             | 493.9+y |
| J1+2 768                    | 725.5+y |
| $J1 \approx (55/2^+)_{726}$ | У       |

Band(F): SD-1 band

| J+40                   |      | 23701.0+x |
|------------------------|------|-----------|
| J+38                   | 1675 | 22026.2+x |
| J+36                   | 1618 | 20408.3+x |
| J+34                   | 1562 | 18846.3+x |
| J+32                   | 1507 | 17339.1+x |
| J+30                   | 1453 | 15886.5+x |
| J+28                   | 1399 | 14487.4+x |
| J+26                   | 1346 | 13141.0+x |
| J+24                   | 1295 | 11846.4+x |
| J+22                   | 1243 | 10603.3+x |
| J+20                   | 1193 | 9410.3+x  |
| J+18                   | 1144 | 8266.1+x  |
| J+16                   | 1097 | 7169.4+x  |
| J+14                   | 1049 | 6120.4+x  |
| J+12                   | 1004 | 5116.2+x  |
| J+10                   | 960  | 4156.4+x  |
| J+8                    | 916  | 3240.1+x  |
| J+6                    | 874  | 2366.6+x  |
| J+4                    | 831  | 1535.3+x  |
| J+2                    | 789  | 746.4+x   |
| J≈(57/2 <sup>+</sup> ) | 746  | X         |

<sup>151</sup><sub>64</sub>Gd<sub>87</sub>

#### Band(h): SD-5 band

| J4+36                |       | 21615+v                 |
|----------------------|-------|-------------------------|
| J4+34                | 1635  | 19980+v                 |
| J4+32                | 1580  | 18400+v                 |
| J4+30                | 1524  | 16875.6+v               |
| J4+28                | 1470  | 15406.0+v               |
| J4+26                |       | — <del>13</del> 989.3+v |
| J4+24                | 1417  | 12626.1+v               |
| J4+22                | 1363  | 11313.6+v               |
| J4+20                | 1312  | 10052.3+v               |
| J4+18                | 1261  | 8842.6+v                |
| J4+16                | 1210  | 7 <u>681.0+v</u>        |
| J4+14                | 1162  | ¢566.9+v                |
| J4+12                | 1114  | <b>498.7+v</b>          |
| J4+10                | 1068  |                         |
| J4+8                 | 1024  | <b>3</b> 495.7+v        |
| J4+6                 | 979   | 2558.1+v                |
| J4+4                 | 938   | 1662.8+v                |
| J4+2                 | 895   |                         |
| J4≈(6 <del>3/2</del> | > 800 | v                       |
| - (                  | 009   | · ·                     |

Band(H): SD-4 band

| J3+34                |       | 20390+u    |
|----------------------|-------|------------|
| J3+32                | 1606  | 18783+u    |
| J3+30                | 1552  | 17231.8+u  |
| J3+28                | 1498  | 15734.0+u  |
| J3+26                | 1443  | 14290.6+u  |
| J3+24                | 1380  | 12901.9+u  |
| J3+22                | 1307  | -11564.3+u |
| J3+20                | 1338  | 10278.2+u  |
| J3+18                | 1286  | 9042.1+u   |
| J3+16                | 1236  | 7856.2+u   |
| J3+14                | 1186  | ¢718.8+u   |
| J3+12                | 1137  | \$627.7+u  |
| J3+10                | 1091  | 4581.8+u   |
| J3+8                 | 1046  | 3580.9+u   |
| J3+6                 | 1001  | 2622.6+u   |
| J3+4                 | 958   | 1706.8+u   |
| J3+2                 | 916   | /832.8+u   |
| J3≈(6 <del>5/2</del> | ) 833 | u          |

Band(G): SD-3 band

| J2+38                   |        | 23512+z              |
|-------------------------|--------|----------------------|
| J2+36                   | 1743   | 21769+z              |
| J2+34                   | 1686   | 20083.5+z            |
| J2+32                   | 1628   | 18455.8+z            |
| J2+30                   | 1570   | 16885.8+z            |
| J2+28                   | 1513   | 15372.4+z            |
| J2+26                   |        | 13916.1+z            |
| J2+24                   | 1456   | 12516.7+z            |
| J2+22                   | 1399   | 1/174.0+z            |
| J2+20                   | 1343   | 9887.3+z             |
| J2+18                   | 1287   | 8656.9+z             |
| J2+16                   | 1230   | <del>7</del> 481.4+z |
| J2+14                   | 1250   | 6360.7+z             |
| J2+12                   | 1176   | 5294.6+z             |
| 12+10                   | 1121   | 4282 6+7             |
| 12.8                    | 1066   | 2224.0+2             |
| J2+0                    | 1012   | p324.0+Z             |
| J2+0                    | 959    |                      |
| J2+4 \                  | 907    | 1561.3+z             |
| J2+2                    | 856    | 755.7+z              |
| J2≈(59/2 <sup>-</sup> ) | 806    |                      |
|                         | _ / 30 |                      |

<sup>151</sup><sub>64</sub>Gd<sub>87</sub>



 $^{151}_{64}\mathrm{Gd}_{87}$