		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 110, 1 (2009)	20-Nov-2008

SD bands:

1999Ai04 (also 2000Sc43): ¹²³Sb(³⁷Cl,5nαγ) E=191 MeV. Measured γ, Eα, αγ coin, deduced feeding pattern of normal-deformed and SD bands through measurement of α-particle energy distributions. The value of average Eα=14.1 MeV 5 with FWHM=6.7 MeV for feeding of yrast SD band and Eα=17.1 MeV with FWHM=8.3 MeV for feeding of normal-deformed structures. Eurogam array for γ-ray measurements and DIAMANT array of CsI detectors for α particles.
2000 a 2W: ⁷⁶C a ⁽⁸⁰S S Ya) E=20 MaV. Search for linking transitions from SD hands to normal deformed hands, but none

2000LaZW: ⁷⁶Ge(⁸⁰Se,X γ) E=320 MeV. Search for linking transitions from SD bands to normal-deformed bands, but none reported.

1995Ni06, 1988Ra19: ¹²²Sn(³⁴S,5n γ) E=175 MeV. Measured γ , $\gamma\gamma$, $\gamma(\theta)$, deduced five SD bands. The first SD band was reported by 1988Ra19.

1993FoZY: ¹⁰⁸Pd(⁴⁸Ca,5n γ) E=220 MeV. Measured $\gamma\gamma$, deduced SD band.

1992Mu10: 124 Sn(33 S, 6 n γ) E=160, 170 MeV. Measured γ (evaporation residue) coincidence, deduced SD band population.

Additional information 1.

Normal high-spin states:

1985Ho17 (also 1983Ho09): 124 Sn(32 S,5n γ) E=150-163 MeV. Measured prompt and delayed γ , $\gamma\gamma$, and lifetimes by recoil-distance method.

1981Ha17: ¹²⁴Sn(³²S,5n γ) E=129-165 MeV and ¹⁴²Nd(¹²C,3n γ) E=56-61 MeV. Measured prompt and delayed γ , $\gamma\gamma$, $\gamma(t)$, $\gamma(\theta)$, linear polarization, lifetime by recoil-distance method.

1979Li14: ¹²²Sn(³²S,3n γ) E=115-165 MeV and ¹⁴¹Pr(¹⁴N,4n) E=60-101 MeV. Measured delayed γ , prompt $\gamma\gamma$, excitation functions, $\gamma(\theta)$, $\gamma(t)$ and $\gamma\gamma(t)$.

1979Pi07: ¹⁵²Gd(α ,5n γ) E=72 MeV. Measured excitation functions, $\gamma(\theta)$, γ , $\gamma\gamma$. ¹³⁶Ce(¹⁸O,3n) E=83 MeV. Measured ce, ce γ .

1979F105: ¹⁴²Nd(¹²C,3n γ) E=60-62 MeV. Measured excitation functions, γ , $\gamma\gamma$, $\gamma(\theta)$. Their results agree well with the other authors up to 2911 keV, but above this level they completely disagree.

1971FIZW: ²⁴Mg(132 Xe,5n γ) E=0.88, 1.19 MeV/nucleon. Measured γ , T_{1/2}.

19/11712 w. 101g(-7 Ae, 517y) = -0.88, 1.19 We v/Indefeoil. We asured γ , 11/2.

Other heavy-ion reactions dealing with cross section measurements, yields, and continuum γ -spectra:

2006Go19: ¹⁴⁴Sm(⁹Be,2n) E=30-44 MeV.

1995Ri13: ¹⁴⁴Nd(¹²C,5n γ) E=94 MeV. Analyzed σ (evaporation residue)(θ).

1986Ru02: 92 Zr(64 Ni, α n) E=239 MeV and 144 Sm(12 C,n α) E=73.5 MeV. Measured evaporation residue yield vs spin.

1986Bo16: ⁷⁴Ge(⁸⁴Kr, α 3n) E=340 MeV. Measured $\gamma(\theta)$, DSA.

1985Th05: ¹¹⁸Sn(⁴⁰Ar, α 3n) E=185 MeV. Measured γ - and x-ray spectra, $\gamma(\theta)$, relative yields.

1985Ma34, 1984Ma37: ¹³⁸Ba(²²Ne,⁹N). Measured residual ion recoil charge spectra. Deduced high-spin isomer decay connections.

1985Ko30: ¹⁴¹Pr(¹⁴N,4n) E=80 MeV. Measured prompt and delayed γ-ray spectra, excitation functions, γ-ray multiplicity. Cross sections were measured in the following reactions: ¹⁴⁴Sm(¹²C,2p3n); ¹⁴⁷Sm(¹²C,2p6n); ¹⁵⁰Sm(¹²C,2p9n); ¹⁴⁴Sm(¹⁴N,3p4n); ¹⁴⁷Sm(¹⁴N,3p7n); ¹⁴¹Pr(¹⁴N,4n).

1985Ca35: ⁸⁷Rb(65 Cu,n) E=237 MeV. Measured $\gamma\gamma$, n- γ coin.; deduced yrast sequence.

1985Bo37: 124 Sn(32 S,5n) E=160 MeV. Measured γ , deduced yrast population.

1983Wa07: ¹²⁴Sn(³²S,5n) E=165 MeV. Measured γ , $\gamma(\theta)$ of continuum region. Deduced γ -multiplicity.

1982Tr01, 1979Tr08: ¹²⁴Sn(³²S,5n) E=150 MeV. Measured linear polarization of continuum γ rays.

1982Du15: (12C,X) on targets of Dy, Ho, Er, Tm and Yb. Measured production cross sections.

1980Vr01: (¹⁶O,X) on targets of ¹⁴²Nd, ¹³⁹La and ¹⁴¹Pr. Measured limits of α decay of high-spin isomers.

1980Bo07: ¹⁰⁶Pd(⁵⁰Ti,2p3n). Measured γ , γ (t), sum spectra. Deduced isomer lifetime.

1979Ha29: (12 C,X) reaction on targets of 142 Nd, 144 Nd, 146 Nd, 144 Sm, 148 Sm, 149 Sm, 150 Sm. Measured T_{1/2}(isomer) and γ -multiplicity.

1975Sc01: ¹⁴¹Pr(¹⁴N,4n) E=92 MeV. Measured cross section.

E(6007.2 level): 1979Pi07 and 1981Ha17 assume that the 25-keV transition is isomeric and is followed by the 264-keV transition. However, on the basis of the observed time distributions, 1979Li14 assume that the 264-keV transition is the isomer one followed by the 25-keV transition. If this were the case, there would be a level at 5767.8 keV (45/2⁺) instead of 6007.2 keV (47/2).

E(7037.5 level): 1979Li14 give a different ordering of the 182 and 1005 keV transitions which leads to a level at 6214 keV instead of 7038 keV.

¹⁵¹Dy Levels

The levels at 3136 and 3331 deexcited by 225.0γ and 254.0γ , respectively, were reported only by 1979F105. These have not been included here.

E(level) [‡]	J ^π @	$T_{1/2}^{\dagger}$	Comments
0.0	$7/2^{(-)}$		
527.38 9	$(9/2^{-})$		
775.57 11	$(11/2^{-})$		
968.61 <i>13</i>	$(13/2^+)$		
1348.7 <i>1</i>	$(13/2^{-})$		
1511.16 12	$(15/2^{-})$		
1733.7? [#] 11	$(17/2^+)$		
1918.58 <i>11</i>	$(17/2^{-})$		
2263.02 11	$(21/2^{-})$		
2402.0? [#]	$(21/2^+)$		
2911.66 12	$(25/2^{-})$		
2958.6 10	$(27/2^{-})$	1.3 ns 6	This level was introduced by 1979Pi07 on the basis of the 46.9-keV transition seen in ce data.
			$T_{1/2}$: from centroid-shift method (1979Pi07).
3078.2? [#] 12	$(25/2^+)$		
3428.5 11	(29/2)		
3733.9 11	$(31/2^{-})$		
4306.3 11	(33/2)		
4387.3 11	$(35/2^{-})$		
4741.5 11	(37/2)	.	
4903.8 11	(41/2)	5.9 ns 7	$T_{1/2}$: weighted average of 6.0 ns <i>10</i> (1981Ha17), 7 ns 2 (1979Li14) and 5.5 ns <i>10</i> (1979Pi07).
5742.9 11	(43/2)		
6007.2? 11	(47/2)		
6032.2 15	(49/2 ⁺)	11.9 ns 8	Possible configuration= $(\pi h_{11/2}^2)_{10+} \otimes (v f_{7/2}) (v h_{9/2})(v i_{13/2}) (1985Ho17).$ T _{1/2} : weighted average of 12.6 ns 5 (1981Ha17) and 10.9 s 6 (1979Li14). Others: 15 ns 3 (1979Pi07), 18 ns 4 (1979Ha29), 12 ns 1 (1980Bo07).
7037.5 15	$(51/2^{-})$	1.2 ps 6	
7219.5 15	$(53/2^{-})$	13.7 ps 6	
8177.8 15	$(55/2^{-})$	4.5 ps 15	
8302.7 15	$(57/2^{-})$	20.8 ps 12	$T_{1/2}$: other: \approx 42 ps (1981Ha17).
8680.3 15	$(59/2^{-})$	2.0 ps 3	
8891.7 15	(61/2 ⁻)	19.8 ps 20	$T_{1/2}$: 1985Ho17 give two values: 19.8 ps 20 and 19.8 ps 13. Other: \approx 42 ps (1981Ha17).
9813.4? 18	((2))		
10029.8? 16	(63/2)	≤1.4 ps	
10131.3? 18			
102/9.17 21		< 1.4 ps	
10562 62 19		$\leq 1.4 \text{ ps}$ <1.4 ns	
10749.9? 22		_1.1 p5	
11143.5? 21			
11840.7? 22			
х&	J≈(43/2)		J^{π} : 1993Ra07 suggest 43/2, 47/2, J=(51/2) (1988Ra19) from deexcitation out of band.
			An intensity plot given by 1994Tw01 (fig. 11 b) suggests that 577γ is $51/2$ to $47/2$ transition
			Additional information 2
			$T_{1/2}$: estimated (1988Ra19) as<43 fs for deexcitation between ton nine transitions
527.3+x ^{&}	J+2		
021101A	<i>v</i> · <i>-</i>		

¹⁵¹Dy Levels (continued)

E(level) [‡]	J ^π @	Comments
1104.7+x <mark>&</mark>	J+4	
1732.4+x ^{&}	J+6	
$2414.2 + x^{\&}$	I+8	
$31/8 2 \pm x^{\&}$	J+10	
3170.21 x	J+10 L+12	
3933.9+X	J+12	
4//1./+X	J+14	
5660.8+x	J+16	
6601.4+x	J+18	
7593.3+x ^x	J+20	
8636.1+x ^{&}	J+22	
9729.9+x <mark>&</mark>	J+24	
10874.0+x ^{&}	J+26	
12068.7+x ^{&}	J+28	
13313.7+x ^{&}	J+30	
14608.5+x ^{&}	J+32	
15953.1+x ^{&}	J+34	
17346.9+x <mark>&</mark>	J+36	
18791.0+x ^{&}	J+38	
20283.4+x ^{&}	J+40	
21825.2+x ^{&}	J+42	
y ^a	J1	Additional information 3.
633.0+y ^a	J1+2	
$1310.7 + y^{a}$	J1+4	
$2029.9 + y^{a}$	JI+6	
$2/95.5+y^{a}$	J1+8 J1+10	
$4466.9 \pm v^{a}$	J1 + 10 I1 + 12	
$5373.6 + v^{a}$	J1+12 J1+14	
6327.9+y ^a	J1+16	
7329.6+y ^a	J1+18	
8379.6+y ^a	J1+20	
9477.8+y ^a	J1+22	
$10624.4 + y^{a}$	J1+24	
$11819.6+y^{a}$	J1+26	
$15005.1 + y^{a}$ $1/355.5 + y^{a}$	J1+20 J1+30	
$15696 4 + v^{a}$	11+30	
$17085.8 + v^{a}$	J1+32	
$18525.9 + y^{a}$	J1+36	
20018.4+y ^a	J1+38	
z ^b	J2	Additional information 4.
728.5+z ^b	J2+2	
1493.6+z ^b	J2+4	
2306.6+z ^b	J2+6	
3167.1+z ^b	J2+8	
4076.7+z ^b	J2+10	
5035.3+z ^b	J2+12	

¹⁵¹Dy Levels (continued)

E(level) [‡]	J ^π @	Comments
6041.8+z ^b	J2+14	
7098.5+z ^b	J2+16	
$8204.5 + z^{b}$	J2+18	
$9360.2 + z^{b}$	12+20	
$10565.0 \pm z^{b}$	12+20	
10303.0+2 11810 7 $\pm a^{b}$	J2+22	
$11019.7 + 2^{-1}$	J2+24	
$13123.3 + z^{b}$	J2+26	
$144/5.3 + z^{b}$	J2+28	
15878.7+z ⁰	J2+30	
17328.5+z ^b	J2+32	
u ^C	J3	Additional information 5.
712.0+u ^c	J3+2	
$14/0.7+u^{\circ}$	J3+4 I2+6	
$2270.0+u^{\circ}$ 3128 $4+u^{\circ}$	J3+0 J3+8	
$4027.7 \pm 10^{\circ}$	13+10	
$4974.5 + u^{c}$	J3+10 J3+12	
5968.9+u ^c	J3+14	
7011.5+u ^c	J3+16	
8102.0+u ^C	J3+18	
9240.2+u ^c	J3+20	
10426.6+u ^c	J3+22	
11661.5+u ^c	J3+24	
$12944.4+u^{\circ}$	J3+26	
$142/4.1 \pm u^{2}$ 15652 0 $\pm u^{2}$	J3+28 I3+30	
17077.8+u ^c	J3+32	
v ^d	J4	Additional information 6.
959.3+v ^d	J4+2	
1967.7+v ^d	J4+4	
3028.0+v ^d	J4+6	
4139.9+v d	J4+8	
5305.8+v ^d	J4+10	
6521.3+v ^d	J4+12	
7784.5+v ^d	J4+14	
9097.9+v ^d	J4+16	
10463.6+v d	J4+18	

^{\dagger} From recoil-distance method (1985Ho17), unless otherwise noted. 1985Ho17 report T_{1/2}=139 ps 35 (from recoil-distance data) for a level of unknown energy decaying via two transitions of intensities 5.3 and 2.1, respectively, relative to 99.5 for 1005γ .

[‡] From least-squares fit to $E\gamma'$ s. The levels above 8894 keV are indicated as uncertain because the ordering of the γ rays is tentative.

Reported by 1979Pi07 and 1979Fl05 only.
@ From 'Adopted Levels'. J>15/2 values were assigned from these experiments.

& Band(A): SD-1 band. Band from 1988Ra19 and 1995Ni06. Q(intrinsic)=16.9 +2-3 (1997Ni01). Percent population=1.3

¹⁵¹Dy Levels (continued)

(1988Ra19), 1.0 (1995Ni06). Other: 2.3 8 (1992Mu10) in 122 Sn(34 S,5n γ) E=170 MeV. Intruder configuration= $\pi 6^4 \nu 7^1$ (1997Ni01).

- ^{*a*} Band(B): SD-2 band. Q(intrinsic)=18.2 4 (1997Ni01). Band intensity=0.39 7 (1995Ni06) (relative to 1.0 for SD-1 band). It has the same high N intruder configuration as ¹⁵²Dy SD band. The transition energies are close to 3/4 point $E\gamma$'s of ¹⁵²Dy yrast SD band. Probable 5/2[642] neutron excitation (1995Ni06). 1995Ni06 searched for its signature partner band but none was found.
- ^b Band(C): SD-3 band. Q(intrinsic)=17.9 6 (1997Ni01). Band intensity=0.30 5 (1995Ni06) (relative to 1.0 for SD-1 band).
- ^{*c*} Band(D): SD-4 band. Q(intrinsic)=17.5 +11-7 (1997Ni01). Band intensity=0.20 7 (1995Ni06) (relative to 1.0 for SD-1 band). It has the same high N intruder configuration as ¹⁵²Dy SD band. The γ -ray energies in this band are close to mid-point transition energies of the ¹⁵²Dy yrast SD band (1995Ni06). Search for its signature partner band proved negative (1995Ni06).

^d Band(E): SD-5 band. Percent population=0.13 4 (1995Ni06) (relative to 1.0 for SD-1 band).

 $\gamma(^{151}\text{Dy})$

The quoted A₂ and A₄ values are from 1979Li14 and were measured in the ¹⁴¹Pr(¹⁴N,3n γ) reaction at E=75 MeV for transitions depopulating the 6033-keV isomer. For the isomer-feeding transitions A₂, A₄ and pol are from 1981Ha17 measured in ¹²⁴Sn(³²S,5n) reaction at 145 MeV. Pol=(N(1)-N(2))/(N(1)+N(2)) *1/Q, where Q is the polarization sensitivity and N(1), N(2) are the counting rates in the planes perpendicular and parallel to the reaction plane, respectively.

Εγ	Iγ		Εγ	$\mathtt{I}\gamma$	Εγ	$\mathtt{I}\gamma$
162.32	59	1	469.91	16 1	735.59	29 1
182.07	10	1	527.40	74 1	775.38	72 1
193.00	3	1	542.50	3 1	775.53	39 1
264.29	25	1	569.88	74 1	821.32	68 1
344.44	100		572.5	7 1	839.02	32 1
354.28	48	1	573.2	51	877.79	3 1
407.40	32	1	648.64	99 1	1005.5	7 1
435.16	11	1	653.37	65 1		
Iγ's from (1979Li	n puls 14)	ed-be	eam experime	nt in ¹⁴¹ P	r(¹⁴ N,4nγ) E=	80 MeV
Eγ	Iγ		Eγ	Iγ	Εγ	Iγ
264.3	100		625.6 5	 10 2	1084.8 12	 13 3
377.6 5	6	3	958.7 7	11 2	1142.2 15	73
112 2 7	15	2	001 2 7	10 2		

The 418.8 γ , 625.6 γ , 991.2 γ and 1142.2 γ remain unplaced in the level scheme above the 6032 isomer

I γ 's from ¹⁴² Nd(¹² C,3n γ) reaction at E=60 MeV (1979F105)								
Εγ	Ιγ	Εγ	Iγ	Εγ	$\mathtt{I}\gamma$			
162.4 192.9	1.96 18 45 3	527.1 542 4	73.2 16	735.6	24.6 6 25.8			
225.0	3.73 18	569.7 572.8	53.1 11 7.3 3	775.4	100.0 20 50.2 16			
344.2 354.0	55.2 13 5.3 4	648.6 653.1	53.3 14 10.7 4					
407.2 469.7	19.4 5 4.92 24	667.8 675.7	12.0 6 4.3 3					

Energy uncertainty is $\approx 0.3 \text{ keV}$

6

the 225.0 γ and 254.3 γ have not been reported by other studies

 $\mathrm{I}\gamma'\mathrm{s}$ for γ transitions feeding the 6033-keV isomer

	In the	¹²⁴ Sn(³² S, 51	nγ) reacti	on at E=	=145 MeV	(1981Ha	17)	
	Eγ	$\mathtt{I}\gamma$	Eγ	ľ	γ	Εγ	Iγ	
	182.3 211.5 377.7	45 3 12 2 32 2	589.0 749.1 958.2		4 2 9 2 3 2	1005.3 1083.2 1138.1	100 46 3 9 2	
	$\Delta I \gamma$: a	uthors quot	e 5 to 20%	6. Ene	rgy unce	rtainty	is ≈0.3 k	eV
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{a}	Comments
527.38	(9/2 ⁻)	527.40 10	100	0.0	7/2 ⁽⁻⁾	D		$A_2 = +0.11 4$, $A_4 = -0.07 4$. $\delta(Q/D) < -9$ (1979Fl05). Additional information 7.
775.57	(11/2 ⁻)	775.53 15	100	0.0	7/2 ⁽⁻⁾	E2	0.00526	$\alpha(K)=0.00437 \ 7; \ \alpha(L)=0.000694 \ 10; \ \alpha(M)=0.0001537 \ 22; \alpha(N+)=4.06\times10^{-5} \ 6 \alpha(N)=3.53\times10^{-5} \ 5; \ \alpha(O)=5.03\times10^{-6} \ 7; \ \alpha(P)=2.51\times10^{-7} \ 4 A_2=+0.13 \ 2, \ A_4=-0.02 \ 2. Additional information \ 8 $
968.61	$(13/2^+)$	193.00 10	100	775.57	$(11/2^{-})$	D		$A_2 = -0.19 \ 4, \ A_4 = 0.00 \ 4 \ (1979Fl05).$ $\delta(\Omega D) = -0.19 \ +17 - 23 \ (1979Fl05).$
1348.7	(13/2 ⁻)	573.2 5	7.5 15	775.57	(11/2 ⁻)	(D)		$A_2 = -0.14 I$, $A_4 = -0.02 3$ (1979Li14) for a composite line. Additional information 9. $\delta(O/D) = -5.7 + 17 - 28$.
1511.16	(15/2 ⁻)	821.32 <i>5</i> 542.50 <i>10</i>	100 2 10 <i>3</i>	527.38 968.61	(9/2 ⁻) (13/2 ⁺)	E2 (D)	0.00463	$\alpha(K)=0.00386 \ 6; \ \alpha(L)=0.000603 \ 9; \ \alpha(M)=0.0001333 \ 19; \ \alpha(N+)=3.53\times10^{-5} \\ 5 \\ \alpha(N)=3.07\times10^{-5} \ 5; \ \alpha(O)=4.37\times10^{-6} \ 7; \ \alpha(P)=2.22\times10^{-7} \ 4 \\ A_2=+0.12 \ 2, \ A_4=-0.04 \ 2. \\ Additional information \ 10. \\ A_2=-0.05 \ 3, \ A_4=0.00 \ 5. \\ \delta(O(D)=+0.05 \ (1979E105))$
		735.59 5	100 3	775.57	(11/2 ⁻)	E2	0.00592	Additional information 11. $\alpha(K)=0.00491 7; \alpha(L)=0.000792 11; \alpha(M)=0.0001758 25;$ $\alpha(N+)=4.64\times10^{-5} 7$ $\alpha(N)=4.04\times10^{-5} 6; \alpha(O)=5.73\times10^{-6} 8; \alpha(P)=2.81\times10^{-7} 4$ $A_2=+0.09 4, A_4=-0.03 5.$ Additional information 12.
1733.7?	(17/2 ⁺)	765.3 ^{&b} 3	100	968.61	(13/2 ⁺)	E2	0.00542	$\alpha(\mathbf{K})=0.00450 \ 7; \ \alpha(\mathbf{L})=0.000717 \ 10; \ \alpha(\mathbf{M})=0.0001589 \ 23; \\ \alpha(\mathbf{N}+)=4.20\times10^{-5} \ 6 \\ \alpha(\mathbf{N})=3.65\times10^{-5} \ 6; \ \alpha(\mathbf{O})=5.19\times10^{-6} \ 8; \ \alpha(\mathbf{P})=2.58\times10^{-7} \ 4 \\ \Delta_{\alpha}=+0.29 \ 3 \ \Delta_{\alpha}=-0.04 \ 4 \ (1970\text{E105})$
1918.58	(17/2 ⁻)	407.40 10	43.2 13	1511.16	(15/2 ⁻)	(D)		$A_2 = -0.14 \ 3, \ A_4 = -0.02 \ 3.$ Additional information 13. $\delta(O/D) = -3.1 + 9 - 18 \ (1979F105).$
		569.88 5	100 2	1348.7	(13/2 ⁻)	E2	0.01086	$\alpha(K)=0.00885 \ 13; \ \alpha(L)=0.001571 \ 22; \ \alpha(M)=0.000352 \ 5; \ \alpha(N+)=9.24\times10^{-5}$

7

					(HI,xny) 1995	Ni06,1985H	Io17,1981Ha17 (continued)
							$\gamma(^{151}\text{Dy})$ (c	continued)
E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{a}	Comments
2263.02	(21/2 ⁻)	344.44 <i>4</i>	100	1918.58	(17/2 ⁻)	E2	0.0426	13 $\alpha(N)=8.06\times10^{-5}$ 12; $\alpha(O)=1.124\times10^{-5}$ 16; $\alpha(P)=5.01\times10^{-7}$ 7 $A_2=+0.10$ 2, $A_4=-0.01$ 4. Additional information 14. $\alpha(K)=0.0327$ 5; $\alpha(L)=0.00768$ 11; $\alpha(M)=0.001757$ 25; $\alpha(N+)=0.000455$ 7 $\alpha(N)=0.000400$ 6; $\alpha(O)=5.33\times10^{-5}$ 8; $\alpha(P)=1.747\times10^{-6}$ 25 $A_2=+0.13$ 1, $A_4=-0.05$ 2. Additional information 15.
2402.0?	(21/2 ⁺)	668.3 ^{&b} 3	100	1733.7?	(17/2 ⁺)	E2	0.00739	$\alpha(\text{K})=0.00609 \ 9; \ \alpha(\text{L})=0.001016 \ 15; \ \alpha(\text{M})=0.000226 \ 4; \ \alpha(\text{N}+)=5.96\times10^{-5} \ 9 \ \alpha(\text{N})=5.19\times10^{-5} \ 8; \ \alpha(\text{O})=7.32\times10^{-6} \ 11; \ \alpha(\text{P})=3.48\times10^{-7} \ 5 \ \text{A}_{2}=+0.40 \ 5, \ \text{A}_{4}=-0.12 \ 6 \ (1979\text{Fl05}).$
2911.66	(25/2 ⁻)	648.64 <i>5</i>	100	2263.02	(21/2 ⁻)	E2	0.00793	$\begin{array}{l} \alpha(\mathrm{K})=0.00652 \ 10; \ \alpha(\mathrm{L})=0.001100 \ 16; \ \alpha(\mathrm{M})=0.000245 \ 4; \ \alpha(\mathrm{N}+)=6.45\times10^{-5} \\ 9 \\ \alpha(\mathrm{N})=5.63\times10^{-5} \ 8; \ \alpha(\mathrm{O})=7.91\times10^{-6} \ 11; \ \alpha(\mathrm{P})=3.72\times10^{-7} \ 6 \\ \mathrm{A}_{2}=+0.13 \ 1, \ \mathrm{A}_{4}=-0.03 \ 2. \\ \mathrm{Additional information \ 16.} \end{array}$
2958.6	(27/2 ⁻)	46.9 [@]	100	2911.66	(25/2 ⁻)	M1	3.45	$\alpha(L)=2.70 \ 4; \ \alpha(M)=0.593 \ 9; \ \alpha(N+)=0.1583 \ 23 \ \alpha(N)=0.1371 \ 20; \ \alpha(O)=0.0200 \ 3; \ \alpha(P)=0.001137 \ 16 \ Mult.: from L/(M+N) ratio and intensity balance in 1979Pi07.$
3078.2?	(25/2+)	676.2 ^{&b} 3	100	2402.0?	(21/2 ⁺)	E2	0.00719	α (K)=0.00593 9; α (L)=0.000985 14; α (M)=0.000219 3; α (N+)=5.78×10 ⁻⁵ 9 α (N)=5.03×10 ⁻⁵ 7; α (O)=7.10×10 ⁻⁶ 10; α (P)=3.39×10 ⁻⁷ 5 A ₂ =+0.36 7, A ₄ =-0.05 8 (1979Fl05).
3428.5	(29/2)	469.91 12	100	2958.6	(27/2 ⁻)	D		$A_2 = -0.17 4$, $A_4 = 0.00 4$. Additional information 17.
3733.9	(31/2 ⁻)	305.3 <i>3</i> 775.38 <i>15</i>		3428.5 2958.6	(29/2) (27/2 ⁻)	E2	0.00526	Reported by 1981Ha17. No branching ratios are given. $\alpha(K)=0.00437$ 7; $\alpha(L)=0.000694$ 10; $\alpha(M)=0.0001537$ 22; $\alpha(N+)=4.06\times10^{-5}$ 6 $\alpha(N)=3.54\times10^{-5}$ 5; $\alpha(O)=5.03\times10^{-6}$ 7; $\alpha(P)=2.51\times10^{-7}$ 4
4306.3	(33/2)	572.5 <i>5</i> 877.79 <i>16</i>	100 <i>14</i> 43 <i>13</i>	3733.9 3428.5	(31/2 ⁻) (29/2)	(D) (E2)	0.00401	$A_{2}=+0.18 I, A_{4}=+0.03 I.$ $\alpha(K)=0.00335 5; \alpha(L)=0.000514 8; \alpha(M)=0.0001134 I6; \alpha(N+)=3.00\times10^{-5}$
4387.3	(35/2 ⁻)	653.37 6	100	3733.9	(31/2 ⁻)	E2	0.00780	$ \begin{array}{l} & \alpha(\mathrm{N}) = 2.61 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 3.74 \times 10^{-6} \ 6; \ \alpha(\mathrm{P}) = 1.93 \times 10^{-7} \ 3 \\ & \mathrm{A_2} = +0.08 \ 4, \ \mathrm{A_4} = -0.05 \ 5. \\ & \alpha(\mathrm{K}) = 0.00642 \ 9; \ \alpha(\mathrm{L}) = 0.001079 \ 16; \ \alpha(\mathrm{M}) = 0.000240 \ 4; \ \alpha(\mathrm{N}+) = 6.33 \times 10^{-5} \ 9 \\ & \alpha(\mathrm{N}) = 5.52 \times 10^{-5} \ 8; \ \alpha(\mathrm{O}) = 7.76 \times 10^{-6} \ 11; \ \alpha(\mathrm{P}) = 3.66 \times 10^{-7} \ 6 \\ & \mathrm{A_2} = +0.15 \ 1, \ \mathrm{A_4} = -0.02 \ 1. \end{array} $
4741.5	(37/2)	354.28 7 435.16 <i>13</i>	100 2 22.9 21	4387.3 4306.3	(35/2 ⁻) (33/2)	D E2	0.0219	Additional information 18. $A_2=-0.15 \ 3, \ A_4=+0.04 \ 4.$ $\alpha(K)=0.01741 \ 25; \ \alpha(L)=0.00353 \ 5; \ \alpha(M)=0.000799 \ 12; \ \alpha(N+)=0.000208 \ 3$ $\alpha(N)=0.000183 \ 3; \ \alpha(O)=2.49\times10^{-5} \ 4; \ \alpha(P)=9.60\times10^{-7} \ 14$ $A_2=+0.18 \ 5, \ A_4=-0.10 \ 5.$

 ∞

Т

					(HI,xn	ιγ) 199	5Ni06,1985Ho	p17,1981Ha17 (continued)
							$\gamma(^{151}\text{Dy})$ (co	ontinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [#]	α^{a}	Comments
4903.8	(41/2)	162.32 5	100	4741.5	(37/2)	E2	0.480	$\alpha(K)=0.294\ 5;\ \alpha(L)=0.1430\ 21;\ \alpha(M)=0.0338\ 5;\ \alpha(N+)=0.00857\ 12$ $\alpha(N)=0.00761\ 11;\ \alpha(O)=0.000945\ 14;\ \alpha(P)=1.335\times10^{-5}\ 19$ $A_2=+0.12\ 2,\ A_4=-0.04\ 2.$
5742.9	(43/2)	839.02 10	100	4903.8	(41/2)	E1	1.74×10 ⁻³	$\alpha(K) = 0.001490 \ 21; \ \alpha(L) = 0.000199 \ 3; \ \alpha(M) = 4.33 \times 10^{-5} \ 6; \alpha(N+) = 1.151 \times 10^{-5} \ 17 \alpha(N) = 9.97 \times 10^{-6} \ 14; \ \alpha(O) = 1.454 \times 10^{-6} \ 21; \ \alpha(P) = 8.28 \times 10^{-8} \ 12 A_2 = -0.08 \ 3, \ A_4 = +0.03 \ 5. \ Pol = +0.40 \ 7. Mult: from linear polarization by 1981Ha17. 1979Pi07 assigned M1 but later remeasured the conversion electron spectra and reassigned it as E1 (as for the table to be a set of table table to be a set of table t$
6007.2?	(47/2)	264.29 8	100	5742.9	(43/2)	E2	0.0956	a(K)=0.0697 10; α (L)=0.0201 3; α (M)=0.00465 7; α (N+)=0.001195 17 α (N)=0.001054 15; α (O)=0.0001369 20; α (P)=3.54×10 ⁻⁶ 5 A ₂ =+0.09 3, A ₄ =-0.04 3.
6032.2	(49/2+)	25.0 [@]	100	6007.2?	(47/2)	D		It is not certain whether this is the isomeric transition. See comment on 6007.2 level in the level table (general comment section). Mult.: from lifetime value, if this is the isomeric transition in (1979Pi07). However, E2 cannot be ruled out (evaluator).
7037.5	(51/2 ⁻)	1005.3 3	100	6032.2	(49/2 ⁺)	E1	1.24×10 ⁻³	$\alpha(\mathbf{K})=0.001057 \ I5; \ \alpha(\mathbf{L})=0.0001402 \ 20; \ \alpha(\mathbf{M})=3.04\times10^{-5} \ 5; \\ \alpha(\mathbf{N}+)=8.10\times10^{-6} \ I2 \\ \alpha(\mathbf{N})=7.02\times10^{-6} \ I0; \ \alpha(\mathbf{O})=1.025\times10^{-6} \ I5; \ \alpha(\mathbf{P})=5.90\times10^{-8} \ 9 \\ \mathbf{A}_{2}=-0.47 \ I5, \ \mathbf{A}_{4}=+0.12 \ I6. \ \mathrm{Pol}=+0.21 \ 8. \\ \mathrm{Additional information \ 20} $
7219.5	(53/2 ⁻)	182.07 9	100	7037.5	(51/2 ⁻)	D		Additional information 20. $A_2=-0.17 5$, $A_4=0.00 7$. Additional information 21. Mult.: 1981Ha17 and 1985Ho17 suggest magnetic character on the basis
8177.8	(55/2 ⁻)	958.2 <i>3</i>	100	7219.5	(53/2 ⁻)	M1	0.00589	of lifetime. However, E1 character cannot be ruled out (evaluator). $\alpha(K)=0.00500$ 7; $\alpha(L)=0.000693$ 10; $\alpha(M)=0.0001512$ 22; $\alpha(N+)=4.04\times10^{-5}$ 6 $\alpha(N)=3.50\times10^{-5}$ 5; $\alpha(O)=5.15\times10^{-6}$ 8; $\alpha(P)=3.02\times10^{-7}$ 5
8302.7	(57/2 ⁻)	124.8 3	14 2	8177.8	(55/2-)	D		$A_2 = -0.19 \ I0, A_4 = +0.09 \ I3. \ Pol = -0.3 \ 3.$ $I_{\gamma}: I_{\gamma}(124.8\gamma)/I_{\gamma}(1083.2\gamma) = 8.2/57.4$ (communicated to the evaluator by
		1083.2 <i>3</i>	100 10	7219.5	(53/2 ⁻)	E2	0.00258	one of the authors of 1981Ha17). $\alpha(K)=0.00218 \ 3; \ \alpha(L)=0.000318 \ 5; \ \alpha(M)=6.99\times10^{-5} \ 10; \ \alpha(N+)=1.86\times10^{-5} \ 3$
8680.3	(59/2-)	377.7 3	100	8302.7	(57/2 ⁻)	M1	0.0614	$\alpha(N)=1.611\times10^{-5} 23; \ \alpha(O)=2.33\times10^{-6} 4; \ \alpha(P)=1.256\times10^{-7} 18$ $A_{2}=+0.36 9, \ A_{4}=-0.03 8. \ Pol=+0.55 15.$ $\alpha(K)=0.0519 8; \ \alpha(L)=0.00742 11; \ \alpha(M)=0.001626 23; \ \alpha(N+)=0.000435 7$
8891.7	(61/2 ⁻)	211.5 <i>3</i> 589.0 <i>3</i>	99 <i>10</i> 100 <i>10</i>	8680.3 8302.7	(59/2 ⁻) (57/2 ⁻)	D E2	0.01001	$\begin{aligned} &\alpha(N) = 0.000376 \ 6; \ \alpha(O) = 5.52 \times 10^{-3} \ 8; \ \alpha(P) = 3.19 \times 10^{-6} \ 5 \\ &A_2 = -0.19 \ 5, \ A_4 = +0.12 \ 10. \ Pol = -0.6 \ 2. \\ &A_2 = -0.12 \ 10, \ A_4 = 0.00 \ 15. \\ &\alpha(K) = 0.00818 \ 12; \ \alpha(L) = 0.001432 \ 21; \ \alpha(M) = 0.000320 \ 5; \end{aligned}$

9

				(H	II,xnγ)	1995Ni06,	1985Ho17,1981Ha17 (continued)
						$\gamma(^{151}$	Dy) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult. [#]	Comments
							α (N+)=8.41×10 ⁻⁵ <i>12</i> α (N)=7.34×10 ⁻⁵ <i>11</i> ; α (O)=1.026×10 ⁻⁵ <i>15</i> ; α (P)=4.64×10 ⁻⁷ 7 A ₂ =+0.34 9, A ₄ =-0.07 9. Pol=+0.3 4.
9813.4? 10029.8? 10131.3? 10279.12	(63/2)	1133 <i>I</i> 1138.1 <i>3</i> 1451 <i>I</i> 148 <i>I</i>	100 100	8680.3 8891.7 8680.3	(59/2 ⁻) (61/2 ⁻) (59/2 ⁻)	(D)	$A_2 = -0.36\ 27, \ A_4 = +0.48\ 35.$
10320.7? 10562.6?		291.1 <i>3</i> 242 <i>1</i>		10029.8? 10320.7?	(63/2)	(D)	
10749 92		533 ^b 1 749.1 3 471 1		10029.8? 9813.4? 10279.1?	(63/2)	(D)	$A_2 = -0.29 5, A_4 = -0.07 8.$
11143.5?		864 ^b 1 1012 1		10279.1? 10131.3?			
11840.7?		697 <i>1</i> 1091 <i>1</i> 1281 <i>1</i>		11143.5? 10749.9? 10562.6?			
527.3+x	J+2	527.3 ^b 1	0.21 15	Х	J≈(43/2)		E_{γ} : 522.4 (1988Ra19). 1993FoZY did not find any evidence for a 522.4 γ , they assigned the 577 γ as the lowest energy transition in the SD cascade and assigned the 577 γ as 51/2 to 47/2 transition. An intensity plot (fig. ¹¹ B) by 1994Tw01 also shows the first transition (most likely 577 γ) as 51/2 to 47/2 transition.
1104.7+x	J+4	577.4 1	0.62 5	527.3+x	J+2		
1732.4+x	J+6	627.7 1	0.78 10	1104.7+x	J+4		
2414.2+x	J+8	681.8 <i>1</i>	0.81 7	1732.4+x	J+6		
3148.2+x	J+10	734.0 1	0.90 10	2414.2+x	J+8		
3933.9+x	J+12	785.7 1	0.91 10	3148.2+x	J+10		
4//1./+x	J+14	837.8 1	1.00 10	3933.9+x	J+12		
5660.8 + x	J+16	889.1 1	0.93 10	4//1./+x	J+14 L+16		
$7503.3 \pm x$	J + 10 I + 20	940.01	1.05 10	$5000.8 \pm X$	J+10 I+18		
$7393.3 \pm x$ 8636 1 $\pm x$	J+20 I+22	1042.8 1	1.07 13	$7503 3 \pm v$	J^{+10}_{1+20}		
$9720 \ 0+x$	J+22 I+24	1093.8 1	1.02.10	8636 1+x	J+20 J+22		
10874.0+x	J+24	1144.1 1	0.69 7	9729.9+x	J+24		
12068.7 + x	J+28	1194.7 1	0.59 7	10874.0+x	J+26		
13313.7 + x	J+30	1245.0 1	0.57 10	12068.7 + x	J+28		
14608.5+x	J+32	1294.8 2	0.48 7	13313.7+x	J+30		E _v : 1293.3 (1988Ra19).
15953.1+x	J+34	1344.6 2	0.34 7	14608.5+x	J+32		E_{γ} : 1343.4 (1988Ra19).
17346.9+x	J+36	1393.8 <i>3</i>	0.38 7	15953.1+x	J+34		
18791.0+x	J+38	1444.1 <i>4</i>	0.22 5	17346.9+x	J+36		E _y : 1442.4 (1988Ra19).
20283.4+x	J+40	1492.4 6	0.09 5	18791.0+x	J+38		E_{γ} : 1490.3 (1988Ra19).
21825.2+x	J+42	1541.8 6		20283.4+x	J+40		
633.0+y	J1+2	633.0 10		У	J1		

10

Т

$\gamma(^{151}\text{Dy})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ} ‡	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
1310.7+y	J1+4	677.7 5	0.35 8	633.0+y	J1+2	13123.3+z	J2+26	1303.6 2		11819.7+z	J2+24
2029.9+y	J1+6	719.2 <i>1</i>	0.67 10	1310.7+y	J1+4	14475.3+z	J2+28	1352.0 4		13123.3+z	J2+26
2795.5+y	J1+8	765.6 1	0.95 13	2029.9+y	J1+6	15878.7+z	J2+30	1403.4 5		14475.3+z	J2+28
3607.7+y	J1+10	812.2 <i>I</i>	0.92 13	2795.5+y	J1+8	17328.5+z	J2+32	1449.8 6		15878.7+z	J2+30
4466.9+y	J1+12	859.2 <i>1</i>	0.94 14	3607.7+y	J1+10	712.0+u	J3+2	712.0 4	0.41 12	u	J3
5373.6+y	J1+14	906.7 1	1.10 10	4466.9+y	J1+12	1470.7+u	J3+4	758.7 <i>3</i>	0.92 15	712.0+u	J3+2
6327.9+y	J1+16	954.3 <i>1</i>	1.00 8	5373.6+y	J1+14	2276.0+u	J3+6	805.3 2	0.96 15	1470.7+u	J3+4
7329.6+y	J1+18	1001.7 2	1.00 12	6327.9+y	J1+16	3128.4+u	J3+8	852.4 2	1.00 18	2276.0+u	J3+6
8379.6+y	J1+20	1050.0 <i>1</i>	1.02 19	7329.6+y	J1+18	4027.7+u	J3+10	899.3 2	0.84 22	3128.4+u	J3+8
9477.8+y	J1+22	1098.2 <i>1</i>	0.95 8	8379.6+y	J1+20	4974.5+u	J3+12	946.8 <i>4</i>	1.00 19	4027.7+u	J3+10
10624.4+y	J1+24	1146.6 2	0.74 7	9477.8+y	J1+22	5968.9+u	J3+14	994.4 2	1.08 22	4974.5+u	J3+12
11819.6+y	J1+26	1195.2 2	0.67 7	10624.4+y	J1+24	7011.5+u	J3+16	1042.6 4	1.00 18	5968.9+u	J3+14
13063.1+y	J1+28	1243.5 2	0.54 7	11819.6+y	J1+26	8102.0+u	J3+18	1090.5 2	0.98 18	7011.5+u	J3+16
14355.5+y	J1+30	1292.4 2	0.45 8	13063.1+y	J1+28	9240.2+u	J3+20	1138.2 2	0.68 12	8102.0+u	J3+18
15696.4+y	J1+32	1340.9 <i>3</i>	0.35 8	14355.5+y	J1+30	10426.6+u	J3+22	1186.4 6	0.48 10	9240.2+u	J3+20
17085.8+y	J1+34	1389.4 <i>3</i>	0.18 6	15696.4+y	J1+32	11661.5+u	J3+24	1234.9 <i>3</i>	0.41 15	10426.6+u	J3+22
18525.9+y	J1+36	1440.1 5	0.18 6	17085.8+y	J1+34	12944.4+u	J3+26	1282.9 2	0.35 12	11661.5+u	J3+24
20018.4+y	J1+38	1492.5 10		18525.9+y	J1+36	14274.1+u	J3+28	1329.7 6	0.16 8	12944.4+u	J3+26
728.5+z	J2+2	728.5 1		Z	J2	15652.9+u	J3+30	1378.8 8	0.17 8	14274.1+u	J3+28
1493.6+z	J2+4	765.1 2		728.5+z	J2+2	17077.8+u	J3+32	1424.9 10		15652.9+u	J3+30
2306.6+z	J2+6	813.0 <i>1</i>		1493.6+z	J2+4	959.3+v	J4+2	959.3 5		V	J4
3167.1+z	J2+8	860.5 2		2306.6+z	J2+6	1967.7+v	J4+4	1008.4 5		959.3+v	J4+2
4076.7+z	J2+10	909.6 2		3167.1+z	J2+8	3028.0+v	J4+6	1060.3 4		1967.7+v	J4+4
5035.3+z	J2+12	958.6 2		4076.7+z	J2+10	4139.9+v	J4+8	1111.9 5		3028.0+v	J4+6
6041.8+z	J2+14	1006.5 <i>1</i>		5035.3+z	J2+12	5305.8+v	J4+10	1165.9 5		4139.9+v	J4+8
7098.5+z	J2+16	1056.7 2		6041.8+z	J2+14	6521.3+v	J4+12	1215.5 5		5305.8+v	J4+10
8204.5+z	J2+18	1106.0 2		7098.5+z	J2+16	7784.5+v	J4+14	1263.2 5		6521.3+v	J4+12
9360.2+z	J2+20	1155.7 2		8204.5+z	J2+18	9097.9+v	J4+16	1313.4 8		7784.5+v	J4+14
10565.0+z	J2+22	1204.8 2		9360.2+z	J2+20	10463.6+v	J4+18	1365.7 5		9097.9+v	J4+16
11819.7+z	J2+24	1254.7 2		10565.0+z	J2+22						

[†] Photon branching ratios. For relative intensities see tables for isomer feeding transitions and for transitions below the isomer. See 1979Li14 for a list of $I\gamma$'s for the isomer (at 6032 keV) decay from two reactions: 141 Pr(14 N,4n γ) and 122 Sn(32 S,3n γ). For SD bands, the values are relative γ -ray intensities within a band, and are from 1988Ra19 for SD-1 and from 1995Ni06 for other SD bands.

[‡] For transitions up to the 49/2 isomer E γ 's are taken from 1979Li14. For transitions feeding the isomer, E γ 's are taken from 1981Ha17, except the ones quoted to the nearest keV only: they are taken from 1985Ho17. For SD bands values are from 1995Ni06.

[#] γ 's above isomer: from $\gamma(\theta)$, linear polarization and lifetimes in 1981Ha17. For γ 's below isomer: from $\gamma(\theta)$ and lifetime limits in 1981Ha17 and 1979Li14 and conversion electron measurements by 1979Pi07.

[@] Seen only in conversion electron spectra by 1979Pi07.

[&] Reported by 1979Pi07 and 1979Fl05 only.

 $\gamma(^{151}\text{Dy})$ (continued)

- ^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^b Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

J4+18	<u> </u>	10463.6+v
J4+16	↓ \$ ²	9097.9+v
J4+14		7784.5+v
J4+12		6521.3+v
J4+10		5305.8+v
J4+8		4139.9+v
J4+6		3028.0+v
I4+4		1967.7+v
J4+2		959.3+v
J4	↓ [*] <u></u> <u></u>	v
J3+32		<u>17077.8+u</u>
<u>J3+30</u>	¥`ŵ∞_	15652.9+u
J3+28		14274.1+u
J3+26	¥``	12944.4+u
J3+24	v	11661.5+u
J3+22		10426.6+u
J3+20	V	9240.2+u
<u>J3+18</u>	¥~~&_~~	8102.0+u
J3+16		7011.5+u
J3+14	<u>→ → , </u>	5968.9+u
J3+12	<u> </u>	4974.5+u
J3+10	<u> </u>	4027.7+u
J3+8	<u> </u>	3128.4+u
<u>J3+6</u>	¥_* &	<u>2276.0+u</u>
<u>J3+4</u> J3+2	¥ <u>`</u> ®	<u>1470.7+u</u>
<u>J3+2</u> J3	_/¥.¥	/12.0+u
J2+32		17328.5+z
J2+30		15878.7+z
J2+28		14475.3+z
J2+26		13123.3+z
J2+24	×~	11819.7+z
J2+22		10565.0+z
J2+20	<u>↓ ∛ ∞</u>	9360.2+z
J2+18	<u>↓ ²⁹ <u>&</u></u>	8204.5+z
J2+16		7098.5+z
J2+14		6041.8+z
J2+12	↓ ≪	5035.3+z
J2+10		4076.7+z
J2+8		<u>3167.1+z</u>
J2+6 J2+4		<u>2306.6+z</u>
J2+4 I2+2	<u>→</u>	<u>1493.0+Z</u> 728.5±7
J2		720.J+Z
J1+38		20018.4+y
J1+36		18525.9+y
7/2(-)		0.0

 $^{151}_{66} Dy_{85}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

	8 8	
J1+36		18525.9+y
J1+34	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	17085.8+y
J1+32		15696.4+y
I1+30		14355.5+y
11+28		13063.1+v
<u>J1+26</u>		11819 6+v
<u>J1+20</u>		10624.4+y
<u>J1+2+</u> J1+22		9477.8+v
<u>J1+22</u> J1+20		8379.6+v
<u>J1+20</u>		7329 6+v
<u>J1+18</u>	¥%	6327.9+y
<u>J1+10</u> J1+14		5373 6+v
$\frac{J1+14}{11+12}$		4466.9+v
$\frac{J1+12}{I1+10}$		3607.7+y
J1+8		2795.5+y
J1+6		2029.9+y
J1+4	<u> </u>	1310.7+y
J1+2	* <u>*</u> _ 8	<u>633.0+y</u>
<u>JI</u> 1+42		21825.218
<u>J+42</u> J+40	\longrightarrow	21823.2+x 20283.4+x
		Dobostitik
<u>J+38</u>	¥,	18/91.0+x
J+36	%	17346.9+x
<u>J+34</u>		15953.1+x
J+32		14608.5+x
J+30	X ² S ² S	13313.7+x
J+28	↓ ³ <u>5</u> <u>6</u>	12068.7+x
J+26		10874.0+x
J+24	≷´_``	9729.9+x
J+22		8636.1+x
J+20		7593.3+x
J+18	$\downarrow \stackrel{\circ}{\sigma} \stackrel{\circ}{\sim} \stackrel{\circ}{\otimes}$	6601.4+x
J+16		5660.8+x
J+14		<u>4771.7+x</u>
<u>J+12</u> L+10		<u> </u>
<u>J+10</u> I+8		2414 2±v
J+6		1732.4+x
J+4		<u>1104.7+x</u>
J+2	• • • • • • • • • • • • • • • •	527.3+x
J≈(43/2)	Y	X
7/2(-)		0.0

 $^{151}_{66} Dy_{85}$

Band(B): SD-2 band							
J1+38	20018.4+y						
J1+36	¹⁴⁹² 18525.9+y						
J1+34	¹⁴⁴⁰ 17085.8+y						
J1+32	¹³⁸⁹ 15696.4+y						
J1+30	¹³⁴¹ 14355.5+y						
J1+28	¹²⁹² 13063.1+y						
J1+26	¹²⁴⁴ 11819.6+y						
J1+24	¹¹⁹⁵ 10624.4+y						
J1+22	1147 9477.8+y						
J1+20	1098 8379.6+y						
J1+18	1050 7329.6+y						
J1+16	1002 6327.9+y						
J1+14	954 5373.6+y						
J1+12	907 4466.9+y						
J1+10	859 3607.7+y						
J1+8	812 2795.5+y						
J1+6	766 2029.9+y						
J1+4	719 1310.7+y						
<u>J1+2</u>	678 633.0+y						
<u>J1</u>	633 Y						

Band(A): SD-1 band

J+42		21825.2+x
J+40	1542	20283.4+x
J+38	1492	18791.0+x
J+36	1444	17346.9+x
J+34	1394	15953.1+x
J+32	1345	14608.5+x
J+30	1295	13313.7+x
J+28	1245	12068.7+x
J+26	1195	10874.0+x
J+24	1144	9729.9+x
J+22	1094	8636.1+x
J+20	1043	7593.3+x
J+18	992	6601.4+x
J+16	941	5660.8+x
J+14	889	4771.7+x
J+12	020	3933.9+x
J+10	626	
J+8	786	2414.2+x
J+6 \	734	1732.4+x
J+4	682	1104.7+x
J+2	628	
J≈(43/2)	527	x

 $^{151}_{66} Dy_{85}$

					Band(E): SD-5 band		
				J	4+18	1	0463.6+v
				J	4+16	1366	9097.9+v
				J	4+14	1313	7784.5+v
				J	4+12	1263	6521.3+v
				J	4+10	1216	5305.8+v
				J	4+8	1166	4139.9+v
				J	4+6	1112	3028.0+v
		Band	(D): SD-4 band	<u>j</u>	4+4	1060	1967.7+v
				<u>J</u>	4+2	1008	959.3+v
		J3+32	17077.8+1	<u>ı J</u>	4	959	v
		J3+30	1425	<u>1</u>			
		J3+28	¹³⁷⁹ 14274.1+	1			
		J3+26	¹³³⁰ 12944.4+ı	1			
		J3+24	¹²⁸³ 11661.5+	1			
		J3+22	¹²³⁵ 10426.6+1	1			
		J3+20	¹¹⁸⁶ 9240.2+i	1			
		J3+18	¹¹³⁸ 8102.0+i	1			
		J3+16	1090 7011.5+1	1			
		J3+14	1043 5968.9+1	1			
		J3+12	994 4974.5+1	1			
		J3+10 12+8	947 4027.7+1	<u>1</u>			
		<u>J3+6</u>	852 2276.0+1	<u>1</u>			
Band(C):	SD-3 band	J3+4	805 1470.7+1	1			
J2+32	17328.5+z	J3+2 J3	759 712.0+0 712 0	1			
J2+30 1450	⁰ 15878.7+z						
J2+28 1403	³ 14475.3+z						
J2+26 1352	² 13123.3+z						
J2+24 ¹³⁰⁴	⁴ 11819.7+z						
J2+22 125	⁵ 10565.0+z						
J2+20 1205	⁵ 9360.2+z						
J2+18 115	⁶ 8204.5+z						
J2+16 110	⁶ 7098.5+z						
J2+14 105	⁷ 6041.8+z						
J2+12 100	6 5035.3+z						
J2+10 959	4076.7+z						
$\frac{J^{2+8}}{J^{2+6}}$ 910	3167.1+z						
$\frac{J^{2+0}}{I^{2+4}}$	2306.6+z						
J2+2 765	728.5+z						
J2 728	3 z						

¹⁵¹₆₆Dy₈₅