¹⁵⁰Nd(α,4nγ) E=45 MeV **1977Su05,1976SuZY,1986UrZY**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	S. K. Basu, A. A. Sonzogni	NDS 114, 435 (2013)	1-Apr-2013					

See also: 1987Ur01, 1987UrZY.

See similar data obtained by means of the ¹⁴⁸Nd(α ,2n) reaction by 1975Th07.

1977Su05: singles γ -ray spectra were taken with a 110-cm³ Ge(Li) detector (2.2-keV resolution at 1332 keV) placed at a distance of 20 cm from the target. $\gamma(\theta)$ were measured by taking data at six angles between 90° and 155°. x-ray spectra were taken with an intrinsic germanium detector with 500 eV resolution at 122 keV. Internal conversion electron spectra were measured with a mini-orange electron spectrometer. Results are discussed in terms of IBA theory.

150Sm Levels

	π #	E (1 1)	π π#		τ π#	F (1 - 1)	π π#
E(level)	J	E(level)	J	E(level)	J~	E(level)	J
0.0^{\dagger}	0^+	2589.1 & 8	(8 ⁻)	3941.0 ^{&} 12	(14 ⁻)	5346.5 [‡] 11	19-
333.9 [†] <i>3</i>	2+	2744.4 [‡] 6	11-	4025.5 <mark>&</mark> 9	(14)	5581.4 ^{&} 14	(19)
773.5 [†] 4	4+	2929.1 6	(10 ⁻)	4306.0 [†] 7	16+	5592.9 ^{†&} 14	(20^{+})
1071.5? [‡] 4	3-	2996.0 <mark>&</mark> 8	$11^{(-)}$	4386.5 <mark>&</mark> 8	$16^{(+)}$	5739.8? ^{&} 16	
1279.0 [†] 5	6+	3048.5 [†] 6	12^{+}	4576.0 ^{&} 13	(16 ⁻)	6021.5? ^{&} 19	(20 ⁻)
1358.0 [‡] 5	5-	3293.6 [‡] 6	13-	4605.9 [‡] 10	17-	6065.4 ^{&} 17	
1449.1 [@] 5	4+	3384.0 7	(12 ⁻)	4612.3 ^{&} 14	(16)	6107.9? ^{‡&} 15	(21)
1764.9 [‡] 6	7^{-}	3522.9 ^{&} 10	(12)	4929.3 ^{†&} 9	18+	6421.5 ^{&} 20	
1837.1 [†] 6	8+	3676.0 [†] 7	$(14)^+$	5045.8 ^{†&} 13	(18)		
2232.4 [‡] 6	9-	3835.4 ^{&} 8	$14^{(+)}$	5251.3? ^{&} 17			
2433.3 [†] 6	10^{+}	3914.4 [‡] 7	15-	5276.5 ^{&} 16	(18 ⁻)		

[†] Band(A): g.s. band.

[‡] Band(B): Negative parity band.

[#] Unambiguous J^{π} assignments were made possible in the g.s. band up to $J^{\pi}=12^+$, and the negative parity band up to $J^{\pi}=11^-$, by the presence of closed loops of interband E1 and intraband E2 transitions. J^{π} below 1500 keV are from Adopted Levels, except as noted.

[@] This level was placed in the decay scheme by 1977Su05 on basis of earlier work.

[&] From 1986UrZY.

$\gamma(^{150}\text{Sm})$

Electron and γ -ray intensities were normalized through use of the theoretical values of the internal conversion coefficients for the pure E2 2⁺ to 0⁺ and 4⁺ to 2⁺ transitions.

Incomplete coincidence data given by authors.

 $\Delta I\gamma$: 1986UrZY do not report uncertainties. 1977Su05 have reported I γ and $\Delta I\gamma$ for about half the known γ rays. The two papers are consistent with each other, the average difference between two values reported for a given γ ray being ± 2 units.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ#	Comments
190.1 [@]	0.5	4025.5	(14)	3835.4	14 ⁽⁺⁾			
200.6 3	3.3	2433.3	10^{+}	2232.4	9-	D(+E2) ^{<i>a</i>}	+0.05 20	
238.3 [@] 3	1.1	3914.4	15-	3676.0	$(14)^+$	D ^a		
244.7 <i>3</i>	4.2	3293.6	13-	3048.5	12^{+}	D ^a		I_{γ} : intensity obtained from coincidence data.
251.6 [@]	1.1	2996.0	$11^{(-)}$	2744.4	11-			

Continued on next page (footnotes at end of table)

			¹⁵⁰ Nd(α,4 n γ) E=45 Me	V 1977S	u05,1976SuZY,19	86UrZY (continued)	
γ ⁽¹⁵⁰ Sm) (continued)								
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	δ#	Comments	
303.9 <i>3</i> 311.3 <i>3</i> 222 4@	2.2 17	3048.5 2744.4	12+ 11-	2744.4 11 ⁻ 2433.3 10 ⁺ 4605.0 17 ⁻	D^a D(+E2) ^a	≥-0.1		
333.9 3	100	4929.3 333.9	10 2 ⁺	0.0 0+	E2		 α(K)exp=0.032 α(K)exp: Experimental value was normalized to theory. Mult.: this transition was taken to be pure E2 in order to normalize electron and γ-ray intensities. 	
335.9 [@]	0.5	3384.0	(12^{-})	3048.5 12+				
340.2 [@]	2.4	2929.1	(10^{-})	$2589.1 (8^{-})$				
356.1	1 1	6421.5	(10)	6065.4				
$382 4^{@}$	0.7	3676.0	$(14)^{+}$	3203.6 13-	D ^a			
395 1 3	24	2232.4	(14) 9 ⁻	1837 1 8 ⁺	$E_1(+M_2)$	+0.03.5	$\alpha(K) \exp = 0.0078 \ 10$	
407 A [@]	0.3	1764.0	7-	1358.0 5-	$E_1(1,1,2)$	10.05 5	u(11)exp=0.0070 70	
439.6 <i>3</i>	96	773.5	7 4+	333.9 2+	E2 E2		 α(K)exp=0.0148 α(K)exp: Experimental value was normalized to theory. Mult.: this transition was taken to be pure E2 	
			(10-)				in order to normalize electron and $\hat{\gamma}$ -ray intensities.	
454.8 3	4.3	3384.0	(12^{-})	$2929.1 (10^{-})$	EO		(\mathbf{V}) - (\mathbf{V}) - (\mathbf{V})	
467.5 3	4.3	2232.4	9	1/64.9 /	E2		$\alpha(\mathbf{K})\exp=0.014$ 4	
472.2°	1.5	4386.5	16(1)	3914.4 15	Du			
484.0	1.3	6065.4	7-	5581.4 (19)	$\mathbf{E}_{1}(\mathbf{A}, \mathbf{M}_{2})$.0.05 .50 7	(17) 0.0055.25	
485.8 3	10	1/64.9	(10^{-})	$12/9.0 \ 6^{\circ}$ $2/33 \ 3 \ 10^{+}$	E1(+M2) E1	+0.05 +30-7	$\alpha(K) \exp = 0.0055 25$	
502 5 [@]	1.0	4025.5	(10)	2+33.3 10 3522.0 (12)	LI			
502.5	91	4025.5	(14) 6^+	77354^+	F2		$\alpha(K) \exp = 0.0097 \ 10$	
512.1 3	22	2744.4	11-	2232.4 9-	E2		$\alpha(K) \exp = 0.0075 \ 20$	
541.8 [@]	2.0	3835.4	$14^{(+)}$	3293.6 13-	D ^a			
542.7 <mark>b</mark>	0.3	4929 3	18+	4386 5 16 ⁽⁺⁾				
549.5 3	18	3293.6	13-	2744.4 11	E2		$\alpha(K) \exp = 0.011 \ 3$	
551.2 [@]	1.0	4386.5	$16^{(+)}$	3835.4 14 ⁽⁺⁾				
557.0 [@]	2.5	3941.0	(14^{-})	3384.0 (12 ⁻)				
558.1 3	79	1837.1	8+	1279.0 6+	E2		$\alpha(K) \exp = 0.0077 \ 12$	
							I_{γ} : from 1977Su05.	
562.8 [@]	6.0	2996.0	$11^{(-)}$	2433.3 10+				
584.5 <i>3</i>	3.5	1358.0	5-	773.5 4+	E1(+M2)	0.0 +3-1	α (K)exp<0.003	
586.8 [@]	1.3	4612.3	(16)	4025.5 (14)				
596.3 3	43	2433.3	10+	1837.1 8+	E2		α (K)exp=0.0074 <i>12</i>	
615.1 3	20	3048.5	12+	2433.3 10 ⁺	E2 E2		$\alpha(K) \exp = 0.0061 \ 10$	
620.83	10	3914.4	15	3293.0 13			$\alpha(\mathbf{K})\exp=0.0055\ 12$	
623.3	3.5	4929.3	18'	4306.0 16	E2		a(K) = 0.0040 15	
630.0.3	11 8 1	3070.0 4306.0	$(14)^{+}$ 16^{+}	$3040.3 12^{\circ}$ 3676 0 (14) ⁺	E2 E2		$\alpha(K) \exp = 0.0049 IJ$ $\alpha(K) \exp = 0.0056 20$	
635.0 3	1.6	4576.0	(16^{-})	3941.0 (14 ⁻)			E_{γ} : from 1977Su05.	
639 [@]	0.6	5251.3?	(-)	4612.3 (16)			,	
652.1@	14	5581.4	(19)	4929 3 18+				
650 3@	0.5	50/5 8	(12)	1386 5 16 ⁽⁺⁾				
663.6 [@]	2.5	5592.0	(20^{+})	4929 3 18+	<u> F2&</u>			
000.0	<i></i>	JJ/4.1	(20)	1/4/10 10				

Continued on next page (footnotes at end of table)

¹⁵⁰Nd(α ,4n γ) E=45 MeV 1977Su05,1976SuZY,1986UrZY (continued)

$\gamma(^{150}\text{Sm})$ (continued)

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	Comments
675.6 3		1449.1	4+	773.5 4+		
691.6 [@]	6.8	4605.9	17-	3914.4 15-	E2	α (K)exp=0.0035 <i>10</i> I _y : intensity obtained from coincidence data.
694 [@]	0.3	5739.8?		5045.8 (18)		
696.9 [@]	1.5	2929.1	(10 ⁻)	2232.4 9-		α (K)exp<0.008
700.5 [@]	0.8	5276.5	(18 ⁻)	4576.0 (16 ⁻)		
710.4 [@]	1.7	4386.5	$16^{(+)}$	3676.0 (14)+	E2 <mark>&</mark>	
732.1 ^{@b}	0.3	4025.5	(14)	3293.6 13-		
737.6 ^{@b} 3	0.3	1071.5?	3-	333.9 2+		
740.6 <i>3</i>	3.1	5346.5	19-	4605.9 17-	E2 <mark>&</mark>	α (K)exp<0.0035
745 [@]	0.4	6021.5?	(20 ⁻)	5276.5 (18-)		
752.1 [@]	2.8	2589.1	(8 ⁻)	1837.1 8+	M2	α (K)exp=0.018 5 Mult.: from α (K)exp=0.018 5 (1977Su05).
761.4 [@]	0.5	6107.9?	(21)	5346.5 19-	E2 <mark>&</mark>	
763.5 [@]	1.1	2996.0	$11^{(-)}$	2232.4 9-		
778.4 [@]	1.5	3522.9	(12)	2744.4 11-		
786.8 ^{@b}	0.4	3835.4	$14^{(+)}$	3048.5 12+		
824.3 [@]	0.6	2589.1	(8 ⁻)	1764.9 7-		

[†] Taken from 1986UrZY.

[‡] 1986UrZY do not report uncertainties. 1977Su05 have reported I γ and Δ I γ for about half the known γ rays. The two papers are consistent with each other, the average difference between two values reported for a given γ ray being ± 2 units.

[#] Assignment made on basis of internal conversion and angular distribution data (1977Su05) and DCO ratios (1987Ur01). Below 1500 keV excitation, mult.'s of γ 's in decay scheme are also from adopted γ 's.

[@] From 1986UrZY. See also 1987Ur01.

& DCO ratio indicates stretched quadrupole transition (1987Ur01). For $E\gamma \le 700$, the authors rule out the possibility of Q=M2 based on RUL, with T_{1/2} limits (not quoted) deduced from their experimental time resolution.

^a DCO ratio indicates stretched dipole transition (1987Ur01).

^b Placement of transition in the level scheme is uncertain.

 $^{150}_{62}{
m Sm}_{88}$

¹⁵⁰Nd(α,4nγ) E=45 MeV 1977Su05,1976SuZY,1986UrZY

6