150 Nd(p,p' γ) **2011El09**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	S. K. Basu, A. A. Sonzogni	NDS 114, 435 (2013)	1-Apr-2013					

¹⁵⁰Nd Levels

E=10.9 MeV proton beam impinged on a 1.5 mg/cm² thick ¹⁵⁰Nd target enriched to 98% at the Wright Nuclear Structure Laboratory (WNSL) at Yale University. Scattered protons detected by five silicon surface-barrier detectors. Gamma rays detected by the YRAST-Ball spectrometer consisting of ten actively shielded, segmented high-purity germanium (HPGe) clover detectors. Measured Eγ, Iγ, γγ-coin, proton-γ coin, E(proton). Deduced levels, J, π, K. Comparisons with IBA model in *sdpf* boson space.

ſ
5
4
5
5

[†] From least-squares fit to $E\gamma$ data, assuming 0.2 keV uncertainty for each γ ray energy.

[‡] Band(A): $K^{\pi}=0^+$, g.s. band.

[#] Band(B): $K^{\pi}=0^+$; β -vibrational band.

[@] Band(C): $K^{\pi}=2^+ \gamma$ -vibrational band.

& Band(D): $K^{\pi} = 0^{-}$ octupole vibrational band.

$\gamma(^{150}\text{Nd})$

E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	$E_f J_f^{\pi}$	Comments
130.2	2^{+}	130.2	100	$0.0 0^+$	
381.4	4+	251.24	100	130.2 2+	
676.2	0^{+}	546.06	100	130.2 2+	
720.5	6+	339.70	100	381.4 4+	
850.7	2^{+}	469.40	29 4	381.4 4+	
		720.61	100 13	130.2 2+	
		850.70	15 6	$0.0 \ 0^{+}$	
853.2	1-	722.91	100 13	130.2 2+	
		853.01	98 17	$0.0 \ 0^{+}$	
935.1	3-	553.52	36 4	381.4 4+	
		804.73	100 10	130.2 2+	
1061.8	2^{+}	680.29	5.5 8	381.4 4+	
		931.78	100 11	130.2 2+	
		1061.98	80 9	$0.0 \ 0^+$	
1129.6	5-	409.23	24 4	720.5 6+	
		748.07	100 12	381.4 4+	
1130.0	8^{+}	409.5 5	100	720.5 6+	E_{γ} , I_{γ} : taken from Adopted Gammas, not populated in the current work.
1137.6	4+	416.94	44 8	720.5 6+	
		756.4	100 14	381.4 4+	

Continued on next page (footnotes at end of table)

		¹⁵⁰ Nd($\mathbf{p},\mathbf{p}'\gamma$) 2011El09 (continued)							
	γ ⁽¹⁵⁰ Nd) (continued)								
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$
1183.5	0,1,2	248.34	100 14	935.1 3-	1517.7	4,5,6	1136.29	100 16	381.4 4+
		330.30	66 10	853.2 1-	1545.0	3-	694.05	25 7	850.7 2+
1200.6	3(-)	819.16	22 4	381.4 4+			1415.06	100 15	130.2 2+
		1070.15	100 12	130.2 2+	1580.1	3-	1198.5	100 12	381.4 4+
1284.5	1-	349.63	68 10	935.1 3-			1450.05	68 9	130.2 2+
		430.88	100 13	853.2 1-	1645.4	5,(4)	924.82	579	720.5 6+
		434.09	10 4	850.7 2+			1264.01	100 14	381.4 4+
1351.5	4+	289.57	6.4 10	$1061.8 \ 2^+$	1645.9	3,5,(2,4)	294.29	100 16	1351.5 4+
		970.07	100 11	381.4 4+			508.50	35 9	1137.6 4+
		1221.42	39 5	130.2 2+	1648.6	1,(0,2)	1518.45	100	130.2 2+
1433.1	(7-)	303.33	50 14	1130.0 8+	1738.8	0^{+}	1608.65	100	130.2 2+
		712.44	100 22	720.5 6+	1765.3	0 to 3	480.75	42 9	$1284.5 \ 1^{-}$
1435.4	4+	234.41	100	$1200.6 \ 3^{(-)}$			912.16	100 14	853.2 1-
		373.91	100	$1061.8 2^+$	1777.1	1 to 5	196.98	100	1580.1 3-
1483.6	3-	283.00	32 4	$1200.6 \ 3^{(-)}$	1782.4	(4 ⁺)	847.25	100	935.1 3-
		421.71	34 4	1061.8 2+	1800.0	(5 ⁻)	864.22	100 19	935.1 3-
		1102.14	100 12	381.4 4+			1080.23	15 7	720.5 6+
		1353.52	86 11	130.2 2+	1864.5	3-	1014.08	100 13	850.7 2+
1488.6	4,(0,2)	204.15	31 7	1284.5 1			1482.75	81 11	381.4 4+
		1358.31	100 16	130.2 2+	1906.4	4+	844.53	100	$1061.8 \ 2^+$
1490.2	0,1,2	813.92	100	676.2 0+	1909.3	0 to 4	1779.13	100	130.2 2+
1496.7	3,(2,4,5)	359.16	100	1137.6 4+	1975.8	1 to 5	775.13	100	$1200.6 \ 3^{(-)}$
1517.7	4,5,6	797.21	69 15	720.5 6+	1985.1	1 to 5	1049.98	100	935.1 3-

$\frac{150}{10}$ Nd(p,p' γ) 2011El09

Level Scheme

Intensities: Relative photon branching from each level

 $^{150}_{60}\rm{Nd}_{90}$

¹⁵⁰Nd(p,p' γ) 2011El09

Level Scheme (continued)

Intensities: Relative photon branching from each level

4

¹⁵⁰Nd(**p**,**p**′γ) 2011El09

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{150}_{60}\mathrm{Nd}_{90}$

150 Nd(**p**,**p**' γ) **2011El09**

¹⁵⁰₆₀Nd₉₀