### $^{151}\text{Gd}\ \varepsilon$ decay (123.9 d)

|                                                        |                                |                              | History                       |                                     |
|--------------------------------------------------------|--------------------------------|------------------------------|-------------------------------|-------------------------------------|
|                                                        | Туре                           | Author                       | Citation                      | Literature Cutoff Date              |
|                                                        | Full Evaluation                | Balraj Singh                 | NDS 110, 1 (2009)             | 20-Nov-2008                         |
| - 151                                                  |                                |                              |                               |                                     |
| Parent: <sup>131</sup> Gd: $E=0.0$ ; $J^{n}=7/2^{-}$ ; | $T_{1/2}$ =123.9 d <i>10</i> ; | $Q(\varepsilon) = 464.2\ 28$ | ; $\%\varepsilon$ decay=100.0 |                                     |
| Main references: 1984Gr15, 198                         | 83Vo10, 1982BaZ2               | X (also 1996Vy               | 02), 1970Fo02.                |                                     |
| Others: 1969Ho30, 1968Gr25, 1                          | 1967Gr29, 1966Ha               | 23.                          |                               |                                     |
| γ: 1984Gr15, 1983Vo10, 1982B                           | aZX, 1970Fo02, 1               | 969Ho30. Othe                | ers: 1977Dr04, 1970Ko         | 30, 1970FoZZ, 1968Gr25, 1967Gr29,   |
| 1966Av05, 1966Ry02, 1965                               | Fo14, 1963St13, 1              | 961Be36, 1958                | Sh61, 1957Go72, 1957          | /Bi90, 1950He18.                    |
| <i>γγ</i> : 1983Vo10, 1970Fo02, 1977                   | Dr04. Others: 196              | 3St13, 1958Sh6               | 51.                           |                                     |
| cey: 1982BaZX (also 1996Vy02                           | 2).                            |                              |                               |                                     |
| (x)γ: 1980Se01, 1977Ve01, 197                          | 3Ge06.                         |                              |                               |                                     |
| ce: 1982BaZX, 1981Ar17, 1970                           | An17, 1968Gr25,                | 1967Gr29, 196                | 6Ha23, 1966Av05. Oth          | ners: 1971MeZT, 1959Dz04, 1958An34, |
| 1958Sh61, 1957B190.                                    | 042 1-                         |                              |                               |                                     |
| $\gamma\gamma(\theta)$ : 1985Be64. Data for 106-       | $\cdot 245$ cascade.           |                              |                               |                                     |
| $\gamma\gamma(1)$ : 19945111, 1909FaZ 1, 19            | 03H009, 1901Bes                | 5.                           |                               |                                     |
| $(x)\gamma(t)$ : 1970K030, 1963H009,                   | 1958Sn61.                      |                              |                               |                                     |
| $ce\gamma(t)$ : 1982BaZX, 1963K115, 1                  | 960Be27.                       |                              |                               |                                     |
| (x)(ce)(t): 1970Ko30.                                  |                                |                              |                               |                                     |
| cece(t): 1970Ko30, 1969Ho30,                           | 1964Be36, 1962Be               | e25, 1962Be20.               |                               |                                     |
| $\gamma(\theta)$ : 1987Be33, low temperatur            | e nuclear orientati            | on.                          |                               |                                     |
| $T_{1/2}(^{151}Gd \text{ isotope}): 1984Gr15,$         | 1983Vo10, 1958A                | an34. Others: 19             | 950He18, 1963Mi04.            |                                     |
| K-shell $\varepsilon$ probability: 1983Vo10            | ), 1980Se01, 1973              | Ge06.                        |                               |                                     |
| L-shell $\varepsilon$ probability: 1983Ar23            | , 1982Ar22, 1977               | Ve01.                        |                               |                                     |

# <sup>151</sup>Eu Levels

| E(level) <sup>‡</sup> | Jπ†                   | T <sub>1/2</sub> | Comments                                                                                                                                                                                                                                                                                       |
|-----------------------|-----------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | 5/2 <sup>+</sup>      | 0 ( 2            |                                                                                                                                                                                                                                                                                                |
| 21.501 10             | 1/2*                  | 9.6 ns 3         | $1_{1/2}$ : weighted average of 9.75 ns 70 (1982BaZX), 10.2 ns 5 (1970Ko30), 9.4 ns 4 (1969Ho30), 7.5 ns 4 (1964Be36), 9.5 ns 5 (1963Ho09), 9.3 ns 7 (1963Ki15). Others: 1962Be25, 1962Be20. Methods: cece(t), X(ce)(t), $\gamma\gamma(t)$ , X $\gamma(t)$ , $\gamma(ce)(t)$ .                 |
| 196.207 <i>13</i>     | 11/2-                 | 58.9 μs 5        | T <sub>1/2</sub> : from 'Adopted Levels'. In <sup>151</sup> Gd $\varepsilon$ decay delayed coin results are: 58.9 $\mu$ s 7 ( $\gamma\gamma$ (t) 1994Si11); 58.8 $\mu$ s 6 ( $\gamma\gamma$ (t) 1969FaZY), 58 $\mu$ s 3 ( $\gamma$ (ce)(t) 1960Be27), 58 $\mu$ s 10 (X $\gamma$ (t) 1958Sh61). |
| 196.49 2              | $(3/2)^+$             |                  |                                                                                                                                                                                                                                                                                                |
| 216.68 14             |                       |                  |                                                                                                                                                                                                                                                                                                |
| 243.25 2              | 7/2-                  | 0.36 ns 2        | $T_{1/2}$ : cece(t) (1969Ho30). Other: 0.50 ns 3 (from X $\gamma$ (t), 1970Ko30).                                                                                                                                                                                                              |
| 260.45 3              | 5/2+                  |                  |                                                                                                                                                                                                                                                                                                |
| 306.23 <i>3</i>       | $(3/2^+, 5/2, 7/2^+)$ |                  |                                                                                                                                                                                                                                                                                                |
| 307.27 6              | $(5/2)^+$             |                  |                                                                                                                                                                                                                                                                                                |
| 307.519 10            | $(7/2)^+$             |                  |                                                                                                                                                                                                                                                                                                |
| 349.813 12            | 9/2-                  | <0.1 ns          | $T_{1/2}$ : cece(t) (1969Ho30). Other: X $\gamma$ (t) (1970Ko30).                                                                                                                                                                                                                              |
| 353.64 2              | $5/2^{-},7/2^{-}$     |                  |                                                                                                                                                                                                                                                                                                |
| 415.80 7              | $(7/2^+)$             |                  |                                                                                                                                                                                                                                                                                                |

<sup>†</sup> From 'Adopted Levels'. <sup>‡</sup> From least-squares fit to  $E\gamma'$ s. Normalized  $\chi^2$ =2.1.

## $^{151}\text{Gd}\ \varepsilon$ decay (123.9 d) (continued)

#### $\varepsilon$ radiations

| E(decay)                                                                                                                                                       | E(level)                 | $\mathrm{I}\varepsilon^{\dagger}$ | Log ft                  | Comments                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} (48 \ 3) \\ (111 \ 3) \\ (114 \ 3) \\ (157 \ 3) \\ (157 \ 3) \\ (158 \ 3) \end{array}$ $\begin{array}{c} (204 \ 3) \\ (221 \ 3) \end{array}$ | 415.80                   | 0.0011 2                          | 9.3 2                   | $\varepsilon$ L=0.721; $\varepsilon$ M+=0.279                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                | 353.64                   | 0.146 10                          | 8.46 5                  | $\varepsilon$ K=0.657; $\varepsilon$ L=0.259; $\varepsilon$ M+=0.084                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                | 349.813                  | 9.9 7                             | 6.68 5                  | $\varepsilon$ K=0.668; $\varepsilon$ L=0.251; $\varepsilon$ M+=0.081                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                | 307.519                  | 1.22 9                            | 7.98 4                  | $\varepsilon$ K=0.738; $\varepsilon$ L=0.199; $\varepsilon$ M+=0.062                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                | 307.27                   | 0.028 6                           | 9.6 1                   | $\varepsilon$ K=0.739; $\varepsilon$ L=0.199; $\varepsilon$ M+=0.062                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                | 306.23                   | 0.008 4                           | 10.2 3                  | I $\varepsilon$ : other: 0.05 2 (1996Vy02).                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                | 260.45                   | 0.16 2                            | 9.16 6                  | $\varepsilon$ K=0.772; $\varepsilon$ L=0.175; $\varepsilon$ M+=0.054                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                | 243.25                   | 5.5 4                             | 7.71 4                  | $\varepsilon$ K=0.779; $\varepsilon$ L=0.169; $\varepsilon$ M+=0.052                                                                                                                                                                                                                                                                                            |
| (248 <i>3</i> )                                                                                                                                                | 216.68                   | 0.0010 <i>4</i>                   | 11.6 2                  | $\varepsilon$ K=0.788; $\varepsilon$ L=0.162; $\varepsilon$ M+=0.049                                                                                                                                                                                                                                                                                            |
| (268 <sup>‡</sup> <i>3</i> )                                                                                                                                   | 196.49                   | <0.01                             | >10.0                   | $\varepsilon$ K=0.794; $\varepsilon$ L=0.158; $\varepsilon$ M+=0.048                                                                                                                                                                                                                                                                                            |
| (268 <sup>‡</sup> 3)<br>(443 3)<br>(464 3)                                                                                                                     | 196.207<br>21.501<br>0.0 | <0.7<br>74 6<br>9 7               | >9.2<br>7.28 4<br>8.2 4 | <i>E</i> : other: 0.023 6 (1996Vy02).<br>$\varepsilon K=0.794; \ \varepsilon L=0.158; \ \varepsilon M+=0.048$<br>$\varepsilon K=0.817; \ \varepsilon L=0.140; \ \varepsilon M+=0.041$<br><i>I</i> \varepsilon: other: 60 8 (1996Vy02).<br>$\varepsilon K=0.819; \ \varepsilon L=0.140; \ \varepsilon M+=0.041$<br><i>I</i> \varepsilon: other: 25 8 (1996Vy02). |

<sup>†</sup> Absolute intensity per 100 decays.
<sup>‡</sup> Existence of this branch is questionable.

 $\gamma(^{151}\mathrm{Eu})$ 

Iγ normalization: From absolute photon intensity of 153.60γ (1984Gr15,1983Vo10). The α-decay branch= $1.0 \times 10^{-6}\%$  6 (1965Si06). 1984Gr15 obtain Iγ(153.6γ)(absolute)=6.1% 5, from growth and decay of three strongest γ's relative to 252γ (in <sup>151</sup>Tb ε decay). 1983Vo10 obtain Iγ(153.6γ) (absolute)=6.3% 4, from I(K x ray)/Iγ(153.6γ)=13.07.

Experimental conversion coefficients deduced from ce data of mainly 1968Gr25. Other ce data: 1982BaZX, 1971MeZT, 1967Gr29, 1966Ha23, 1966Av05, 1958Sh61, 1958An34

| Eγ    | $\alpha(\mathtt{K}) \exp$ | $\alpha$ (L)exp | $\alpha$ (M)exp | reference                                      |
|-------|---------------------------|-----------------|-----------------|------------------------------------------------|
| 106.6 | 1.0 2                     | 0.7 2           |                 |                                                |
| 153.6 | 0.48 3                    | 0.065 13        | 0.023 6         | $\alpha$ (L)exp, $\alpha$ (M)exp from 1967Gr29 |
| 196.5 | 0.20 4                    | 0.16 4          |                 |                                                |
| 238.9 | 0.16 2                    |                 |                 |                                                |
| 243.3 | 0.024 2                   | 0.004 1         | 0.0091 23       |                                                |
| 260.5 | 0.12 3                    | 0.02            |                 |                                                |
| 286.1 | 0.08 1                    | 0.013 7         | 0.013           |                                                |
| 307.5 | 0.083 12                  | 0.014 4         | 0.0044 11       |                                                |
| 328.3 | 0.014 3                   |                 |                 |                                                |
| 332.1 | < 0.033                   |                 |                 |                                                |
| 353.7 | < 0.01                    | 0.0013 4        |                 |                                                |
|       |                           |                 |                 |                                                |

 $\boldsymbol{\omega}$ 

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger d}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f  \mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup> | <u></u> δ# | α@     | Comments |
|------------------------|---------------------------|---------------|----------------------|------------------------------------|--------------------|------------|--------|----------|
| 21.517 13              | 46 2                      | 21.501        | 7/2+                 | 0.0 5/2+                           | M1+E2              | 0.029 1    | 27.7 5 |          |

| <sup>151</sup> Gd $\varepsilon$ decay (123.9 d) (continued) |                           |                        |                       |                  |                      |                           |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------|---------------------------|------------------------|-----------------------|------------------|----------------------|---------------------------|---------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             |                           |                        |                       |                  |                      | γ( <sup>151</sup> Eu) (co | ontinued)     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $E_{\gamma}^{\dagger}$                                      | $I_{\gamma}^{\ddagger d}$ | E <sub>i</sub> (level) | ${ m J}^{\pi}_i$      | $\mathrm{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup>        | $\delta^{\#}$ | α <sup>@</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                             |                           |                        |                       |                  |                      |                           |               |                | and 1968Gr25. See 'adopted gammas', also.<br>$I_{\gamma}$ : value from 1982BaZX not included in weighted average.                                                                                                                                                                                                                                                                                                                                                                               |
| 63.92 <sup>b</sup> 7                                        | 0.014 3                   | 260.45                 | 5/2+                  | 196.49           | (3/2)+               | [M1,E2]                   |               | 10 4           | $\begin{array}{l} \alpha(\text{K})=4.4 \ 13; \ \alpha(\text{L})=4 \ 4; \ \alpha(\text{M})=1.0 \ 9; \\ \alpha(\text{N}+)=0.25 \ 21 \\ \alpha(\text{N})=0.22 \ 19; \ \alpha(\text{O})=0.030 \ 24; \ \alpha(\text{P})=0.00044 \ 20 \end{array}$                                                                                                                                                                                                                                                    |
| 64.2 <sup>b</sup> 2                                         | 0.015 5                   | 307.27                 | (5/2)+                | 243.25           | 7/2-                 | [E1]                      |               | 0.929 15       | $\begin{aligned} &\alpha(\mathrm{K}) = 0.771 \ 13; \ \alpha(\mathrm{L}) = 0.1238 \ 21; \ \alpha(\mathrm{M}) = 0.0267 \ 5; \\ &\alpha(\mathrm{N}+) = 0.00691 \ 12 \\ &\alpha(\mathrm{N}) = 0.00597 \ 10; \ \alpha(\mathrm{O}) = 0.000874 \ 15; \\ &\alpha(\mathrm{P}) = 6.05 \times 10^{-5} \ 10 \end{aligned}$                                                                                                                                                                                  |
| 93.21 <sup>b</sup> 7                                        | 0.03 1                    | 353.64                 | 5/2-,7/2-             | 260.45           | 5/2+                 | [E1]                      |               | 0.343          | $ \begin{aligned} &\alpha(\mathbf{K}) = 0.288 \ 4; \ \alpha(\mathbf{L}) = 0.0433 \ 7; \ \alpha(\mathbf{M}) = 0.00933 \ 14; \\ &\alpha(\mathbf{N}+) = 0.00243 \ 4 \\ &\alpha(\mathbf{N}) = 0.00210 \ 3; \ \alpha(\mathbf{O}) = 0.000314 \ 5; \\ &\alpha(\mathbf{P}) = 2.38 \times 10^{-5} \ 4 \end{aligned} $                                                                                                                                                                                    |
| <sup>x</sup> 102 <sup>&amp;e</sup><br>106.57 <i>1</i>       | 1.40 4                    | 349.813                | 9/2-                  | 243.25           | 7/2-                 | E2+M1                     | +10 +10-2     | 1.92           | $\alpha(K)=0.992 \ 14; \ \alpha(L)=0.719 \ 11; \ \alpha(M)=0.168 \ 3; \\ \alpha(N+)=0.0424 \ 7 \\ \alpha(N)=0.0373 \ 6; \ \alpha(O)=0.00508 \ 8; \ \alpha(P)=7.41\times10^{-5} \\ 12 \\ \delta: \ \alpha(L)\exp \ gives \ \delta(E2/M1)>1, \ \gamma\gamma(\theta) \ gives \\ \delta=0.00 \ 5 \ or \ +10 \ +10-2 \ (deduced \ by \ the evaluator \ from \ \gamma\gamma(\theta) \ (1985Be64)). \\ (107\gamma)(243\gamma)(\theta): \ A_2=+0.053 \ 17, \ A_4=+0.013 \ 9 \\ (1985Be64). \end{cases}$ |
| 109.74 4                                                    | 0.046 23                  | 306.23                 | $(3/2^+, 5/2, 7/2^+)$ | 196.49           | $(3/2)^+$            | [D,E2]                    |               | 1.0 8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 110.33 <sup>b</sup> 6                                       | 0.08 1                    | 353.64                 | 5/2-,7/2-             | 243.25           | 7/2-                 | [M1,E2]                   |               | 1.55 16        | $\begin{array}{l} \alpha(\text{K}) = 1.04 \ 15; \ \alpha(\text{L}) = 0.39 \ 23; \ \alpha(\text{M}) = 0.09 \ 6; \\ \alpha(\text{N}+) = 0.023 \ 14 \\ \alpha(\text{N}) = 0.020 \ 12; \ \alpha(\text{O}) = 0.0029 \ 16; \ \alpha(\text{P}) = 0.00010 \ 4 \end{array}$                                                                                                                                                                                                                              |
| 110.76 <sup>b</sup> 6                                       | 0.11 2                    | 307.27                 | $(5/2)^+$             | 196.49           | (3/2)+               | [M1,E2]                   |               | 1.53 <i>15</i> | $\alpha(K)=1.03 \ 14; \ \alpha(L)=0.39 \ 23; \ \alpha(M)=0.09 \ 6; \ \alpha(N+)=0.023 \ 14 \ \alpha(N)=0.020 \ 12; \ \alpha(D)=0.00210 \ 4$                                                                                                                                                                                                                                                                                                                                                     |
| 153.60 <i>1</i>                                             | 100.0 5                   | 349.813                | 9/2-                  | 196.207          | 11/2-                | M1+E2                     | +0.18 3       | 0.546          | $\begin{aligned} \alpha(N) = 0.026 \ 12, \ \alpha(O) = 0.0028 \ 13, \ \alpha(P) = 0.00010 \ 4 \\ \alpha(K) = 0.459 \ 7; \ \alpha(L) = 0.0683 \ 13; \ \alpha(M) = 0.0148 \ 3; \\ \alpha(N+) = 0.00397 \ 8 \\ \alpha(N) = 0.00339 \ 7; \ \alpha(O) = 0.000533 \ 10; \\ \alpha(P) = 5.04 \times 10^{-5} \ 8 \\ \delta: \ \text{from } \gamma(\theta, T) \ (1987\text{Be33}). \end{aligned}$                                                                                                        |
| 157.08 <sup>b</sup> 10                                      | 0.012 4                   | 353.64                 | 5/2-,7/2-             | 196.49           | (3/2)+               | [E1]                      |               | 0.0836         | $\alpha(K)=0.0708 \ 10; \ \alpha(L)=0.01009 \ 15; \ \alpha(M)=0.00217 3; \ \alpha(N+)=0.000572 \ 8 \alpha(N)=0.000491 \ 7; \ \alpha(O)=7.50\times10^{-5} \ 11; \alpha(P)=6 \ 28\times10^{-6} \ 0$                                                                                                                                                                                                                                                                                               |
| 174.70 <i>1</i>                                             | 47.8 10                   | 196.207                | 11/2-                 | 21.501           | 7/2+                 | M2                        |               | 2.35           | $\alpha(L) = 0.20 \times 10^{-5}$<br>$\alpha(K) = 1.86 \ 3; \ \alpha(L) = 0.378 \ 6; \ \alpha(M) = 0.0853 \ 12;$                                                                                                                                                                                                                                                                                                                                                                                |

 $^{151}_{63}\mathrm{Eu}_{88}$ -4

|                                                        |                                                   |                        |                                                                 |                  | <sup>151</sup> C                     | $\operatorname{Fd} \varepsilon$ decay (1 | 23.9 d) (con | tinued)                         |                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------|---------------------------------------------------|------------------------|-----------------------------------------------------------------|------------------|--------------------------------------|------------------------------------------|--------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        |                                                   |                        |                                                                 |                  |                                      | $\gamma(^{151}\text{Eu})$                | (continued)  |                                 |                                                                                                                                                                                                                                                                                                                                                              |
| $E_{\gamma}^{\dagger}$                                 | $I_{\gamma}^{\ddagger d}$                         | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                                              | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$                 | Mult. <sup>#</sup>                       | δ#           | α <sup>@</sup>                  | Comments                                                                                                                                                                                                                                                                                                                                                     |
|                                                        |                                                   |                        |                                                                 |                  |                                      |                                          |              |                                 | $\alpha$ (N+)=0.0229 4<br>$\alpha$ (N)=0.0196 3; $\alpha$ (O)=0.00305 5; $\alpha$ (P)=0.000272 4<br>Additional information 1.<br>ce(L1)/ce(L3)=21/2.5 (1966Ha23).<br>Mult.: from ce(L1)/ce(L3). See also (p,p' $\gamma$ ).                                                                                                                                   |
| 195.18 <i>14</i>                                       | 0.014 5                                           | 216.68                 |                                                                 | 21.501           | 7/2+                                 | [D,E2]                                   |              | 0.17 12                         |                                                                                                                                                                                                                                                                                                                                                              |
| 196.2 <sup>e</sup> CA                                  | <0.46                                             | 196.207                | 11/2-                                                           | 0.0              | 5/2+                                 | [E3]                                     |              | 1.383                           | $\alpha(K)=0.583 \ 9; \ \alpha(L)=0.615 \ 9; \ \alpha(M)=0.1473 \ 21; \\ \alpha(N+)=0.0374 \ 6 \\ \alpha(N)=0.0328 \ 5; \ \alpha(O)=0.00449 \ 7; \ \alpha(P)=5.25\times10^{-5} $                                                                                                                                                                             |
| 196.49 2                                               | 0.46 2                                            | 196.49                 | (3/2)+                                                          | 0.0              | 5/2+                                 | E2+M1                                    | 0.45 15      | 0.268 6                         | 8<br>ce data suggest a weak E3 γ of this energy.<br>$\alpha(K)=0.222 \ 8; \ \alpha(L)=0.0363 \ 20; \ \alpha(M)=0.0080 \ 5; \ \alpha(N+)=0.00212 \ 12$<br>$\alpha(N)=0.00181 \ 11; \ \alpha(O)=0.000280 \ 13; \ \alpha(P)=2.37\times10^{-5} \ 12$<br>Mult.,δ: from B(E2) in Coul. ex. and adopted<br>branching ratio. Mult=E2,M1 from ce in <sup>151</sup> Gd |
| 221.80 7                                               | 0.037 6                                           | 243.25                 | 7/2-                                                            | 21.501           | 7/2+                                 |                                          |              |                                 | <ul> <li>1967Gr29 give Ice(K)≈0.1; however, in the published ce spectrum, not much evidence is</li> </ul>                                                                                                                                                                                                                                                    |
| 238.97 5                                               | 1.4 2                                             | 260.45                 | 5/2+                                                            | 21.501           | 7/2+                                 | M1                                       |              | 0.1618                          | $\alpha(K)=0.1372\ 20;\ \alpha(L)=0.0193\ 3;\ \alpha(M)=0.00417\ 6;\ \alpha(N+)=0.001122\ 16$<br>$\alpha(N)=0.000955\ 14;\ \alpha(O)=0.0001516\ 22;$                                                                                                                                                                                                         |
| 243.29 <i>3</i>                                        | 90.3 5                                            | 243.25                 | 7/2-                                                            | 0.0              | 5/2+                                 | E1                                       |              | 0.0262                          | $\alpha(P)=1.309\times10^{-5}22$<br>$\alpha(K)=0.0223 \ 4; \ \alpha(L)=0.00309 \ 5; \ \alpha(M)=0.000663$<br>$10; \ \alpha(N+)=0.0001758 \ 25$<br>$\alpha(N)=0.0001505 \ 21; \ \alpha(O)=2.33\times10^{-5} \ 4;$                                                                                                                                             |
| 260.46 5                                               | 0.69 4                                            | 260.45                 | 5/2+                                                            | 0.0              | 5/2+                                 | M1(+E2)                                  | <1           | 0.119 <i>10</i>                 | $\alpha(P)=2.07\times10^{-6} \ 3$<br>$\alpha(K)=0.099 \ 11; \ \alpha(L)=0.0158 \ 6; \ \alpha(M)=0.00346 \ 17; \ \alpha(N+)=0.00092 \ 4$<br>$\alpha(N)=0.00079 \ 4; \ \alpha(O)=0.000122 \ 3; \ \alpha(P)=1.05\times10^{-5} \ 15$                                                                                                                             |
| x269.5 <sup><i>ae</i></sup> 10<br>284.72 3<br>286.09 2 | 0.04 <i>1</i><br>0.035 <i>10</i><br>1.44 <i>5</i> | 306.23<br>307.519      | (3/2 <sup>+</sup> ,5/2,7/2 <sup>+</sup> )<br>(7/2) <sup>+</sup> | 21.501<br>21.501 | 7/2 <sup>+</sup><br>7/2 <sup>+</sup> | [D,E2]<br>M1(+E2)                        | <1           | 0.06 <i>4</i><br>0.092 <i>9</i> | $\alpha(K)=0.076 \ 9; \ \alpha(L)=0.01197 \ 21; \ \alpha(M)=0.00261 \ 7; \ \alpha(N+)=0.000696 \ 13 \ \alpha(N)=0.000595 \ 13; \ \alpha(O)=9.26\times10^{-5} \ 14; \ \alpha(P)=8.2\times10^{-6} \ 12$                                                                                                                                                        |
| x298.97 <sup>°</sup> 3<br>307.50 1                     | 0.040 <i>16</i><br>16.7 <i>4</i>                  | 307.519                | (7/2)+                                                          | 0.0              | 5/2+                                 | M1                                       |              | 0.0824                          | $\alpha(K)=0.0699 \ 10; \ \alpha(L)=0.00977 \ 14; \ \alpha(M)=0.00211 \\ 3; \ \alpha(N+)=0.000567 \ 8 \\ \alpha(N)=0.000483 \ 7; \ \alpha(O)=7.67\times10^{-5} \ 11; \\ \alpha(P)=7.66\times10^{-6} \ 11$                                                                                                                                                    |

S

|                                                                        |                                 |               |                                    |                  |                        | $^{151}$ Gd $\varepsilon$ de | ecay (123.9    | d) (continued)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|------------------------------------------------------------------------|---------------------------------|---------------|------------------------------------|------------------|------------------------|------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $\gamma(^{151}\text{Eu})$ (continued)                                  |                                 |               |                                    |                  |                        |                              |                |                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| $E_{\gamma}^{\dagger}$                                                 | $I_{\gamma}^{\ddagger d}$       | $E_i$ (level) | $\mathbf{J}_i^{\pi}$               | $\mathbf{E}_{f}$ | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>#</sup>           | α <sup>@</sup> | Comments                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| 328.31 <i>I</i>                                                        | 1.33 4                          | 349.813       | 9/2-                               | 21.501           | 7/2+                   | E1                           | 0.01222        | $\alpha(K)=0.01042 \ 15; \ \alpha(L)=0.001422 \ 20; \ \alpha(M)=0.000305 \ 5; \ \alpha(N+)=8.12\times10^{-5} \ 12$                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 332.11 3                                                               | 0.14 1                          | 353.64        | 5/2 <sup>-</sup> ,7/2 <sup>-</sup> | 21.501           | 7/2+                   | (E1)                         | 0.01188        | $\alpha(N)=6.94\times10^{-5} \ l0; \ \alpha(O)=1.082\times10^{-5} \ l6; \ \alpha(P)=9.95\times10^{-7} \ l4$<br>$\alpha(K)=0.01012 \ l5; \ \alpha(L)=0.001381 \ 20; \ \alpha(M)=0.000296 \ 5;$<br>$\alpha(N+)=7.89\times10^{-5} \ l1$<br>$\alpha(N)=6.74\times10^{-5} \ l0; \ \alpha(O)=1.052\times10^{-5} \ l5; \ \alpha(P)=9.68\times10^{-7} \ l4$                    |  |  |  |  |  |
| <sup>x</sup> 338.50 <sup>c</sup> 9<br><sup>x</sup> 345 <sup>ae</sup> 1 | 0.026 <i>5</i><br>0.04 <i>1</i> |               |                                    |                  |                        |                              |                |                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 349.85 <sup>ce</sup> 4                                                 | 0.053 3                         | 349.813       | 9/2-                               | 0.0              | 5/2+                   | [M2]                         | 0.226          | $\alpha$ (K)=0.186 3; $\alpha$ (L)=0.0315 5; $\alpha$ (M)=0.00696 10; $\alpha$ (N+)=0.00187 3<br>$\alpha$ (N)=0.001596 23; $\alpha$ (O)=0.000251 4; $\alpha$ (P)=2.36×10 <sup>-5</sup> 4                                                                                                                                                                               |  |  |  |  |  |
| 353.66 2                                                               | 2.06 5                          | 353.64        | 5/2-,7/2-                          | 0.0              | 5/2+                   | E1                           | 0.01018        | $\alpha(\mathbf{K})=0.00868 \ 13; \ \alpha(\mathbf{L})=0.001180 \ 17; \ \alpha(\mathbf{M})=0.000253 \ 4; \ \alpha(\mathbf{N}+)=6.75\times10^{-5} \ 10$                                                                                                                                                                                                                 |  |  |  |  |  |
| 394.26 9                                                               | 0.0097 14                       | 415.80        | (7/2+)                             | 21.501           | 7/2+                   | [M1,E2]                      | 0.034 9        | $\alpha(N)=5.76\times10^{-5} 8; \ \alpha(O)=9.00\times10^{-5} 13; \ \alpha(P)=8.54\times10^{-7} 12$<br>$\alpha(K)=0.029 8; \ \alpha(L)=0.0045 6; \ \alpha(M)=0.00099 \ 10; \ \alpha(N+)=0.00026 \ 3$<br>$\alpha(N)=0.000226 \ 24; \ \alpha(O)=3.5\times10^{-5} 5; \ \alpha(P)=3.0\times10^{-6} \ 10$                                                                   |  |  |  |  |  |
| 415.84 10                                                              | 0.0070 15                       | 415.80        | (7/2 <sup>+</sup> )                | 0.0              | 5/2+                   | [M1,E2]                      | 0.030 8        | $\alpha(K)=0.0025\ 2^{\circ},\ \alpha(C)=3.5\times10^{\circ}\ 5^{\circ},\ \alpha(L)=3.0\times10^{\circ}\ 10^{\circ}$<br>$\alpha(K)=0.025\ 7^{\circ},\ \alpha(L)=0.0039\ 5^{\circ},\ \alpha(M)=0.00085\ 10^{\circ},\ \alpha(N+)=0.00023\ 3^{\circ}$<br>$\alpha(N)=0.000194\ 24^{\circ},\ \alpha(O)=3.0\times10^{-5}\ 5^{\circ},\ \alpha(P)=2.6\times10^{-6}\ 9^{\circ}$ |  |  |  |  |  |

<sup>†</sup> Weighted average of 1983Vo10, 1982BaZX, 1970Fo02 and 1968Gr25. Uncertainties in 1982BaZX have been rounded off to the nearest hundredth of a keV.

<sup>‡</sup> Weighted average of 1984Gr15, 1983Vo10, 1982BaZX, 1970Fo02, 1969Ho30, 1968Gr25 and 1967Gr29. 1984Gr15 give Ιγ's for 7 intense transitions only.

<sup>#</sup> From ce data.

<sup>@</sup> Theoretical values (from BrIcc code) for assigned mult and  $\delta$ . For M1,E2 assignment  $\delta$ =1 assumed. Experimental conversion coefficients deduced by normalization to  $\alpha(K)$  for 174.7 $\gamma$  treated as M2.

<sup>&</sup> From ce data of 1967Gr29.

<sup>a</sup> From 1968Gr25 only.

<sup>*b*</sup> Reported by 1983Vo10 only from  $\gamma\gamma$ .

<sup>c</sup> From 1982BaZX.

<sup>d</sup> For absolute intensity per 100 decays, multiply by 0.062 4.

<sup>e</sup> Placement of transition in the level scheme is uncertain.

 $x \gamma$  ray not placed in level scheme.

<sup>151</sup><sub>63</sub>Eu<sub>88</sub>-7

#### $\frac{151}{\text{Gd}} \varepsilon \text{ decay (123.9 d)}$

