¹⁴⁹Sm(α ,2n γ),¹⁵⁰Sm(α ,3n γ) **1977**Sm01,1977Kl04

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 110, 1 (2009)	20-Nov-2008

Includes 148 Sm(α ,n γ).

1977Sm01: ¹⁴⁹Sm(α ,2n γ) at E(α)=24 MeV. γ , $\gamma\gamma$, excitation functions, $\gamma(\theta)$, ce measurements. See also 1973Sm08 from the same authors.

1977K104: ¹⁵⁰Sm(α ,3n γ) at E(α)=35-45 MeV. γ , $\gamma\gamma$, excitation functions, $\gamma(\theta)$, $\gamma(\text{linear pol})$ measurements. See also 1974K101 from the same authors.

Others:

1990ShZQ: ¹⁴⁸Sm(α ,n γ) E=17.9 MeV. Measured $\gamma(\theta)$ the authors report $\gamma(\theta)$ for 251.9 γ , 263.7 γ , 443.9 γ , 731.3 γ from

¹⁴⁸Sm(α ,n γ) E=17.9 MeV; and population of 839 level in (α ,n γ) deexciting by (nearly isotropic) 251.9 γ , 443.9 γ , and 731.3 γ .

E(level) [†]	J ^π @	E(level) [†]	J ^{π @}	E(level) [†]	J ^π @
0.0	7/2-	851.95 4	13/2+	1851.60 6	19/2+
108.01 4	5/2-	902.00 4	13/2-	1853.00 7	$(21/2)^+$
379.31 <i>3</i>	9/2 ^{-&}	1076.95 12	(9/2 to 13/2) ⁻	2003.70 11	$(17/2)^{-}$
395.41 5	3/2-	1115.77 4	13/2+	2077.80 12	$(19/2^{-})$
426.68 4	5/2-	1163.8? 10		2196.6 7	(17/2 to 21/2)
574.06? 9	$1/2^{-}$	1210.10 8	$11/2^{-}$	2295.09 13	$(19/2)^{-}$
584.75 11		1345.47 6	$17/2^{+}$	2297.3 6	$(21/2^{-})$
587.32 10	3/2-	1363.86 5	$15/2^{+}$	2325.14 9	$23/2^{+}$
589.13 9		1425.0 10		2405.4 5	$(25/2^+)$
617.89 <i>12</i>	5/2 to 9/2-	1435.02 7	$(15/2)^{-}$	2600.10 14	$(21/2^{-})$
670.92 7	$(5/2,7/2)^{-}$	1463.30 9	$(13/2)^{-}$	2866.2 [‡] 5	$(27/2^+)$
705.98 <i>3</i>	11/2 ^{-a}	1505.75 14		2915.30 17	$(23/2)^{-}$
719.45 4	9/2 ^{-b}	1510.95 6	$17/2^{-}$	3007.7 [‡] 8	$(29/2^+)$
784.79 <i>4</i>	11/2+°	1676.62 7	$(17/2)^+$	3238.19 19	$(25/2^{-})$
839.3 [#] 6	1/2-	1725.73 10	(15/2)-	3728.2? [‡] 8	

151Gd Levels

[†] From least-squares fit to E γ 's. For six γ rays uncertainty was doubled for fitting purpose. This gives normalized χ^2 =2.7 as compared to critical χ^2 =1.6. Otherwise normalized χ^2 =5.2.

[‡] Level reported in $(\alpha, 3n\gamma)$ (1977Kl04).

[#] Level from 148 Sm(α ,n γ) (1990ShZQ).

[@] From 'Adopted Levels', except when noted otherwise. For levels with $J \ge 9/2$, assignments are from $\gamma(\theta)$ data and mult assignments from ce data.

& $379\gamma(\theta)$ and $379\gamma(\text{pol})$ restrict J to 9/2.

^{*a*} 706 $\gamma(\theta)$ and $\gamma(\text{pol})$ give J=11/2.

^b 719 $\gamma(\theta)$ gives 9/2, not 11/2.

^c 405 $\gamma(\theta)$ and $\gamma(\text{pol})$ give 11/2, not 9/2.

				149	9 Sm(α ,2	2n γ), ¹⁵⁰ Sm(a	α,3n γ)	1977Sm01	,1977K104 (continued)
							<u>γ(</u>	(¹⁵¹ Gd)	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	δ^{\ddagger}	α^{e}	Comments
65.30 <i>4</i>	4.2 3	784.79	11/2+	719.45	9/2-	(E1) ^{<i>a</i>}		0.909	$\alpha(K)=0.753 \ 11; \ \alpha(L)=0.1226 \ 18; \ \alpha(M)=0.0266 \ 4; \ \alpha(N+)=0.00687 \ 10 \ \alpha(N)=0.00598 \ 9; \ \alpha(O)=0.000853 \ 12; \ \alpha(P)=3.97\times10^{-5} \ 6 \ A_2=+0.16 \ 6, \ A_4=+0.04 \ 10, \ \delta=+0.27. \ A_2 \ value \ in \ disagreement \ with \ A_1=1 \ and \ pure E1 \ assignment$
67.08 4	5.8 1	851.95	13/2+	784.79	11/2+	(M1) ^{<i>a</i>}		6.37	$\alpha(K) = 5.37 \ 8; \ \alpha(L) = 0.781 \ 11; \ \alpha(M) = 0.1698 \ 24; \ \alpha(N+) = 0.0455 \ 7 \ \alpha(N) = 0.0391 \ 6; \ \alpha(O) = 0.00605 \ 9; \ \alpha(P) = 0.000402 \ 6 \ A_{\Delta} = -0.19 \ 11 \ A_{\Delta} = -0.17 \ 15 \ \delta = +0.10$
78.71 4	9.1 <i>I</i>	784.79	11/2+	705.98	11/2-	(E1) ^{<i>a</i>}		0.555	$\begin{aligned} \alpha(\mathrm{K}) = 0.463 \ 7; \ \alpha(\mathrm{L}) = 0.0725 \ 11; \ \alpha(\mathrm{M}) = 0.01572 \ 23; \ \alpha(\mathrm{N}+) = 0.00408 \ 6\\ \alpha(\mathrm{N}) = 0.00354 \ 5; \ \alpha(\mathrm{O}) = 0.000512 \ 8; \ \alpha(\mathrm{P}) = 2.50 \times 10^{-5} \ 4\\ \mathrm{A}_2 = +0.069 \ 5, \ \mathrm{A}_4 = +0.010 \ 7, \ \delta = -0.46. \ \mathrm{A}_2 = +0.42 \ 6 \ (1977\mathrm{K}104) \ \mathrm{disagrees} \\ \mathrm{with} \ \mathrm{A}_2 \ \mathrm{from} \ 1977\mathrm{Sm}01. \end{aligned}$
108.00 <i>4</i>	0.15 <i>4</i> 11.0 <i>4</i>	108.01	5/2-	0.0	7/2-	[M1,E2]		1.76 15	α (K)=1.15 21; α (L)=0.5 3; α (M)=0.11 7; α (N+)=0.028 17 α (N)=0.024 15; α (O)=0.0033 18; α (P)=7.E-5 3 A ₂ =+0.052 9, A ₄ =+0.093 9, δ =-1.7.
^x 121.70 6 146.03 4	0.3 <i>1</i> 16.0 2	851.95	13/2+	705.98	11/2-	[E1]		0.1052	$\alpha(K)=0.0888 \ 13; \ \alpha(L)=0.01288 \ 18; \ \alpha(M)=0.00279 \ 4; \ \alpha(N+)=0.000732 \ 11 \ \alpha(N)=0.000633 \ 9; \ \alpha(O)=9.41\times10^{-5} \ 14; \ \alpha(P)=5.23\times10^{-6} \ 8 \ A_{2}=-0.20 \ 1, \ A_{4}=+0.049 \ 9, \ \delta=+0.03, \ Pol=+0.4 \ 2 \ (1977K104),$
147.1 [#] 2 180.13	1.4 <i>3</i> 0.69 <i>4</i>	1510.95 574.06?	17/2 ⁻ 1/2 ⁻	1363.86 395.41	15/2 ⁺ 3/2 ⁻	[M1,E2]		0.35 4	α (K)=0.27 6; α (L)=0.063 17; α (M)=0.014 5; α (N+)=0.0037 11 α (N)=0.0032 10; α (O)=0.00046 11; α (P)=1.8×10 ⁻⁵ 6
191.65 <i>13</i>	0.31 6	587.32	3/2-	395.41	3/2-	[M1,E2]		0.29 4	A ₂ =0.0 <i>I</i> , A ₄ =+0.14 <i>I</i> 2. $\alpha(K)=0.22 5; \alpha(L)=0.051 12; \alpha(M)=0.011 3; \alpha(N+)=0.0030 7$ $\alpha(N)=0.0026 7; \alpha(Q)=0.00037 7; \alpha(P)=1.5\times10^{-5} 6$
193.74 8 196.00 <i>9</i>	0.36 <i>6</i> 0.5 <i>1</i>	589.13 902.00	13/2-	395.41 705.98	3/2 ⁻ 11/2 ⁻	[D,E2]		0.19 13	
214.67 ^d 15	0.6 2	1115.77	13/2+	902.00	13/2-	(D+Q)			E_{γ} : poor fit. Level energy difference=213.81. Mult.: A ₂ =-0.17 8, A ₄ =+0.10 <i>10</i> ; consistent with ΔJ=0, D+Q transition. however deduced δ =-0.8 is too large to be consistent with E1+M2.
229.59 7 247.98 5	0.4 <i>1</i> 1.0 <i>1</i>	1345.47 1363.86	17/2 ⁺ 15/2 ⁺	1115.77 1115.77	13/2 ⁺ 13/2 ⁺	M1(+E2)	<1	0.147 <i>13</i>	A ₂ =0.0 3, A ₄ =-0.2 4. α (K)=0.121 14; α (L)=0.0200 9; α (M)=0.00440 25; α (N+)=0.00117 6 α (N)=0.00101 6; α (O)=0.000152 4; α (P)=8.7×10 ⁻⁶ 13 A ₂ =+0.15 13, A ₄ =-0.13 17 gives δ =+0.17. α (K)=xp=0.130 15
251.9 ^c		839.3	$1/2^{-}$	587.32	3/2-				$A_2 = +0.09 \ 9, \ A_4 = -0.08 \ 13 \ (1990 \text{ShZQ}).$

 $^{151}_{64}\mathrm{Gd}_{87}\text{-}2$

				¹⁴⁹ Sm($(\alpha, 2\mathbf{n}\gamma),^{150}$	Sm(α,3n	γ) 1977Sn	n01,1977K104	(continued)			
	γ ⁽¹⁵¹ Gd) (continued)											
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π} N	/lult. [‡]	δ^{\ddagger}	α^{e}	Comments			
253.21 4	6.6 1	1463.30	(13/2)-	1210.10 11	/2 ⁻ M	1+E2	-0.22 ^b 5	0.1483 24	α (K)=0.1251 21; α (L)=0.0182 3; α (M)=0.00396 6; α (N+)=0.001061 16			
									α (N)=0.000911 <i>14</i> ; α (O)=0.0001407 <i>20</i> ; α (P)=9.21×10 ⁻⁶ <i>17</i> A ₂ =-0.57 <i>2</i> , A ₄ =-0.01 <i>2</i> . α (K)exp=0.113 <i>12</i> gives mult=M1(+E2) with δ <1.			
262.42 4	3.5 1	1725.73	(15/2)-	1463.30 (1	3/2) ⁻ M	1+E2	-0.18 ^b 5	0.1353 21	$\alpha(K)=0.1143 \ 19; \ \alpha(L)=0.01647 \ 24; \ \alpha(M)=0.00358 \ 6; \ \alpha(N+)=0.000959 \ 14$			
									$\alpha(N)=0.000823\ I2;\ \alpha(O)=0.00012/4\ I8;\ \alpha(P)=8.43\times10^{-6}\ I5$ A ₂ =-0.54 2, A ₄ =+0.02 3. $\alpha(K)\exp=0.128\ I3$ gives mult=M1(+E2) with $\delta<0.3$.			
263.76 4	5.1 <i>1</i>	1115.77	13/2+	851.95 13	6/2 ⁺ M	1(+E2)	<0.4	0.132 4	$\alpha(K)=0.111 4; \alpha(L)=0.0163 3; \alpha(M)=0.00355 7; \alpha(N+)=0.000950 15$			
									$\alpha(N)=0.000816\ 14;\ \alpha(O)=0.0001258\ 18;\ \alpha(P)=8.2\times10^{-6}\ 4$ A ₂ =+0.36 2, A ₄ =-0.01 2, δ =-0.03. Additional information 1.			
x266.61 <i>11</i>	0.4 1	270.21	0/2-	100 01 5/) - IT	21		0.0225	$u(\mathbf{K}) \exp[-0.125 T_{3}]$			
271.2 5	0.7 1	579.51	9/2	108.01 3/2	2 [E	,2]		0.0825	$\alpha(N)=0.0020$ 9, $\alpha(L)=0.01399$ 24, $\alpha(M)=0.00304$ 6; $\alpha(N+)=0.000941$ 14 $\alpha(N)=0.000822$ 12; $\alpha(O)=0.0001157$ 17; $\alpha(P)=3.80\times10^{-6}$ 6			
274.66 ^d 13	0.4 1	670.92	$(5/2,7/2)^{-}$	395.41 3/2	2-				$A_2=0.0$ 3, $A_4=+0.1$ 3. E _w : poor fit. Level energy difference=275.5.			
277.96 5	2.0 1	2003.70	$(17/2)^{-}$	1725.73 (1	5/2) ⁻ M	1(+E2)	<0.5	0.113 5	$\alpha(K)=0.095 5; \alpha(L)=0.01410 21; \alpha(M)=0.00307 5; \alpha(N+)=0.000822 13$			
									α (N)=0.000706 <i>11</i> ; α (O)=0.0001086 <i>16</i> ; α (P)=7.0×10 ⁻⁶ <i>4</i> A ₂ =-0.6 2, A ₄ =-0.2 3 (1977K104). α (K)exp=0.110 <i>15</i>			
287.35 4	3.9 1	395.41	3/2-	108.01 5/2	2- M	1(+E2)	<0.8	0.100 8	$\alpha(K) = 0.083 \ 8; \ \alpha(L) = 0.01285 \ 18; \ \alpha(M) = 0.00281 \ 5; \ \alpha(N+) = 0.000750 \ 11$			
									α (N)=0.000645 <i>10</i> ; α (O)=9.85×10 ⁻⁵ <i>18</i> ; α (P)=6.0×10 ⁻⁶ 7 A ₂ =+0.06 2, A ₄ =+0.04 2, δ =-0.04.			
291.38 8	1.3 1	2295.09	(19/2)-	2003.70 (1	7/2) [–] M	1(+E2)	-0.13 ^b 13	0.1027 23	$\alpha(K)\exp=0.086$ 9. $\alpha(K)=0.0869$ 22; $\alpha(L)=0.01237$ 18; $\alpha(M)=0.00268$ 4; $\alpha(N+)=0.000720$ 10			
									$\alpha(N)=0.000618 \ 9; \ \alpha(O)=9.58\times10^{-5} \ 14; \ \alpha(P)=6.41\times10^{-6} \ 18$ A ₂ =-0.54 6, A ₄ =+0.06 8.			
x206 66 8	071								α (K)exp=0.11 2 gives mult=M1(+E2) with δ <0.2.			
304.92 8	0.7 1	2600.10	$(21/2^{-})$	2295.09 (1	9/2)-				$A_2 = -0.1 4$, $A_4 = -0.5 6$, $\delta < +0.16$.			
315.09 12	0.4 1	2915.30	$(23/2)^{-}$	2600.10 (2	1/2-)				$A_2 = +0.01 \ 14, A_4 = -0.2 \ 2, \delta = +0.1 \ 3.$			
318.767	1.1 1	426.68	5/2-	108.01 5/2	2-				$A_2 = +0.04 \ 10, \ A_4 = -0.09 \ 11, \ \delta = -0.40.$			
324" ^J I		3238.19	$(25/2^{-})$	2915.30 (2)	3/2)-							

ω

 $^{151}_{64}\mathrm{Gd}_{87}$ -3

				¹⁴⁹ Sm(α ,2n γ	/) , ¹⁵⁰ Sm	n(α ,3n γ)	1977Sm01,1977Kl04 (continued)				
						<u>γ(¹⁵¹Gd</u>) (continu	ued)			
$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f J	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{e}	Comments		
326.7 2	0.9 2	705.98	11/2-	379.31 9/2	2 ⁻ N	M1,E2		0.061 15	$\begin{aligned} &\alpha(\text{K})=0.050 \ 15; \ \alpha(\text{L})=0.0086 \ 5; \ \alpha(\text{M})=0.00191 \ 8; \\ &\alpha(\text{N}+)=0.00050 \ 3 \\ &\alpha(\text{N})=0.000435 \ 20; \ \alpha(\text{O})=6.5\times10^{-5} \ 6; \ \alpha(\text{P})=3.5\times10^{-6} \ 13 \end{aligned}$		
330.93 4	4.3 2	1115.77	13/2+	784.79 11	l/2 ⁺ N	M1(+E2)	<0.6	0.070 4	α (K)exp=0.05 2. α (K)=0.059 4; α (L)=0.00866 18; α (M)=0.00189 4; α (N+)=0.000504 11 (N)=0.000504 2.0 (C)=(.67110=5.18 (D)=4.2110=6.4)		
#									$\alpha(N)=0.000433$ 9; $\alpha(O)=6.67\times10^{-5}$ 18; $\alpha(P)=4.3\times10^{-5}$ 4 A ₂ =-0.51 4, A ₄ =0.00 4, δ =-0.2. $\alpha(K)$ exp=0.070 15.		
331.1# <i>1</i> 340.65 <i>4</i>	0.5 2 6.2 2	1676.62 1851.60	(17/2) ⁺ 19/2 ⁺	1345.47 17 1510.95 17	7/2 ⁺ 7/2 ⁻ E	E1		0.01162	$\alpha(K)=0.00989 \ 14; \ \alpha(L)=0.001361 \ 19; \ \alpha(M)=0.000294 \ 5; \ \alpha(N+)=7.80\times10^{-5} \ 11 \ \alpha(N)=6.71\times10^{-5} \ 10; \ \alpha(O)=1.023\times10^{-5} \ 15; \ \alpha(P)=6.36\times10^{-7} \ 9 \ A_{2}=-0.27 \ 5, \ A_{4}=+0.04 \ 6, \ \delta=+0.017 \ Pol=+0.06 \ 22$		
									(1977K104). $\alpha(K)\exp=0.010$ 2.		
$345^{\#}$ 1	2.0 5	2196.6	(17/2 to 21/2)	1851.60 19	9/2+						
346.38 ⁹ 14 358.04 9	0.9 2 1.3 2	1210.10	17/2 11/2 ⁻	851.95 13	3/2+ E	E1		0.01029	A ₂ =+0.2 2, A ₄ =-0.1 5. See comment for 5797. $\alpha(K)=0.00876\ 13;\ \alpha(L)=0.001202\ 17;\ \alpha(M)=0.000259\ 4;$ $\alpha(N+)=6.89\times10^{-5}\ 10$ $\alpha(N)=5.93\times10^{-5}\ 9;\ \alpha(O)=9.05\times10^{-6}\ 13;\ \alpha(P)=5.65\times10^{-7}\ 8$ A ₂ =0.0 2, A ₄ =0.0 2. $\alpha(K)\exp<0.009.$		
379 ^{#f} 1	≈1	1163.8?		784.79 11	1/2+				Placement from $(347\gamma)(379\gamma)$. However, the positions of the 347γ and 379γ could be reversed thus defining the level at 1132 instead of 1164.		
379.39 4	100.0 4	379.31	9/2-	0.0 7/2	2- N	M1(+E2)	<0.25	0.0509 <i>10</i>	$\alpha(K)=0.0431$ 9; $\alpha(L)=0.00609$ 10; $\alpha(M)=0.001320$ 20; $\alpha(N+)=0.000354$ 6 $\alpha(N)=0.000304$ 5; $\alpha(O)=4.71\times10^{-5}$ 8; $\alpha(P)=3.16\times10^{-6}$ 7 $A_2=-0.091$ 4, $A_4=+0.014$ 5, $\delta=+0.075$. $\alpha(K)=0.004$ 4, $P_{O}=-0.235$ (1977K104)		
395.47 8	1.4 2	395.41	3/2-	0.0 7/2	2 ⁻ E	32 &		0.0265	$\alpha(K) = 0.0211 \ 3; \ \alpha(L) = 0.00425 \ 6; \ \alpha(M) = 0.000951 \ 14; \alpha(N+) = 0.000249 \ 4 \alpha(N) = 0.000216 \ 3; \ \alpha(O) = 3.14 \times 10^{-5} \ 5; \ \alpha(P) = 1.377 \times 10^{-6} \ 20 \alpha(K) \exp = 0.02 \ 1 \ gives mult = E2(+M1) \ with \ \delta > 1.$		
x397.44 <i>15</i> 405.48 <i>4</i>	0.6 2 35.6 <i>1</i>	784.79	11/2+	379.31 9/2	2 ⁻ E	E1 [@]		0.00764	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00651 \ 10; \ \alpha(\mathrm{L}) = 0.000888 \ 13; \ \alpha(\mathrm{M}) = 0.000191 \ 3; \\ &\alpha(\mathrm{N}+) = 5.09 \times 10^{-5} \ 8 \\ &\alpha(\mathrm{N}) = 4.38 \times 10^{-5} \ 7; \ \alpha(\mathrm{O}) = 6.70 \times 10^{-6} \ 10; \ \alpha(\mathrm{P}) = 4.23 \times 10^{-7} \ 6 \end{aligned}$		

4

 $^{151}_{64}\mathrm{Gd}_{87}\text{-}4$

				149	Sm(α,2	$\mathbf{n}\gamma$), ¹⁵⁰ Sm(a	$(x, 3n\gamma)$ 1	977Sm01,1977Kl04 (continued)
							$\gamma(^{151}\text{Gd})$ (c	continued)
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α^{e}	Comments
"								A ₂ =-0.20 <i>1</i> , A ₄ =+0.03 <i>1</i> , δ =+0.035. Pol=+0.40 <i>10</i> (1977Kl04). α (K)exp=0.0074 9 gives E1(+M2) with δ <0.16.
409.8# 5	1.4 5	1115.77	$\frac{13}{2^+}$	705.98	$11/2^{-}$		0.020.0	
420.05 4	6.9 2	426.68	5/2	0.0	1/2	[M1,E2]	0.030 9	$\alpha(\text{K})=0.025 \ 8; \ \alpha(\text{L})=0.0039 \ 6; \ \alpha(\text{M})=0.00086 \ 12; \ \alpha(\text{N}+)=0.00023 \ 4 \ \alpha(\text{N})=0.00020 \ 3; \ \alpha(\text{O})=3.0\times10^{-5} \ 6; \ \alpha(\text{P})=1.7\times10^{-6} \ 7 \ \text{A}_2=-0.02 \ 9, \ \text{A}_4=-0.03 \ 11, \ \delta=0.0.$
443.9 ^c		839.3	$1/2^{-}$	395.41	3/2-	0		$A_2 = +0.02 4$, $A_4 = -0.00 6$ (1990ShZQ).
461.92 4	6.1 2	1363.86	15/2+	902.00	13/2-	E1 [@]	0.00564	$\alpha(K)=0.00481$ 7; $\alpha(L)=0.000652$ 10; $\alpha(M)=0.0001404$ 20; $\alpha(N+)=3.74\times10^{-5}$ 6 $\alpha(N)=3.22\times10^{-5}$ 5; $\alpha(O)=4.93\times10^{-6}$ 7; $\alpha(P)=3.15\times10^{-7}$ 5 $A_2=-0.19$ 2, $A_4=+0.07$ 3, $\delta=+0.05$. Pol=+0.4 4 (1977K104). $\alpha(K)\exp=0.006$ 2 gives mult=E1(+M2) with $\delta<0.25$.
466.04 8	1.3 2	574.06?	$1/2^{-}$	108.01	5/2-			
473.53 6	4.3 3	2325.14	23/2+	1851.60	19/2+	E2 ^{&}	0.01612	α (K)=0.01305 <i>19</i> ; α (L)=0.00240 <i>4</i> ; α (M)=0.000533 <i>8</i> ; α (N+)=0.0001401 <i>20</i> α (N)=0.0001214 <i>17</i> ; α (O)=1.79×10 ⁻⁵ <i>3</i> ; α (P)=8.71×10 ⁻⁷ <i>13</i> A_2 =+0.36 6, A_4 =-0.12 8. α (K)=xn=0.018 8 gives mult=M1 F2
476.5 2	0.6 2	584.75		108.01	5/2-			
479.56 13	1.0 3	587.32	3/2-	108.01	5/2-			
480.4 ^{<i>d</i>} 2	0.7 <i>3</i>	589.13		108.01	5/2-			
^x 483.42 15	1.2 3					M1,E2	0.021 7	$\alpha(K)=0.018 \ 6; \ \alpha(L)=0.0028 \ 5; \ \alpha(M)=0.00060 \ 11; \ \alpha(N+)=0.00016 \ 3$ $\alpha(N)=0.000138 \ 25; \ \alpha(O)=2.1\times10^{-5} \ 5; \ \alpha(P)=1.3\times10^{-6} \ 5$ $\alpha(K)\exp=0.015 \ 7.$
487.77 6	5.1 3	1851.60	19/2+	1363.86	15/2+	E2 ^{&}	0.01490	$\alpha(K)=0.01209 \ 17; \ \alpha(L)=0.00219 \ 3; \ \alpha(M)=0.000487 \ 7; \ \alpha(N+)=0.0001280 \ 18 \ \alpha(N)=0.0001108 \ 16; \ \alpha(O)=1.636\times10^{-5} \ 23; \ \alpha(P)=8.09\times10^{-7} \ 12 \ A_2=+0.35 \ 4, \ A_4=-0.02 \ 5. \ \alpha(K)exp=0.013 \ 4 \ gives \ mult=E2(+M1) \ with \ \delta>0.7.$
493.57 6	25.6 3	1345.47	17/2+	851.95	13/2+	E2 [@]	0.01444	$\begin{aligned} &\alpha(\text{K}) = 0.01173 \ 17; \ \alpha(\text{L}) = 0.00212 \ 3; \ \alpha(\text{M}) = 0.000470 \ 7; \ \alpha(\text{N}+) = 0.0001235 \ 18 \\ &\alpha(\text{N}) = 0.0001069 \ 15; \ \alpha(\text{O}) = 1.580 \times 10^{-5} \ 23; \ \alpha(\text{P}) = 7.86 \times 10^{-7} \ 11 \\ &A_2 = +0.35 \ 1, \ A_4 = -0.11 \ 1. \ \text{Pol} = +0.69 \ 14. \\ &\alpha(\text{K}) \exp = 0.014 \ 2 \ \text{gives mult} = \text{E2}(+\text{M1}) \ \text{with} \ \delta > 1. \end{aligned}$
x496.2 2	1.3 3	1210 10	11/0-	705.00	11/0-		0.010 (
504.4 2	1.5 0	1210.10	11/2	705.98	11/2	M1,E2	0.019 6	$\begin{aligned} &\alpha(\mathbf{K}) = 0.016 \ 5; \ \alpha(\mathbf{L}) = 0.0024 \ 5; \ \alpha(\mathbf{M}) = 0.00054 \ 10; \ \alpha(\mathbf{N}+) = 0.00014 \ 3 \\ &\alpha(\mathbf{N}) = 0.000123 \ 23; \ \alpha(\mathbf{O}) = 1.9 \times 10^{-5} \ 4; \ \alpha(\mathbf{P}) = 1.1 \times 10^{-6} \ 4 \\ &A_2 = +0.6 \ 4, \ A_4 = +0.3 \ 5, \ \delta = +0.27. \\ &\alpha(\mathbf{K}) \exp = 0.012 \ 7. \end{aligned}$
506.08 [#] 15	31	1851.60	$19/2^{+}$	1345.47	$17/2^{+}$	0		
507.53 4	9.6 5	1853.00	(21/2)+	1345.47	17/2+	E2 ^{&}	0.01341	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01092 \ 16; \ \alpha(\mathbf{L}) = 0.00195 \ 3; \ \alpha(\mathbf{M}) = 0.000432 \ 6; \ \alpha(\mathbf{N}+) = 0.0001136 \ 16 \\ &\alpha(\mathbf{N}) = 9.83 \times 10^{-5} \ 14; \ \alpha(\mathbf{O}) = 1.455 \times 10^{-5} \ 21; \ \alpha(\mathbf{P}) = 7.34 \times 10^{-7} \ 11 \\ &\mathbf{A}_2 = +0.07 \ 8, \ \mathbf{A}_4 = -0.34 \ 10 \ (1977 \text{Sm}01). \ \mathbf{A}_2 = +0.36 \ 4, \ \mathbf{A}_4 = -0.03 \ 4 \ (1977 \text{Kl}04). \\ &\mathbf{A}_2 \ \text{values quoted by } 1977 \text{Sm}01 \ \text{and } 1977 \text{Kl}04 \ \text{disagree.} \\ &\alpha(\mathbf{K}) \text{exp} = 0.010 \ 2 \ \text{gives mult} = \text{E2}(+\text{M1}) \ \text{with } \delta > 3. \end{aligned}$

S

From ENSDF

 $^{151}_{64}\mathrm{Gd}_{87}$ -5

				¹⁴⁹ Sm (<i>a</i>	,2n γ), ¹⁵⁰ S	$Sm(\alpha, 3n\gamma)$	1977S n	1977Sm01,1977Kl04 (continued)				
						$\gamma(^{151}$	Gd) (continu	ued)				
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α^{e}	Comments				
512.2 2	2.4 9	1363.86	15/2+	851.95	13/2+	M1,E2	0.018 6	$\alpha(K)=0.015\ 5;\ \alpha(L)=0.0023\ 5;\ \alpha(M)=0.00051\ 10;\ \alpha(N+)=0.00014\ 3$ $\alpha(N)=0.000118\ 22;\ \alpha(O)=1.8\times10^{-5}\ 4;\ \alpha(P)=1.1\times10^{-6}\ 4$ $\alpha(K)\exp=0.008\ 3.$				
515.1 4	1.1 5	1725.73	$(15/2)^{-}$	1210.10	$11/2^{-}$							
520 [#] 1	1.0 5	2196.6	(17/2 to 21/2)	1676.62	$(17/2)^+$							
522.77 4	39.2 4	902.00	13/2-	379.31	9/2-	E2 [@]	0.01242	$\alpha(K)=0.01014 \ 15; \ \alpha(L)=0.001783 \ 25; \ \alpha(M)=0.000395 \ 6; \ \alpha(N+)=0.0001040 \ 15 \ \alpha(N)=9.00\times10^{-5} \ 13; \ \alpha(O)=1.335\times10^{-5} \ 19; \ \alpha(P)=6.82\times10^{-7} \ 10 \ A_2=+0.30 \ 1, \ A_4=-0.02 \ 1. \ Pol=+0.51 \ 12 \ (1977K104). \ \alpha(K)exp=0.0110 \ 15 \ gives \ mult=E2(+M1) \ with \ \delta>1.5.$				
^x 528.8 3	0.9 2											
540.82 ^d 10	1.9 <i>3</i>	2003.70	(17/2) ⁻	1463.30	(13/2)-			A ₂ =+0.3 3, A ₄ =-0.2 3. Probably a doublet. See placement of 541γ deexciting a 2867 level suggested by 1977K104.				
541.1 5	10 <i>1</i>	2866.2	(27/2 ⁺)	2325.14	23/2+	(E2) [@]	0.01136	α(K)=0.00930 14; α(L)=0.001613 23; α(M)=0.000357 5; α(N+)=9.41×10-5 14 α(N)=8.13×10-5 12; α(O)=1.209×10-5 18; α(P)=6.28×10-7 9 A2=+0.38 8, A4=-0.08 10, Pol=+0.8 6 (1977K104). Probably a doublet. See placement of 540.8γ deexciting a 2004 level.				
552.4 [#] 5	2.3 5	2405.4	$(25/2^+)$	1853.00	$(21/2)^+$			$A_2 = +0.33 \ 4 \ (1977 \text{Kl}04).$				
560.89 7	3.5 3	1676.62	(17/2)+	1115.77	13/2+	E2 &	0.01037	$\alpha(K)=0.00851 \ 12; \ \alpha(L)=0.001455 \ 21; \ \alpha(M)=0.000321 \ 5; \ \alpha(N+)=8.48\times10^{-5} \ 12 \ \alpha(N)=7.33\times10^{-5} \ 11; \ \alpha(O)=1.092\times10^{-5} \ 16; \ \alpha(P)=5.76\times10^{-7} \ 8 \ A_2=+0.31 \ 17, \ A_4=-0.11 \ 21. \ Negative \ sign \ of \ A_2 \ in \ 1977Sm01 \ is \ a \ misprint. \ A_2=+0.41 \ 10 \ (1977Kl04). \ \alpha(K)=x_0=0.008 \ 3 \ gives \ mult=F2(+M1) \ with \ \delta>1$				
562.93 7	5.0 3	670.92	(5/2,7/2) ⁻	108.01	5/2-	M1,E2	0.015 5	$\begin{aligned} \alpha(\text{K}) &= 0.012 \ 4; \ \alpha(\text{L}) = 0.0018 \ 4; \ \alpha(\text{M}) = 0.00040 \ 8; \ \alpha(\text{N}+) = 0.000106 \ 22 \\ \alpha(\text{N}) &= 9.1 \times 10^{-5} \ 19; \ \alpha(\text{O}) = 1.4 \times 10^{-5} \ 4; \ \alpha(\text{P}) = 9.\text{E}-7 \ 3 \\ \text{A}_2 &= -0.3 \ 3, \ \text{A}_4 = -0.3 \ 4, \ \delta = -0.13. \\ \alpha(\text{K}) &= p = 0.013 \ 4. \end{aligned}$				
568.74 ^d 15 579.08 10	1.6 5 3.5 <i>3</i>	2295.09 1363.86	(19/2) ⁻ 15/2 ⁺	1725.73 784.79	(15/2) ⁻ 11/2 ⁺			α (K)exp=0.020 <i>10</i> gives mult=M1,E2. A ₂ =+0.4 <i>4</i> , A ₄ =-0.1 <i>4</i> .				
583.52 ^d 11 584.84 12 589.2 2 596 7 2	3.5 <i>4</i> 4.9 <i>4</i> 1.8 <i>4</i> 1.4 2	1435.02 584.75 589.13 2600.10	$(15/2)^{-}$	851.95 0.0 0.0 2003 70	$13/2^+$ $7/2^-$ $7/2^-$ $(17/2)^-$			$A_2 = +0.14$ 7, $A_4 = -0.16$ 9, $\delta = +0.17$. $A_2 = -0.16$ 6, $A_4 = +0.05$ 7, $\delta = +0.05$.				
602.3 <i>5</i> 603.75 <i>14</i>	5 <i>1</i> 2.5 <i>4</i>	3007.7 1505.75	$(29/2^+)$	2405.4 902.00	(17/2) $(25/2^+)$ $13/2^-$			$A_2 = +0.45 \ 20, \ A_4 = -0.1 \ 3.$ $A_2 = -0.1 \ 4, \ A_4 = +0.3 \ 5.$				
608.94 <i>4</i>	15.6 3	1510.95	17/2-	902.00	13/2-	E2 [@]	0.00845	α (K)=0.00697 <i>10</i> ; α (L)=0.001155 <i>17</i> ; α (M)=0.000255 <i>4</i> ; α (N+)=6.73×10 ⁻⁵ <i>10</i>				

6

				¹⁴⁹ Sn	$\mathbf{n}(\alpha, 2\mathbf{n}\gamma),^1$	50 Sm(α ,3n γ)	197	78m01,1977I	K104 (continued)
						$\gamma(^{151}$	Gd) (co	ntinued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α^{e}	Comments
617.89 12	1.3 2	617.89	5/2 to 9/2 ⁻	0.0	7/2-	M1(+E2)	<2	0.012 3	$\begin{aligned} &\alpha(\mathrm{N}) = 5.81 \times 10^{-5} \ 9; \ \alpha(\mathrm{O}) = 8.70 \times 10^{-6} \ 13; \ \alpha(\mathrm{P}) = 4.75 \times 10^{-7} \ 7 \\ &A_2 = +0.26 \ 11, \ A_4 = +0.02 \ 2. \ \mathrm{Pol} = +0.63 \ 25 \ (1977\mathrm{Kl}04). \\ &\alpha(\mathrm{K}) \exp = 0.007 \ 2 \ \mathrm{gives} \ \mathrm{mult} = \mathrm{E2}(+\mathrm{M1}) \ \mathrm{with} \ \delta > 2. \\ &\alpha(\mathrm{K}) = 0.0103 \ 24; \ \alpha(\mathrm{L}) = 0.0015 \ 3; \ \alpha(\mathrm{M}) = 0.00032 \ 6; \\ &\alpha(\mathrm{N}+) = 8.6 \times 10^{-5} \ 15 \end{aligned}$
									$\alpha(N)=7.4\times10^{-5} \ 13; \ \alpha(O)=1.14\times10^{-5} \ 21; \ \alpha(P)=7.4\times10^{-7} \ 19$ $A_2=+0.34 \ 13, \ A_4=+0.13 \ 17, \ \delta=-0.84.$ $\alpha(K)\exp=0.012 \ 3.$
620.5 2	1.8 4	2915.30	(23/2) ⁻	2295.09	(19/2)-	E2 ^{&}		0.00807	$\alpha(K)=0.00667 \ 10; \ \alpha(L)=0.001097 \ 16; \ \alpha(M)=0.000242 \ 4; \ \alpha(N+)=6.39\times10^{-5} \ 9$
									$\alpha(N)=5.52\times10^{-5} 8; \ \alpha(O)=8.27\times10^{-6} 12; \ \alpha(P)=4.54\times10^{-7} 7$ $A_2=+0.6 3, A_4=+0.6 4.$ $\alpha(K)=x_0=0.007 3 \text{ gives mult}=F2(+M1) \text{ with } \delta>1$
638.09 12	1.5 5	3238.19	$(25/2^{-})$	2600.10	$(21/2^{-})$				$A_2 = +0.2 4, A_4 = +0.1 5, \delta = -0.27.$
642.78 10	2.5 3	2077.80	(19/2-)	1435.02	(15/2)-				$A_2 = +0.2 3, A_4 = -0.2 4.$
671.01 77	2.5 4	670.92	$(5/2,7/2)^{-}$	0.0	7/2-	(F2) &		0.00(10	$A_2 = +0.13, A_4 = +0.24, \delta = -0.7.$
697.64 11	5.3 0	1076.95	(9/2 to 13/2)	379.31	9/2	(E2)		0.00610	$\begin{aligned} \alpha(\mathbf{K}) = 0.00507 \ 8; \ \alpha(\mathbf{L}) = 0.000803 \ 12; \ \alpha(\mathbf{M}) = 0.0001762 \ 23; \\ \alpha(\mathbf{N}+) = 4.67 \times 10^{-5} \ 7 \\ \alpha(\mathbf{N}) = 4.03 \times 10^{-5} \ 6; \ \alpha(\mathbf{O}) = 6.08 \times 10^{-6} \ 9; \ \alpha(\mathbf{P}) = 3.48 \times 10^{-7} \ 5 \\ \mathbf{A}_2 = +0.4 \ 4, \ \mathbf{A}_4 = -0.1 \ 5. \end{aligned}$
705.93 4	46.5 4	705.98	11/2-	0.0	7/2-	E2 [@]		0.00593	α (K)exp=0.005 2 gives mult=E2(+M1) with δ >1. α (K)=0.00494 7; α (L)=0.000779 11; α (M)=0.0001708 24;
									$\alpha(N+)=4.53\times10^{-5} / \alpha(N)=3.91\times10^{-5} 6; \ \alpha(O)=5.90\times10^{-6} 9; \ \alpha(P)=3.39\times10^{-7} 5$ $A_2=+0.25 I, \ A_4=-0.03 I. \ Pol=+0.76 I7 \ (1977Kl04).$ $\alpha(K)exp=0.0052 I0 \ gives \ mult=E2(+M1) \ with \ \delta>2.$
719 [#] <i>f</i> 1	2.0	1425.0	0.12	705.98	$11/2^{-}$			0.00/0.10	
719.38 5	8.0 3	719.45	9/2-	0.0	7/2-	E2(+M1)	>1	0.0068 12	$\alpha(\mathbf{K})=0.0057 \ 10; \ \alpha(\mathbf{L})=0.00085 \ 12; \ \alpha(\mathbf{M})=0.000186 \ 24; \\ \alpha(\mathbf{N}+)=5.0\times10^{-5} \ 7 \\ \alpha(\mathbf{N}+)=5.0\times10^{-5} \ 10^{-5$
									$\alpha(X)=4.5\times10^{-6}$ 6, $\alpha(O)=0.5\times10^{-9}$ 9, $\alpha(P)=4.0\times10^{-8}$ 8 A ₂ =-0.35 4, A ₄ =+0.10 5, δ =-3. $\alpha(K)$ exp=0.0052 11.
721.0 5	2.2 9	1505.75		784.79	$11/2^{+}$	P.			
729.00 6	6.8 <i>3</i>	1435.02	(15/2)-	705.98	11/2-	E2 [∞]		0.00551	$\alpha(K)=0.00459 \ 7; \ \alpha(L)=0.000717 \ 10; \ \alpha(M)=0.0001572 \ 22; \\ \alpha(N+)=4.17\times10^{-5} \ 6 \\ \alpha(N)=3.59\times10^{-5} \ 5; \ \alpha(O)=5.44\times10^{-6} \ 8; \ \alpha(P)=3.15\times10^{-7} \ 5 \\ A_2=+0.16 \ 6, \ A_4=+0.07 \ 6, \ \delta=017. \\ \alpha(K)=x_0=0.0052 \ 11 \ \text{gives mult}=F2(+M1) \ \text{with } \delta>1$
731.3 ^c 786.4 6	0.5 1	839.3 2297.3	1/2 ⁻ (21/2 ⁻)	108.01 1510.95	5/2 ⁻ 17/2 ⁻				$A_2=+0.07$ 6, $A_4=-0.04$ 9 (1990ShZQ). $A_2=+0.35$ 10, $A_4=+0.24$ 11. Positive A ₄ is inconsistent with
824.2 4	1.5 3	1676.62	$(17/2)^+$	851.95	13/2+				$\Delta J=2$, quadrupole transition.

7

$\gamma(^{151}\text{Gd})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult.‡	Comments
830.81 14	4.4 2	1210.10	$11/2^{-}$	379.31	9/2-	D+Q	$A_2 = +0.12$ 7, $A_4 = +0.25$ 8, $\delta = +6.3$.
^x 835.2 3	1.7 3						
^x 839.0 4	1.6 3						
^x 854.6 5	1.2 2						
862.0 ^{<i>f</i>} 5	1.5 4	3728.2?		2866.2	$(27/2^+)$		$A_2 = +0.45, A_4 = 0.07$ (1977Kl04).
1210.8 4	1.8 <i>3</i>	1210.10	$11/2^{-}$	0.0	7/2-	Q	$A_2 = +0.30 \ 8, \ A_4 = -0.06 \ 2.$

[†] From 1977Sm01, unless otherwise stated.

[‡] From ce data (1977Sm01), unless otherwise stated. δ 's deduced by 1977Sm01 from $\gamma(\theta)$ are given under comments. No uncertainties are available on δ 's.

[#] From $\gamma\gamma$ data only.

^(a) From $\gamma(\theta)$ and $\gamma(\text{linear pol})$ data. Consistent with ce data. ^(b) ce and $\gamma(\theta)$ data give E2(+M1) but ΔJ^{π} rules out M1.

^{*a*} Deduced from intensity balance in $\gamma\gamma$ data (1977Sm01).

^b From $\gamma(\theta)$ (1977Sm01).

^c From 1990ShZQ.

^d Uncertainty doubled for fitting purpose.

^e Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^f Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{151}_{64}\mathrm{Gd}_{87}$

10

 $^{151}_{64}\mathrm{Gd}_{87}\text{--}10$

Legend

From ENSDF

 $^{151}_{64}\rm{Gd}_{87}$