¹⁴⁹Sm(n, γ):high resolution **2006Bo10**

	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. K. Basu, A. A. Sonzogni	NDS 114, 435 (2013)	1-Apr-2013

2006Bo10: E=Thermal, Measured E γ , I γ , $\gamma\gamma$, lifetimes using gamma ray induced Doppler (GRID) broadening technique. Gamma rays detected with GAMS4 flat crystal spectrometer. IBA model calculations. The gamma energies from this work are not used in the Adopted Levels because the uncertainties only include systematic errors.

150	Sm	Leve	ls

E(level) [†]	J^{π}	T _{1/2}	Comments
0.0	0^{+}		
333.9522 7	2+		
740.4672 9	0^{+}		
773.3744 9	4+		
1046.1488 9	2+	1.4 ps 5	$T_{1/2}$: range: 0.85 to 1.91 ps: 712 γ .
1071.3988 10	3-	0.28 ps 7	$T_{1/2}$: range: 0.207 to 0.348 ps: 737 γ .
1165.7805 10	1^{-}	0.12 ps 8	$T_{1/2}$: range: 0.040 to 0.200 ps: 832 γ and 1166 γ .
1193.8439 9	2^{+}	0.62 ps 18	$T_{1/2}$: range: 0.43 to 0.80 ps: 1194 γ .
1255.5024 19	0^{+}		
1278.9025 14	6^{+}	2.4 ps 7	$T_{1/2}$: range: 1.7 to 3.1 ps: 506 γ .
1357.6652 10	5-		
1417.3442 9	2^{+}		
1449.1814 9	4+	1.8 ps 8	$T_{1/2}$: range: 1.0 to 2.5 ps: 676 γ .
1504.5671 9	3+		
1642.6499 10	4+	0.54 ps 25	$T_{1/2}$: range: 0.30 to 0.79 ps: 869 γ .
1673.1821 20	(4^{+})		
1819.4420 9	4+		
1821.9296 <i>11</i>	4+		
1837.0166 17	8+	1.3 ps 7	$T_{1/2}$: range: 0.54 to 2.0 ps: if 558 γ is correctly placed.

[†] From least-squares fit to $E\gamma's$; $\chi^2=2.7$, larger than critical value of 1.0.

$\gamma(^{150}{\rm Sm})$

 ΔE : The uncertainties are systematic only.

$E_i(level)$	\mathbf{J}_i^{π}	Eγ	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	Eγ	E_f	\mathbf{J}_f^{π}
333.9522	2^{+}	333.9514 8	0.0	0^{+}	1255.5024	0^{+}	209.36 [‡] 2	1046.1488	2+
740.4672	0^{+}	406.5156 8	333.9522	2^{+}			921.5471 <i>18</i>	333.9522	2+
773.3744	4+	439.4227 9	333.9522	2^{+}	1278.9025	6+	505.5269 10	773.3744	4+
1046.1488	2^{+}	305.6813 6	740.4672	0^{+}	1357.6652	5-	78.76 [‡] 1	1278.9025	6+
		712.1918 14	333.9522	2^{+}			286.293 [‡] 15	1071.3988	3-
		1046.1459 <i>21</i>	0.0	0^{+}			584.2902 11	773.3744	4+
1071.3988	3-	298.061 [‡] 14	773.3744	4+	1417.3442	2^{+}	161.84 ^{‡#} 3	1255.5024	0^{+}
		737.4420 15	333.9522	2^{+}			223.5012 4	1193.8439	2^{+}
1165.7805	1-	831.8235 17	333.9522	2^{+}			251.5632 5	1165.7805	1-
		1165.74 <i>3</i>	0.0	0^{+}			345.9434 7	1071.3988	3-
1193.8439	2^{+}	147.73 [‡] 4	1046.1488	2^{+}			1083.415 [#] 20	333.9522	2^{+}
		420.48 [‡] 9	773.3744	4+			1417 [‡]	0.0	0^+
		453.3772 9	740.4672	0^+	1449.1814	4+	91.8 ^{‡#} 4	1357.6652	5-
		859.8846 17	333.9522	2^{+}			170.23 ^{‡#} 2	1278.9025	6+
		1193.8412 24	0.0	0^+			255.3362 5	1193.8439	2+

Continued on next page (footnotes at end of table)

¹⁴⁹Sm(n, γ):high resolution 2006Bo10 (continued)

$\gamma(^{150}\text{Sm})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	E_f	\mathbf{J}_f^{π}	Comments
1449.1814	4+	377.73 [‡] <i>3</i> 403.0316 <i>8</i>	1071.3988 1046.1488	3^{-} 2^{+}	
1504.5671	3+	675.8057 <i>14</i> 310.7233 <i>6</i> 458.4167 <i>9</i> 731 1909 <i>15</i>	773.3744 1193.8439 1046.1488 773.3744	4^+ 2^+ 2^+ 4^+	
1642.6499	4+	131.1909 13 1170.6108 23 138.05 ^{‡#} 4	333.9522 1504.5671	2+ 3+	
		$193.46^{\ddagger} 2$ $225.34^{\ddagger} 2$ $284.9843 6$ $448.8037 9$ $571.2512 10$ $596.53^{\ddagger} 4$ $869.2747 17$ $1308 692 3$	1449.1814 1417.3442 1357.6652 1193.8439 1071.3988 1046.1488 773.3744 333.9522	$ \begin{array}{c} 4^+ \\ 2^+ \\ 5^- \\ 2^+ \\ 3^- \\ 2^+ \\ 4^+ \\ 2^+ \end{array} $	
1673.1821	(4 ⁺)	626.67 [‡] 22 899.8049 [#] 18	1046.1488 773.3744	2+ 4+	
1819.4420	4+	$315.0^{\ddagger} 2$ 370.2575 7 402.0986 8 461.7766 9 $540.55^{\ddagger} 6$	1504.5671 1449.1814 1417.3442 1357.6652 1278.9025	3 ⁺ 4 ⁺ 2 ⁺ 5 ⁻ 6 ⁺	E_{γ} : Poor fit. Level energy difference=370.2600.
		625.568 [‡] 20 748.0430 15 773.2921 15 1485.492 3	1193.8439 1071.3988 1046.1488 333.9522	2+ 3 ⁻ 2+ 2+	E_{γ} : Poor fit. Level energy difference=1485.482.
1821.9296	4+	179.26 [‡] 5 372.7475 8 464.2638 9	1642.6499 1449.1814 1357.6652	4+ 4+ 5-	
1837.0166	8+	542.972+ 25 558.1131 [#] 10	1278.9025 1278.9025	6+ 6+	

[†] The uncertainties are systematic only. [‡] $E\gamma$ taken by 2006Bo10 from ENSDF for ¹⁵⁰Sm. [#] Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

 $^{150}_{\ 62}{\rm Sm}_{88}$