Adopted Levels, Gammas

	His	story		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	S. K. Basu, A. A. Sonzogni	NDS 114, 435 (2013)	1-Apr-2013	

 $Q(\beta^{-}) = -7852$ (syst) 358; S(n) = 10680 (syst) 277; S(p) = 38 (syst) 198; $Q(\alpha) = 2322$ (syst) 196 2017Wa10 Q(\varepsilon)=11340 (syst) 196; S(2n)=23868 (syst) 277; S(2p)=3078 (syst) 198; Q(\varepsilon p)=7867 (syst) 196 2017Wa10 Additional information 1. α decay of ¹⁵⁴Lu has been reported (1981HoZM).

¹⁵⁰Tm Levels

Cross Reference (XREF) Flags

 92 Mo(60 Ni,pn γ) A

E(level)	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0.0	(6 ⁻)	2.20 s 6	A	$\% \varepsilon + \% \beta^+ = 100; \ \% \varepsilon p = 1.2 + 2 - 4 \ (1988 \text{NiO2})$
				J^{π} : This level feeds 6 ⁻ and 5 ⁻ levels in ¹⁵⁰ Er following $\varepsilon + \beta^+$ decay with approximate log <i>ft</i> values corresponding to allowed transitions.
				$T_{1/2}$: from weighted average of 2.2 s 2 (1987To05), 2.15 s 10 (1988Ni02) and 2.22 s 7
				(1996Ga24). Other 3.5 s 6 (1982No07).
16.89 <i>17</i>	(5 ⁻)		Α	J^{π} : (M1) decay from (6 ⁻) level.
105.1? <i>3</i>	(5 ⁻)		Α	J^{π} : (M1) decay from (6 ⁻) level.
219.99 14	(6 ⁻)		Α	J^{π} : (M1) decay from (7 ⁻) level.
340.11 15	(7^{-})		Α	J^{π} : E3 from (10 ⁺) level.
671.3 10	(10^{+})	5.2 ms 3	Α	%IT=100
				J^{π} : from shell model predictions and systematics.
				$T_{1/2}$: from 1989Br22.

[†] Based on 10⁺ assignment to 671 level and (M1) nature of transitions to lower levels. $J^{\pi}=10^+$ isomers, with $T_{1/2}$ in the ms range decaying by E3 transitions of low energy predicted from shell-model considerations. E3 isomers found in ¹⁴⁶Tb, ¹⁴⁸Ho, ¹⁵⁰Tm were assumed to be the predicted $J^{\pi} = 10^+$ isomers.

 $\gamma(^{150}\text{Tm})$

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments
16.89	(5^{-})	17	100	0.0 (6	.)		
105.1?	(5 ⁻)	88 1	8.×10 ¹ 4	16.89 (5-	(M1)	4.48 17	α (K)=3.75 <i>14</i> ; α (L)=0.569 <i>21</i> ; α (M)=0.127 <i>5</i> ; α (N)=0.0297 <i>11</i> ; α (O)=0.00427 <i>16</i> α (P)=0.000231 <i>9</i> ; α (N+)=0.0342 <i>13</i>
		105.0 6	1.0×10 ² 5	0.0 (6-	[•]) (M1)	2.70 6	$\alpha(K)=2.265; \alpha(L)=0.3428; \alpha(M)=0.076217; \alpha(N)=0.01784; \alpha(O)=0.002566 \alpha(P)=0.0001393; \alpha(N+)=0.02055$
219.99	(6 ⁻)	114.9 <i>3</i>	21 4	105.1? (5-	[•]) (M1)	2.08 4	$\alpha(K)=1.74$ 3; $\alpha(L)=0.264$ 5; $\alpha(M)=0.0588$ 10; $\alpha(N)=0.01376$ 22; $\alpha(O)=0.00198$ 4 $\alpha(P)=0.0001071$ 17; $\alpha(N+)=0.0158$ 3
		203.1 <i>1</i>	100 11	16.89 (5-	[•]) (M1)	0.419	$\alpha(K)=0.352\ 5;\ \alpha(L)=0.0527\ 8;\ \alpha(M)=0.01174\ 17;\ \alpha(N)=0.00275\ 4;\ \alpha(O)=0.000395\ 6\ \alpha(P)=2.15\times10^{-5}\ 3;\ \alpha(N+)=0.00316\ 5$
		219.9 2	43 7	0.0 (6-	(M1)	0.337	$\begin{aligned} &\alpha(\mathbf{K}) = 0.283 \ 4; \ \alpha(\mathbf{L}) = 0.0423 \ 6; \ \alpha(\mathbf{M}) = 0.00942 \ 14; \\ &\alpha(\mathbf{N}) = 0.00220 \ 4; \ \alpha(\mathbf{O}) = 0.000317 \ 5 \\ &\alpha(\mathbf{P}) = 1.724 \times 10^{-5} \ 25; \ \alpha(\mathbf{N}+) = 0.00254 \ 4 \end{aligned}$

Adopted Levels, Gammas (continued)								
$\gamma(^{150}\text{Tm})$ (continued)								
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	$E_f J_f^{\pi}$	Mult.	α^{\dagger}	Comments	
340.11	(7 ⁻)	120.1 <i>I</i>	51 5	219.99 (6 ⁻)	(M1)	1.84	$\alpha(K)=1.538\ 22;\ \alpha(L)=0.232\ 4;\ \alpha(M)=0.0518\ 8;\ \alpha(N)=0.01212\ 18;\ \alpha(O)=0.001742\ 25\ \alpha(P)=9.43\times10^{-5}\ 14;\ \alpha(N+)=0.01396\ 20$	
		340.2 2	100 12	0.0 (6 ⁻)	(M1)	0.1036	α (K)=0.0870 <i>13</i> ; α (L)=0.01287 <i>19</i> ; α (M)=0.00286 <i>4</i> ; α (N)=0.000670 <i>10</i> ; α (O)=9.65×10 ⁻⁵ <i>14</i> α (P)=5.27×10 ⁻⁶ 8: α (N+.)=0.000772 <i>11</i>	
671.3	(10+)	331.2	100	340.11 (7 ⁻)	(E3)	0.209	$\begin{aligned} \alpha(K) = 0.1131 \ 16; \ \alpha(L) = 0.0732 \ 11; \ \alpha(M) = 0.0180 \ 3; \\ \alpha(N) = 0.00413 \ 6; \ \alpha(O) = 0.000504 \ 7 \\ \alpha(P) = 6.91 \times 10^{-6} \ 10; \ \alpha(N+) = 0.00464 \ 7 \\ B(E3)(W.u.) = 0.400 \ 25 \end{aligned}$	

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

2

3