Adopted Levels, Gammas

		Туре	A	Author	History Citati	on	Literature Cutoff Date
		Full Evaluat	ion Bal	raj Singh	NDS 110,	1 (2009)	20-Nov-2008
$Q(\beta^{-})=-7.49 \times Q(\varepsilon)=5356$ 18 Additional info Nuclear structu	$(10^3 3; S(n)=8500; S(2n)=2.067\times10^{-10})$ prmation 1.	6 24; S(p)=36 ⁴ 24; S(2p)= 2005Od03, 19	509 22; Q(5148 22; 0 96Lo01.	$(\alpha) = 3505 \mu$ Q(ϵ p)=375	79 2017W 4 <i>17</i> 2017	a10 7Wa10	
					¹⁵¹ Er Levels	8	
				Cross Re	eference (XR	EF) Flags	
		A B C	¹⁵¹ Er IT ¹⁵¹ Er IT ¹⁵¹ Tm ε	decay (0.5 decay (0.4 decay (4.1	58 s) D -2 μs) E 7 s)	¹⁵¹ Tm ε ¹⁵⁵ Yb α	decay (6.6 s) decay (1.793 s)
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF				Comments
0.0	(7/2 ⁻)	23.5 s 20	ABCDE	$\% \varepsilon + \% \beta^{-1}$ T _{1/2} : we 24.6 s	+=100 eighted avera 20 (1988Bat able configur	ge of 23 s)2).	2 (1970To16), 21 s 4 (1982Ba75) and $(1997Co24)$ from systematics
801.52 14	(9/2 ⁻)		ABC	J ^π : from log <i>ft</i> ≈ Configur	analogy to t =4.6 from (1) ation= $vh_{9/2}$ (he decay of $(1997Co24)$	of ¹⁴⁷ Tb and ¹⁴⁹ Ho. It is supported also by nt.
984.1 <i>4</i> 1140.35 <i>14</i>	(3/2 ⁻) (13/2 ⁺)	10 ns <i>3</i>	D ABC	J ^{π} : proba J ^{π} : (E3) T _{1/2} : fro Configur	able configur γ to $(7/2^{-})$. om pulsed be ation= $(\nu f_{7/2})$	ation= πp_{3} am $\gamma(t)$ in $\Im^{3}(t) + \nu i_{13}/2$	2. (1980Ja16). 2 (1997Co24).
1206.2 <i>6</i> 1495.50 <i>19</i>	(1/2 ⁻) (9/2 ⁻)		D A C	J^{π} : γ to J^{π} : γ to γ to (1)	(3/2 ⁻), possi (7/2 ⁻); possi 13/2 ⁺) disfav	ble β feed ble config ors this as	ing from $(1/2^+)$ parent. uration= $\nu f_{7/2} \otimes 2^+$ (1997Co24). But possible signment.
1511.5 <i>3</i> 1548.55 <i>17</i> 1683 6 <i>3</i>	$(3/2^{-} \text{ to } 11/2^{-})$ $(11/2^{-})$ $(3/2^{-} \text{ to } 11/2^{-})$		C A C	J^{n} : γ to J^{π} : γ to I^{π} : γ to	(7/2 ⁻). (7/2 ⁻); possi (7/2 ⁻)	ble config	uration= $\nu f_{7/2} \otimes 2^+$ (1997Co24).
1720.94 <i>16</i>	(3/2 + 10 + 11/2) $(11/2^+)$		A C	J^{π} : (M1) (1997)	γ to (13/2 ⁺) Co24).	; γ to (9/2	?); possible configuration= $v f_{7/2} \otimes 3^-$
2032.4? 8 2075.25 <i>16</i> 2165.1 <i>4</i> 2174 4 5	$(1/2,3/2)^{\#}$ $(13/2^+)$		D AC C	J ^π : (M1)	γ to (11/2 ⁺)).	
2212.47 18	(15/2 ⁺)		AC	J ^π : (M1) (7/2 ⁻)	γ to $(13/2^+)$ are inconsist	; γ from (tent with 1	$(17/2^+)$. But possible γ 's to $(9/2^-)$ and $(5/2^+)$ assignment.
2239.63 22 2313.6 10 2329.6 10 2449.4 4 2451.1 6	(17/2 ⁺)		AB C C C C	J ^π : E2 γ	to (13/2 ⁺); o	configurati	on= $\nu f_{7/2} \otimes 5^-$ (1997Co24).
2528.3 <i>3</i> 2586.0 <i>5</i>	(21/2 ⁺) (27/2 ⁻)	0.58 s 2	AB AB	$J^{\pi}: E2 \gamma$ $\% \varepsilon + \% \beta^{-}$ $\% \varepsilon + \% \beta^{-}$ $597 \gamma z$ $J^{\pi}: E3 \gamma$	to $(17/2^+)$; j +=4.7 4; %IT +: From I(γ + and 297 γ . Sa to $(21/2^+)$; o	crobable c T=95.3 4 (rce)(1140 γ me value configurati	onfiguration= $v f_{7/2} \otimes 7^-$ (1997Co24). 1988Ba02) (+338 γ) and average I(γ +ce) of 789 γ , was given by 1988Ba02. on= $\pi h_{11/2}^2 \otimes v f_{7/2}$ (1997Co24).

 $T_{1/2}$: weighted average of 0.57 s *I* (1988Ba02) and 0.62 s *2* (1980Ja16). $T_{1/2}$: Half-life of fully-ionized atom (¹⁵¹Er⁶⁸⁺)=19 s *3* (2003Li42). The

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹⁵¹Er Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
				ions of ¹⁵¹ Er were produced in the fragmentation of ²⁰⁹ Bi beam at 900 MeV/nucleon followed by mass separation using fragment-recoil separator and storing the fragments in cooler ring (ESR) at GSI facility.
2611.3 4			С	
2621.5 7	$(1/2^+, 3/2^+)^{\#}$		D	
2776.2 5			С	
2874.8 4			С	
2916.6 <i>3</i>	$(11/2^{-}, 13/2^{-})$		С	J ^{π} : γ 's to (9/2 ⁻) and (13/2 ⁺); probable allowed ε feeding from (11/2 ⁻).
2921.4 4			С	
2966.1 21	$(1/2^+, 3/2^+)^{\#}$		D	
3031.19 22	$(11/2^{-}, 13/2^{-})$		С	J ^{π} : γ 's to (9/2 ⁻) and (13/2 ⁺); probable allowed ε feeding from (11/2 ⁻).
3037.3 <i>3</i>	$(9/2^{-}, 11/2^{-})$		С	J ^{π} : γ to (7/2 ⁻) and probable allowed ε feeding from (11/2 ⁻).
3051.1 21	$(1/2^+, 3/2^+)^{\#}$		D	
3094.1 8			С	
3110 <i>3</i>			С	
3212.5 6	$(9/2^+, 11/2, 13/2^-)$		С	J^{π} : γ' s to (9/2 ⁻) and (13/2 ⁺).
3270.5 5			С	
3288.3 6			С	
3341 3			С	-
3685.9 6	$(31/2^{-})$		В	J^{n} : E2 γ to (27/2 ⁻).
3766.8 8	(22/2-)		C	
3901.5 6	$(33/2^{-})$		В	J^{π} : M1 γ to (31/2 ⁻).
4189.8 /	(33/2 to 37/2)		В	$J^{*}: \gamma \text{ to } (33/2).$
4455.2 /	(37/2)		В	$J^*: E2 \gamma \text{ to } (33/2).$
4618.1 /	(39/2)		В	J [*] : M1 γ to (3//2); probable configuration= $\pi(h_{11/2}^+)_{16+} \otimes \nu t_{7/2}$ (2000Fo15).
4752.2 8	$(41/2^{-})$		В	J^{π} : M1 γ to (39/2 ⁻).
5130.1 8	$(43/2^+)$		В	J^{π} : E1 γ to (41/2 ⁻).
5804.4 8	$(41/2 \text{ to } 45/2^{-})$		В	J^{π} : γ' s to (43/2 ⁺) and (41/2 ⁻).
6131.8 8	$(45/2^+)$		В	J^{π} : M1 γ to (43/2 ⁺).
6548.0 9	$(47/2^{-})$		В	J^{π} : E1 γ to (45/2 ⁺).
6664.3 9	$(49/2^{-})$		В	J^{π} : M1 γ to (47/2 ⁻).
6771.8 9	$(51/2^+, 53/2^-)$		В	J^{π} : γ from (55/2 ⁺); γ to (49/2 ⁻).
7441.3 9	$(53/2^{-})$		В	J^{n} : E2 γ to (49/2 ⁻).
8016.0 9	(55/2+)		В	J^{π} : E1 γ to (53/2 ⁻).
8380.3 10	$(5//2^{+})$		В	J [*] : M1 γ to (55/2 ⁺).
9046.2 10	(5/2 to 61/2')		В	$J^{**} \gamma = 0 (57/2^{+}).$
9392.0 10	$(01/2^{+})$	0.42	В	$J^{*}: E \angle \gamma $ (0 (5//2)).
10280.0 10	(07/2)	$0.42 \ \mu s \ S$	D	$V_{011} = 100$ I^{π} : (F3) γ to (61/2 ⁺)
				J. (E3) γ to (01/2). The readil shadow method with a pulsed (40Ca) beam (1000 A r 25)
				$1_{1/2}$. recon-shadow memod while a pulsed ("Ca) beam (1990All25).

[†] From least-squares fit to $E\gamma$'s, assuming $\Delta(E\gamma)=0.3$ keV when not stated.

[‡] From shell-model consideration and analogy to ¹⁴⁹Dy. For levels populated in ¹⁵¹Tm ε decay (4.17 s), J=9/2, 11/2 or 13/2 from the parent state J^{π}=(11/2⁻). For probable shell-model configurations see 1988Ba02 and 1997Co24.

[#] The β transition from (1/2⁺) parent state is possibly allowed.

Adopted Levels, Gammas (continued)									
γ ⁽¹⁵¹ Er)									
E_i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α@	Comments	
801.52 984.1 1140.35	(9/2 ⁻) (3/2 ⁻) (13/2 ⁺)	801.6 2 984.1 4 338.5 2	100 100 1.1 <i>3</i>	0.0 0.0 801.52	(7/2 ⁻) (7/2 ⁻) (9/2 ⁻)	(M2)	0.372	$B(M2)(W.u.)=0.34 \ 14$	
		1140.2 2	100	0.0	(7/2-)	E3	0.00539	$\begin{array}{l} \alpha(\mathrm{N})=0.501\ 5;\ \alpha(\mathrm{L})=0.0555\ 5;\ \alpha(\mathrm{M})=0.01200\ 18;\\ \alpha(\mathrm{N}+)=0.00341\ 5\\ \alpha(\mathrm{N})=0.00296\ 5;\ \alpha(\mathrm{O})=0.000423\ 6;\ \alpha(\mathrm{P})=2.20\times10^{-5}\ 4\\ \mathrm{B}(\mathrm{E3})(\mathrm{W.u.})=36\ 11 \end{array}$	
								$\alpha(K)=0.00440 \ 7; \ \alpha(L)=0.000771 \ 11; \ \alpha(M)=0.0001742 \ 25; \alpha(N+)=4.66\times10^{-5} \ 7 \alpha(N)=4.04\times10^{-5} \ 6; \ \alpha(O)=5.67\times10^{-6} \ 8; \ \alpha(P)=2.66\times10^{-7} \ 4; \alpha(PE)=2.46\times10^{-7} \ 4; $	
1206.2	$(1/2^{-})$	222.1 4	100	984.1	(3/2 ⁻)	[M1,E2]	0.24 7	$\alpha(\text{IFP})=2.46\times10^{-4}$ $\alpha(\text{K})=0.19$ 7; $\alpha(\text{L})=0.041$ 4; $\alpha(\text{M})=0.0095$ 12; $\alpha(\text{N}+)=0.0025$ 3 $\alpha(\text{N})=0.0022$ 3; $\alpha(\text{O})=0.000292$ 13; $\alpha(\text{P})=1.1\times10^{-5}$ 5	
1495.50	(9/2 ⁻)	354.2 ^{#&} 6 692.8 ^{#&} 7	5.7 <i>18</i> 9.0 8	1140.35 801.52	$(13/2^+)$ $(9/2^-)$ $(7/2^-)$				
1511.5	$(3/2^{-} \text{ to } 11/2^{-})$	1511.5 3	100 10	0.0	$(7/2^{-})$				
1548.55	(11/2 ⁻)	408.3 ^{#&} 3	4.3 5	1140.35	$(13/2^+)$				
1692.6	$(2/2^{-}$ to $11/2^{-})$	1548.5 3	100 10	0.0	$(7/2^{-})$				
1720.94	(3/2 + 10 + 11/2) $(11/2^+)$	225.1 2	16.3	1495.50	(1/2) $(9/2^{-})$	[E1]	0.0382		
	()	580.5 2	100 11	1140.35	$(13/2^+)$	(M1)	0.0238	α (K)=0.0201 3; α (L)=0.00289 4; α (M)=0.000639 9; α (N+)=0.0001720 25	
								α (N)=0.0001491 21; α (O)=2.16×10 ⁻⁵ 3; α (P)=1.213×10 ⁻⁶ 17	
		919.3 2	17 3	801.52	$(9/2^{-})$				
2032.4? 2075.25	(1/2,3/2) $(13/2^+)$	1048.3 ^{cc} 6 353.8 2	100 20 5	984.1 1720.94	(3/2) $(11/2^+)$	(M1)	0.0859	$\alpha(K)=0.0724 \ 11; \ \alpha(L)=0.01059 \ 15; \ \alpha(M)=0.00234 \ 4; \ \alpha(N+)=0.000630 \ 9$	
								α (N)=0.000546 8; α (O)=7.92×10 ⁻⁵ 12; α (P)=4.41×10 ⁻⁶ 7 I _{γ} : 88 in ¹⁵¹ Er IT decay (0.58 s).	
01/51		526.8 2 935.0 2	100 5 18 4	1548.55 1140.35	$(11/2^{-})$ $(13/2^{+})$			I_{γ} : 44 in ¹⁵¹ Er IT decay (0.58 s).	
2165.1 2174.4		1363.6 3	100	801.52	(9/2)				
2212.47	$(15/2^+)$	136.9 2	75 10	2075.25	$(13/2^+)$	(M1)	1.162	α (K)=0.975 15; α (L)=0.1457 22; α (M)=0.0323 5;	
								α (N+)=0.00869 <i>13</i> α (N)=0.00754 <i>11</i> ; α (O)=0.001090 <i>16</i> ; α (P)=6.01×10 ⁻⁵ 9 Iy(136.9)/Iy(1071.4)=40/24 in ¹⁵¹ Er IT decay (0.58 s).	
		718.0 ^{#&} 4	208 21	1495.50	$(9/2^{-})$				
		1071.3 10	100 19	1140.35	$(13/2^+)$				

ω

From ENSDF

 $^{151}_{68}\mathrm{Er}_{83}$ -3

					Adopted Leve	ls, Gamm	as (continued)		
γ ⁽¹⁵¹ Er) (continued)									
E _i (level)	\mathbf{J}^{π}_{i}	${\rm E_{\gamma}}^{\dagger}$	${\rm I}_{\gamma}^{\dagger}$	E_{f}	J_f^π	Mult. [‡]	α [@]	Comments	
2212.47 2239.63	(15/2 ⁺) (17/2 ⁺)	1411.4 ^{#&} 2 28	177 27	801.52 2212.47	(9/2 ⁻) (15/2 ⁺)	[M1]	19.2	α (L)=14.96 21; α (M)=3.32 5; α (N+)=0.892 13 α (N)=0.774 11; α (O)=0.1117 16; α (P)=0.00612 9 E_{γ},α : proposed only in ¹⁵¹ Er IT decay (0.58 s), 1 keV	
		1098.9 2	100	1140.35	(13/2 ⁺)	E2	0.00277	uncertainty assumed for α . $\alpha(K)=0.00233 \ 4; \ \alpha(L)=0.000349 \ 5; \ \alpha(M)=7.74\times10^{-5}$ $11; \ \alpha(N+)=2.07\times10^{-5} \ 3$ $\alpha(N)=1.80\times10^{-5} \ 3; \ \alpha(O)=2.56\times10^{-6} \ 4;$ $\alpha(P)=1.326\times10^{-7} \ 19$	
2313.6 2329.6 2449.4		2313.6 <i>10</i> 2329.6 <i>10</i> 765.8 <i>4</i> 2449.5 <i>6</i>	100 100 42 2 100 <i>10</i>	$0.0 \\ 0.0 \\ 1683.6 \\ 0.0$	(7/2 ⁻) (7/2 ⁻) (3/2 ⁻ to 11/2 ⁻) (7/2 ⁻)				
2451.1 2528.3	(21/2+)	2451.1 6 288.7 2	100 100	0.0 2239.63	$(7/2^{-})$ $(17/2^{+})$	E2	0.0776	$\alpha(K)=0.0563 \ 8; \ \alpha(L)=0.01646 \ 24; \ \alpha(M)=0.00386 \ 6; \ \alpha(N+)=0.000998 \ 15 \ \alpha(N)=0.000882 \ 13; \ \alpha(O)=0.0001129 \ 16; \ \alpha(P)=2 \ 88 \times 10^{-6} \ 4$	
2586.0	(27/2 ⁻)	57.7	100	2528.3	(21/2 ⁺)	E3	1.28×10 ³	B(E3)(W.u.)=0.54 5 Mult.: from fitting of observed ce(L) lines with theoretical subshell intensity ratios (1988Ba02)	
2611.3 2621.5 2776.2 2874.8	(1/2 ⁺ ,3/2 ⁺)	1809.8 <i>3</i> 1637.4 <i>5</i> 1092.7 <i>4</i> 1635.5 <i>8</i> 1326.2 <i>5</i>	100 100 100 <i>16</i> 110 <i>63</i> 100 <i>10</i>	801.52 984.1 1683.6 1140.35 1548.55	(9/2 ⁻) (3/2 ⁻) (3/2 ⁻ to 11/2 ⁻) (13/2 ⁺) (11/2 ⁻)				
2916.6	(11/2 ⁻ ,13/2 ⁻)	2073.3 6 1368.0 4 1777.1 10 2115.1 3	67 30 5.6 6 6 2 100 5	801.52 1548.55 1140.35 801.52	$(9/2^{-})$ $(11/2^{-})$ $(13/2^{+})$ $(9/2^{-})$				
2921.4	(1/2+ 2/2+)	1199.0 <i>10</i> 2120.1 <i>4</i> 2921.7 <i>25</i>	14 7 100 6 44 11	1720.94 801.52 0.0	$(11/2^+)$ $(9/2^-)$ $(7/2^-)$				
2966.1 3031.19	$(1/2^+, 3/2^+)$ $(11/2^-, 13/2^-)$	1982 2 818.6 10 956.1 7 1483.0 7 1535.6 3 1890.8 3	100 13 2 6.1 11 19 5 52 11 73 5	984.1 2212.47 2075.25 1548.55 1495.50 1140.35	$(3/2^{-})$ $(15/2^{+})$ $(13/2^{+})$ $(11/2^{-})$ $(9/2^{-})$ $(13/2^{+})$				
3037.3	(9/2-,11/2-)	2229.7 <i>4</i> 1488.5 <i>4</i> 1525.9 <i>4</i> 2236.0 <i>4</i>	100 <i>16</i> 60 <i>16</i> 72 <i>16</i> 100 <i>16</i>	801.52 1548.55 1511.5 801.52	(9/2 ⁻) (11/2 ⁻) (3/2 ⁻ to 11/2 ⁻) (9/2 ⁻)				

$\gamma(^{151}\text{Er})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^{π}	Mult. [‡]	α [@]	Comments
3037.3	$(9/2^{-},11/2^{-})$	3037.5 25	64 12	0.0	$(7/2^{-})$			
3051.1 3094.1	$(1/2^{+}, 3/2^{+})$	2067 2 1953.7 7	100	984.1	(3/2) $(13/2^+)$			
3110		3110 3	100	0.0	(7/2 ⁻)			
3212.5	$(9/2^+, 11/2, 13/2^-)$	2071.7 7	100 40	1140.35	$(13/2^+)$			
3270.5		1549.6 9	100 <i>10</i>	1720.94	(9/2) $(11/2^+)$			
		1586.5 6	40 20	1683.6	$(3/2^{-} \text{ to } 11/2^{-})$			
3788 3		2469.7 9	21 3	801.52	(9/2 ⁻)			
3288.3 3341		2539.2 25	100	801.52	(9/2-)			
3685.9	(31/2 ⁻)	1099.9		2586.0	(27/2 ⁻)	E2	0.00277	$\alpha(K)=0.00232$ 4; $\alpha(L)=0.000348$ 5; $\alpha(M)=7.72\times10^{-5}$ 11;
								α (N+)=2.06×10 ⁻⁵ 3
3766.8		850 1 7	100	2916.6	$(11/2^{-} 13/2^{-})$			$\alpha(N)=1.79\times10^{-5}$ 3; $\alpha(O)=2.56\times10^{-6}$ 4; $\alpha(P)=1.324\times10^{-7}$ 19
3901.5	(33/2-)	215.6	100	3685.9	$(31/2^{-})$	M1	0.327	$\alpha(K)=0.275$ 4; $\alpha(L)=0.0407$ 6; $\alpha(M)=0.00903$ 13;
								α(N+)=0.00243 4
4189.8	$(33/2 \text{ to } 37/2^{-})$	288 3		3901.5	$(33/2^{-})$			$\alpha(N)=0.00211$ 3; $\alpha(O)=0.000305$ 5; $\alpha(P)=1.685\times10^{-5}$ 24
4455.2	$(37/2^{-})$	553.6		3901.5	$(33/2^{-})$	E2	0.01271	$\alpha(K)=0.01023 \ 15; \ \alpha(L)=0.00193 \ 3; \ \alpha(M)=0.000438 \ 7;$
								α(N+)=0.0001156 <i>17</i>
4618-1	$(39/2^{-})$	162.9		4455.2	$(37/2^{-})$	M1	0.712	$\alpha(N)=0.0001012 \ I5; \ \alpha(O)=1.382\times10^{-5} \ 20; \ \alpha(P)=5.71\times10^{-7} \ 8 \ \alpha(K)=0.598 \ 9; \ \alpha(I)=0.0891 \ I3; \ \alpha(M)=0.0198 \ 3;$
1010.1	(3)/2)	102.9		1155.2	(37/2)	1011	0.712	$\alpha(N+)=0.00531 \ 8$
		100.0		1100.0				α (N)=0.00461 7; α (O)=0.000666 10; α (P)=3.68×10 ⁻⁵ 6
4752.2	$(41/2^{-})$	428.3 134.1		4189.8 4618-1	$(33/2 \text{ to } 37/2^{-})$ $(39/2^{-})$	M1	1 232	$\alpha(K) = 1.034.15; \alpha(I) = 0.1545.22; \alpha(M) = 0.0343.5;$
1752.2	(11/2)	151.1		1010.1	(3)/2)	1011	1.232	$\alpha(N)=1.05+1.0$, $\alpha(D)=0.15+15+2.2$, $\alpha(N)=0.05+5.5$, $\alpha(N+)=0.00921-13$
								α (N)=0.00799 <i>12</i> ; α (O)=0.001156 <i>17</i> ; α (P)=6.37×10 ⁻⁵ 9
5130.1	$(43/2^+)$	378.1		4752.2	$(41/2^{-})$	E1	0.01059	$\alpha(K) = 0.00896 \ 13; \ \alpha(L) = 0.001275 \ 18; \ \alpha(M) = 0.000281 \ 4;$
								$\alpha(N=.)=7.47\times10^{-11}$ $\alpha(N)=6.50\times10^{-5}$ 10: $\alpha(O)=9.20\times10^{-6}$ 13: $\alpha(P)=4.71\times10^{-7}$ 7
5804.4	(41/2 to 45/2 ⁻)	674.3		5130.1	(43/2 ⁺)			
6121.0	$(45/2^{+})$	1052.0		4752.2	$(41/2^{-})$ $(41/2 to 45/2^{-})$			
0151.8	$(43/2^{+})$	327.4 1001.8		5804.4 5130.1	$(41/2 \ 10 \ 45/2)$ $(43/2^+)$	M1	0.00614	$\alpha(K)=0.00520 \ 8; \ \alpha(L)=0.000734 \ 11; \ \alpha(M)=0.0001618 \ 23;$
								α (N+)=4.35×10 ⁻⁵ 6
6540.0		44.6.4		(101.0	(15/01)		0.00047	$\alpha(N)=3.77\times10^{-5}$ 6; $\alpha(O)=5.49\times10^{-6}$ 8; $\alpha(P)=3.10\times10^{-7}$ 5
6548.0	(47/2)	416.1		6131.8	(45/21)	El	0.00847	$\alpha(\mathbf{K})=0.00/17/10; \ \alpha(\mathbf{L})=0.001014/15; \ \alpha(\mathbf{M})=0.000223/4; \ \alpha(\mathbf{N}+1)=5.94\times10^{-5}.9$
								$\alpha(N)=5.17\times10^{-5} 8; \alpha(O)=7.34\times10^{-6} 11; \alpha(P)=3.80\times10^{-7} 6$
6664.3	(49/2 ⁻)	116.3		6548.0	(47/2 ⁻)	M1	1.85	$\alpha(K)=1.550\ 22;\ \alpha(L)=0.232\ 4;\ \alpha(M)=0.0515\ 8;$

 $\boldsymbol{\sigma}$

Adopted Levels, Gammas (continued)

$\gamma(^{151}\text{Er})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult.‡	α [@]	Comments
							α (N+)=0.01384 20 α (N)=0.01200 17; α (O)=0.001735 25; α (P)=9.56×10 ⁻⁵ 14
6664.3	$(49/2^{-})$	532.5	6131.8	$(45/2^+)$			
6771.8	$(51/2^+, 53/2^-)$	107.5	6664.3	$(49/2^{-})$			
7441.3	(53/2 ⁻)	777.0	6664.3	(49/2 ⁻)	E2	0.00575	α (K)=0.00475 7; α (L)=0.000780 11; α (M)=0.0001750 25; α (N+)=4.65×10 ⁻⁵ 7
							$\alpha(N)=4.05\times10^{-5}$ 6; $\alpha(O)=5.67\times10^{-6}$ 8; $\alpha(P)=2.69\times10^{-7}$ 4
8016.0	(55/2+)	574.7	7441.3	(53/2 ⁻)	E1	0.00413	$\alpha(K) = 0.00350 5; \alpha(L) = 0.000486 7; \alpha(M) = 0.0001069 15; \alpha(N+) = 2.85 \times 10^{-5} 4$ $\alpha(N) = 2.48 \times 10^{-5} 4; \alpha(O) = 3.54 \times 10^{-6} 5; \alpha(P) = 1.89 \times 10^{-7} 3$
		1244.1	6771.8	$(51/2^+, 53/2^-)$			
8380.3	(57/2 ⁺)	364.3	8016.0	(55/2+)	M1	0.0796	$\alpha(K)=0.0670 \ 10; \ \alpha(L)=0.00979 \ 14; \ \alpha(M)=0.00217 \ 3; \ \alpha(N+)=0.000583 \ 9$ $\alpha(N)=0.000505 \ 7; \ \alpha(O)=7.32\times10^{-5} \ 11; \ \alpha(P)=4.08\times10^{-6} \ 6$
9046.2	$(57/2 \text{ to } 61/2^+)$	665.9	8380.3	$(57/2^+)$			
9392.0	$(61/2^+)$	345.8	9046.2	$(57/2 \text{ to } 61/2^+)$			
	()	1011.7	8380.3	(57/2 ⁺)	E2	0.00328	α (K)=0.00274 4; α (L)=0.000419 6; α (M)=9.32×10 ⁻⁵ 13; α (N+)=2.49×10 ⁻⁵ 4
							$\alpha(N)=2.16\times10^{-5}$ 3; $\alpha(O)=3.07\times10^{-6}$ 5; $\alpha(P)=1.563\times10^{-7}$ 22
10286.6	(67/2 ⁻)	894.6	9392.0	(61/2+)	(E3)	0.00957	$\alpha(K) = 0.00761 \ 11; \ \alpha(L) = 0.001520 \ 22; \ \alpha(M) = 0.000348 \ 5; \ \alpha(N+) = 9.21 \times 10^{-5} \ 13$
							$\alpha(N)=8.05\times10^{-5}$ 12; $\alpha(O)=1.107\times10^{-5}$ 16; $\alpha(P)=4.66\times10^{-7}$ 7

[†] From individual datasets for most cases. Only ten levels (all below 2600 keV) are populated in more than one dataset. Here averages are taken for energies and intensities.

[‡] From ce data in ¹⁵¹Er IT decay (0.42 μ s), some of the assignments are from ce data in ¹⁵¹Er IT decay (0.58 s).

[#] γ not reported by 1997Co24 in ¹⁵¹Er IT decay (0.58 s) study. 1997Co24 state that some of the γ -transition placements by 1990Ak01 are in conflict with their work. Apparently, the details of work by 1997Co24 are given only in a thesis by R. Collatz, KFA Julich (1994) (reference 8 in 1997Co24). This thesis is not available to the evaluator.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{151}_{68}{\rm Er}_{83}$

Adopted Levels, Gammas

Legend

_ _ _ •

Level Scheme (continued)

Intensities: Relative photon branching from each level

