¹⁴⁸Nd(α ,2n γ) E=26 MeV 1975Th07

	History							
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	S. K. Basu, A. A. Sonzogni	NDS 114, 435 (2013)	1-Apr-2013					

See also 1977Su05 for $(\alpha,4n)$ data.

Authors concentrated on a search for bands other than the g.s. band. They report as new the levels in the negative-parity band from $J^{\pi}=7^{-}$ up to (13⁻). Other details of the decay scheme given were taken from earlier works which are freely referenced.

 γ -ray studies were made with a 14-cm³ Ge(Li) detector with 1.9-keV resolution at 1332 keV. γ ray, $\gamma(\theta)$, $\gamma\gamma$, and conversion electron studies were made. $\gamma(\theta)$ measurements were made at 15° intervals between 0° and 90° to the beam direction. To obtain a 0° reading the beam was stopped in these measurements at the target with a natural Pb backing. $\gamma\gamma$ data were accumulated with a 25-ns resolving time. Random coincidences were shown to be negligible. Conversion electron studies were done with a 7-gap orange electron spectrometer (resolution $\approx 1\%$ of $\beta \times \rho$). Experimental conversion coefficients were normalized to give the correct coefficients for the known E2 transitions in the g.s. band. γ -ray intensities used in this process were determined from the A₀ terms of the angular distribution.

¹⁵⁰Sm Levels

			l		l	
E(level)	$J^{\pi \#}$	$T_{1/2}$	E(level)	J ^{π#}	E(level)	$J^{\pi #}$
0.0^{\dagger}	0^+	stable	1278.6 [†] 3	6+	2432.6 [†] 4	10^{+}
333.90 [†] 20	2+		1357.5 [‡] 3	5-	2743.8 [‡] 4	11-
740.4 10	0^{+}		1449.3 <i>4</i>	4+	3047.8 [†] 4	12+
773.2 [†] 3	4+			7-	3292.8 [‡] 6	(13-)
1046.1 4	2+		1836.7 [†] <i>3</i>	8+		
1071.4 [‡] 4	3-		2231.9 [‡] 3	9-		

[†] Band(A): Member of g.s. band.

[‡] Band(B): $K^{\pi}=0^{-}$ octupole band.

[#] From Adopted Levels below 7⁻ level and from $\gamma(\theta)$ and conversion electron data from 7⁻ level and up.

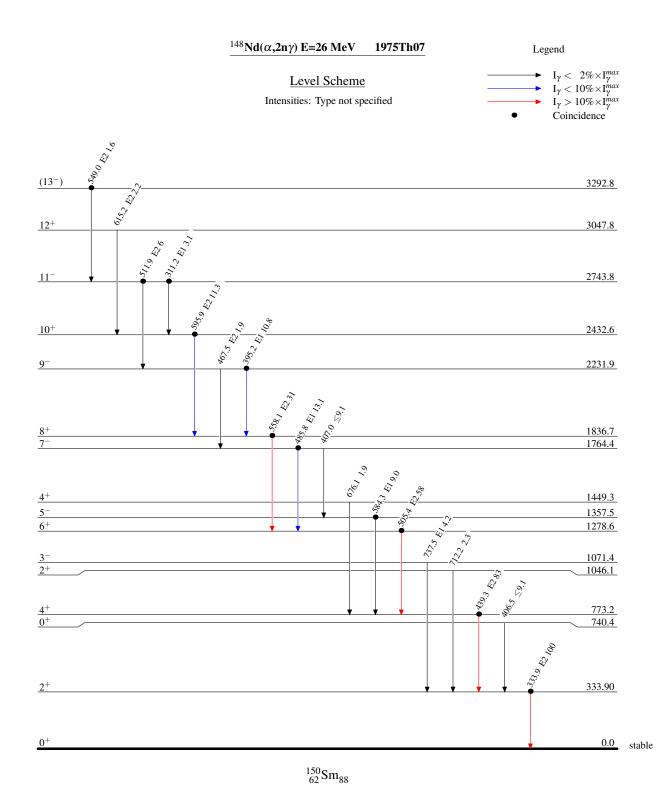
 $\gamma(^{150}\text{Sm})$

B(E1)(W.u.): the authors observe ratios of interband E1 to intraband E2 transition strengths which give consistent E1 hindrance factors of $1.\times10^4$ to $1.\times10^5$ in Weisskopf single particle estimates. Adopting the nuclear deformation for ¹⁵⁰Sm of β_2 =0.19 given by (1965St22), the authors conclude that the E2 transitions are enhanced, and thus the E1 hindrance factors are probably of the order $1.\times10^6$ to $1.\times10^7$.

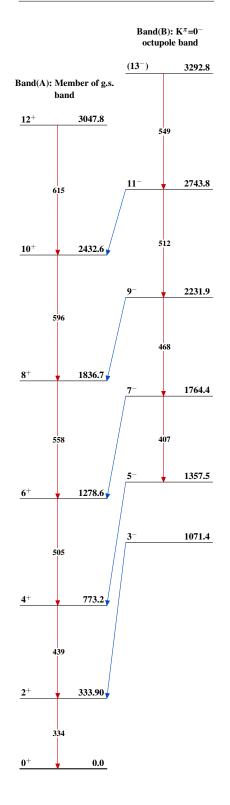
Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
311.2 2	3.1 2	2743.8	11-	2432.6	10^{+}	E1	$\alpha(K) \exp = 0.014 \ 3$
333.9 2	100	333.90	2+	0.0	0^{+}	E2 [#]	
395.2 2	10.8 6	2231.9	9-	1836.7	8+	E1	$\alpha(K) \exp = 0.0086 \ 20$
406.5	≤9.1 [@]	740.4	0^{+}	333.90	2^{+}		
407.0	≤9.1 [@]	1764.4	7-	1357.5	5-		
439.3 2	83 4	773.2	4+	333.90	2^{+}	E2 [#]	
467.5 2	1.9 <i>1</i>	2231.9	9-	1764.4	7-	E2	α (K)exp=0.015 3
485.8 <i>1</i>	13.1 7	1764.4	7-	1278.6	6+	E1	$\alpha(K) \exp = 0.0055 \ 20$
505.4 1	58 <i>3</i>	1278.6	6+	773.2	4+	E2 [#]	
511.9 5	6 1	2743.8	11-	2231.9	9-	E2	α (K)exp=0.010 4
549.0 5	1.6 <i>1</i>	3292.8	(13 ⁻)	2743.8	11-	E2 [#]	
558.1 <i>1</i>	31 2	1836.7	8+	1278.6	6+	E2 [#]	

Continued on next page (footnotes at end of table)

¹⁴⁸Nd(α ,2n γ) E=26 MeV 1975Th07 (continued)


$\gamma(^{150}\text{Sm})$ (continued)

E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
584.3 2	9.0 5	1357.5	5-	773.2	4+	E1	Mult.: established by (1969Re11).
595.9 2	11.3 6	2432.6	10^{+}	1836.7	8+	E2 [#]	
615.2 2	2.2 2	3047.8	12^{+}	2432.6	10^{+}	E2 [#]	
676.1 <i>3</i>	1.9 2	1449.3	4+	773.2	4+		
712.2 3	2.3 2	1046.1	2+	333.90	2^{+}		
737.5 <i>3</i>	4.2 5	1071.4	3-	333.90	2^{+}	E1 [#]	


[†] Normalized to 100 for the 2⁺ to g.s. transition. [‡] Assigned from $\gamma(\theta)$ and $\alpha(K)$ exp normalized to the known E2 transitions in the g.s. band.

[#] From adopted gammas.

^(a) I γ =9.1 5 for the 406.5=407.0 γ pair. The authors conclude, on the basis of an isotropic $\gamma(\theta)$, that most of the intensity belongs with the 0^+ to 2^+ placement (740.4 level).

¹⁴⁸Nd(α,2nγ) E=26 MeV 1975Th07

 $^{150}_{62}{
m Sm}_{88}$