					His	story				
	1	уре	Author			Citation		Literature Cutoff Date		
	Full E	valuation S. 1	K. Basu, A. A. Sonzogni			NDS 114, 435 (2	2013)	1-Apr-2013		
$Q(\beta^{-}) = -4658 \ 8; \ S(2n) = 15637 \ 7; \ S(2n$	(n)=8708 7 2p)=11006 tion 1.	; S(p)=6612 7; 7 2017Wa10	$Q(\alpha)=280^{\circ}$	76	2017Wa1	0				
					¹⁵⁰ Gd	Levels				
				Cross	Referenc	e (XREF) Flags				
	A ¹ B ¹ C ¹ D ¹	⁵⁰ Eu β^- decay ⁵⁰ Tb ε decay (50 Tb ε decay (50 Tb ε decay (55 Dy α decay	(12.8 h) 5.8 min) 3.48 h)	E F G H	(HI,xn γ) (HI,xn γ): ¹⁴⁸ Sm(α , ¹⁵⁰ Sm(α ,	SD 2nγ) E= 30 MeV 4nγ) E=50 MeV	I J	151 Eu(p,2n γ) 152 Gd(p,t) E=18 MeV		
E(level) [†]	$J^{\pi \dagger}$	T _{1/2}	XI	REF				Comments		
0.0 ^d	0+	1.79×10 ⁶ y	8 ABCDE	E GHIJ	$ \begin{array}{c} $	100 weighted average 0650g01), 1.78×10	of 2.1> ⁶ y 8 (×10 ⁶ y <i>3</i> (1962Si14), 1.4×10 ⁶ y <i>4</i> (1966Fr11).		
638.045 ^{bd} 14	2+ [@]		ABC H	E GHIJ	J^{π} : fr	om E2 γ to 0 ⁺ .				
1134.297 ^{bc} 17 1207.135 20	$3^{-}_{0^{+}}$		BC E C	GHIJ J	$J^{\pi}: E$ $J^{\pi}: free$	1 γ to 2 ⁺ , E2 γ fro om E0 transition to	5^{-} m 5^{-} .			
1288.42 ^{bd} 3	4 ⁺ @		BC I	GHIJ	J					
1430.467 18	$(2)^{+}$		С	IJ	J^{π} : E2	2γ to 2^+ , (E2) γ to	o 0+.			
1518.362 <i>21</i> 1592.428 <i>24</i>	2^+ 1		C C	I	J ^π : Ε J ^π : Μ ass	2 γ to 0 ⁺ . 11 γ to 0 ⁺ and E1 γ ignment of π .	γ to 2 ⁺	⁺ agree with J=1 but disagree on the		
1699.912 ^C 25	5-		BC I	E GHIJ	J^{π} : E	1γ from 6 ⁺ , E1 γ	to 4 ⁺ .			
1814.13 6	3-		C	I	J^{π} : E	1γ to 2^+ , γ to 4^+ .				
1936.31 ⁰⁰ 16 1947.36 3	6 ⁺ @ 2 ⁻ ,3 ⁻ ,4 ⁻		B E C	E GH IJ	J J ^π : Μ	I1 +E2 γ to 3 ⁻ . Sp ding from (2 ⁻) is r	oin 4 ⁻ real	is ruled out if the observed small β		
1955.371 22 1969.99 <i>11</i>	2+		C C		J^{π} : E	1 γ to 3 ⁻ , γ 's to 0 ⁻	+.			
1980? 1987.93 <i>3</i> 2080.61 <i>9</i> 2083.96 <i>3</i> 2091.623 <i>25</i> 2115.75 ^{be} <i>9</i> 2157 5 <i>7</i>	2 ⁺ ,3 ⁺ ,4 ⁺ (2,3,4) ⁺ 2 ⁻ ,3 ⁻ 2 ⁺ 6 ⁺ [@]		C C C B B	J I E GHI	$J^{\pi}: E^{\pi}_{2}: E^{\pi}_{2}: E^{\pi}_{2}: E^{\pi}_{3}: E^$	2 γ to 2 ⁺ and γ to 2 γ to 2 ⁺ , 4 ⁺ . Il γ to 3 ⁻ , γ 's to 1 1 γ to 3 ⁻ , γ to 0 ⁺ . 2 γ to 4 ⁺ .	4 ⁺ .			
2179.912 <i>21</i> 2209.54 <i>3</i>	2+ 2-,3-		C C		J ^π : Ε J ^π : Μ exp	1 γ to 3 ⁻ , γ to 0 ⁺ . 11 γ to 3 ⁻ . 4 ⁻ excl pected.	uded b	by γ to 2 ⁺ , since M2 transitions not		
2211.11 ^{bc} 14 2262.21 4	7 ^{-&}		B E C	GH	1					
2306.2 <i>4</i> 2326.283 <i>17</i>	(5 ⁻ ,6 ⁺)		C	G	J^{π} : γ'	's to 7 ⁻ , 5 ⁻ , 4 ⁺ .				
2364.91 5	$1,2^{+}$		С		J^{π} : γ'	's to 0^+ , 1^- , 2^+ .				
$2392.06^{\ddagger b}$ 17 2408.53 5 2416.78 5	$(7)^+$ 2 ⁺		B E C	E GH	J^{π} : M J^{π} : γ'	11 γ from 8 ⁺ , (M1- 's to 0 ⁺ and 4 ⁺ .	+E2) γ	/ to 6 ⁺ .		
2410.7 ! 3	3		C							

E(level) [†]	$J^{\pi \dagger}$	XREF	Comments
2426.20.3	$1^{-}.2^{+}$	C	I^{π} : γ' s to 0^+ , 2^+ , 3^- .
2434.34.9	- ,=	c	
2521.56 7	$(2^+, 3, 4^+)$	c	J^{π} : γ' s to 2 ⁺ and 4 ⁺ .
$2554 \ 14^{be} \ 12$	<u>8+@</u>	RECH	
2558 51 20	1 2+		I^{π} : γ to 0^+
2564.96.13	$(1^{-}2^{-}3^{-})$	c	I^{π} : (F2) γ to 3^{-} γ to 2^{+}
2503.9.7	(1,2,5)	C	$J : (E2) \neq 00 J ; \neq 00 Z :$
2627 992 8		C	
2654 39 7		c	
2678 45 13	1 2+	C	$I^{\pi} \cdot \gamma' s$ to $0^+ 2^+$
2686.84 4	12.3-	c	J^{π} : γ'' s to J^{-} and J^{-} .
2754.58.6	$2^+, 3.4^+$	c	J^{π} : γ 's to 2 ⁺ and 4 ⁺ .
2767 22 6	(2^+)	. п	I^{π} ; possible stratched E2 to 6 ⁺ honce member of σ s hand
2707.51 0	(0) $1^{-}2^{+}$	C II	J. possible stretched E2 to 0 mence member of g.s. data. $I^{\pi_1} \alpha/s$ to 0^+ and 3^-
2700.49 5	1,2	C	J . y s to U and J .
2816.1° 4	9 🛥	ĿН	
2827.817	0-	C	
2834.87 4	8 1.0 ⁺	н	π^{π} (, 0 ⁺ 10 ⁺
2845.41 5	1,2	C	J^{*} : γ 's to 0° and 2° .
2808.27 10	0.+		
2906.0? 5	8 '	вн	J'': ε decay from (8',9'), E2 γ to 6'.
2930.20 3	1.2+	C	I^{π} , A_{α} to 0^+ and 2^+
2904.95 11	1,2	C	J^{*} . γ s to 0 and 2.
3024.7 5	1-2+	C	π_{i} as to 0^{+} and 2^{-}
2042 61 24	1,2	C	J [*] . 7 \$ 10 0 and 5.
2082 762 17		C	
3118 75 8		C	
3134 13 6		C	
3176.8.5		G	
3177 732 17		c	
2220 2# 1	10-	ЕЦ	π , M1 + E2 or to 0^{-1}
3251 5 5	10	C L L	$J : MITTL2 \ y \ 10 \ 9 \ .$
3269 322 11		C	
3209.32.11	10+@	с г п	π , Γ 2 at to 9^+
3208.21 22	10	С	J^{*} . E2 γ 10 8 .
3290.34 22		C	
3344.68.6	(2^{+})	C	I^{π} : γ' s to 0^+ Λ^+
$2266 A^{\pm \# C}$	(2)	<u> </u>	J. 7 Sto U, T.
3300.4 4	11	ЕН	
2279 11 11		C	
2280.2.5		C	
2461 7 5	2+	C	I^{π} , α' s to 0^+ , 4^+
3510 72 17	$(1-2^+)$	C	$J : \gamma \le 00, 4$. $I^{\pi} : \alpha' \le t_0 0^+ 2^+ 2^-$
3522.4.6	(1,2)	C	J . <i>y</i> S 10 0 , 2 , 5 .
3631.4.3		Ċ	
3657.35? 19	2+	č	J^{π} : γ' s to 0 ⁺ , 4 ⁺ .
3712.40 22		С	
3726.63 15		С	
3772.03 19		С	
3828.4? 4	$(1,2^+)$	С	J^{π} : γ' s to 0 ⁺ , 2 ⁺ .
3840.04 17		С	
3963.64 23		С	
4021.2? 4	(1,2 ⁺)	C	J^{n} : γ 's to 0^{+} , 2^{+} .
4105.4 ^{#e} 10	12 ⁺ [@]	E	J^{π} : E2 γ to 10 ⁺ .

E(level) [†]	$J^{\pi^{\ddagger}}$	XRE	EF	Comments
4111.07? 25	$1^{-},2^{+}$	С		J^{π} : γ' s to 0^+ , 2^+ , 3^- .
4131 1 ^{‡#c} 5	13- &	E	н	
4143.8? 3	$(1^{-},2^{+})$	c		J^{π} : γ' s to 0^+ , 3^- .
4151.0 4		C		
4164.0 4	2+	С		J^{π} : γ' s to 0 ⁺ , 4 ⁺ .
4178.6 5		С		
4186.9 [‡] 5	$(12)^{-}$		н	J^{π} : E2 γ to 10 ⁻ .
4206.9 <i>3</i>	$(1,2^+)$	С		J^{π} : γ to 0^+ .
4235.2? 6	$(1^{-},2^{+})$	С		J^{π} : γ' s to 0 ⁺ , 3 ⁻ .
4246.2? 3	$(1,2^+)$	С		J^{π} : γ to 0^+ .
4258.0 <i>3</i>	$(1^{-},2^{+})$	С		J^{π} : γ' s to 0 ⁺ , 3 ⁻ .
4264.6 3	2+	С		J^{π} : γ' s to 0 ⁺ , 4 ⁺ .
4283.1? 10	$(1,2^+)$	C		J^{π} : γ to 0^+ .
4289.4? 3	$(1,2^{+})$	C		J^{n} : γ to 0^{+} .
4296.7 10		C		
4303.2 3	1.2+	C		$I\pi$, α to 0^+
4314.0 3	$^{1,2}_{2^+}$	C		$J : \gamma = 0 0$. $I^{\pi} : \gamma' s = t_0 0^+ 4^+$
4322.0 5	$(1 2^+)$	c		$J : y \le 000, 4$. $I^{\pi} : y = t_0 0^+$
4378.6? 6	$(1,2^+)$ $(1^+,2^+)$	c		J^{π} : γ' s to 0^+ . $(3^+, 4^+)$.
4405.3 3	$(1,2^+)$	č		J^{π} : γ to 0^+ .
4419.7 6	(13)		Н	
4435.2 6		С		
4445.9 <i>3</i>	$1,2^{+}$	С		J^{π} : γ to 0^+ .
4462.3 8		С		
4492.8 7		C		
4499.8 8		C		
4522.8? 6	(1.0+)	C		τ <i>π</i> +
4529.4? 4	$(1,2^+)$	C		$J^{\prime\prime}$: γ to 0 ⁺ .
4545.0 0		C		
4557.2 10		C		
4720 6 [#] <i>e</i> 11	14+@	C F		
4739.0 11	14	C E		
$4834 9^{\ddagger #c} 10$	15- &	F	н	
5428 8 ^{#e} 11	16 ⁺ @	- F		
$5450.0^{\text{#C}}$ 13	17- &	F	ч	
5632 8 [#] 14	17+	- F		I^{π} : γ from 18^+ γ to 16^+
5764 8 ^{#e} 13	18+@	- F		I^{π} : γ to 16^+ dipole to 17^-
6311.8 [#] .16	(19^{-})	E		
$6450.8^{\#e}$ 16	$(20^+)^{(20^+)}$	F		
$6405 8^{\#f} 10$	$(20^{-})^{a}$	E E		
0495.8 = 19	(21)	E		
7273.8 = 22	(25)	E		
7929.0 = 24 $9205 \# f_{-2}$	$(23)^{a}$	E		
8323^{m} 3	$(27)^{-1}$	E		
9410? 5 $9407^{\#} 3$	(20^{-})	E		
9582 [#] 3	(29) (20 ⁺)	E E		
9851 [#] 3	(29)	E		
10532# 3	(30^{-})	E		
11231 [#] <i>A</i>	(31) (32^+)	E		
11231 4	(33)	E		

E(level) [†]	$J^{\pi \dagger}$	XREF
12185 [#] 4	(34-)	E
12678 [#] 4	$(36^{-},34^{+})$	Е
xg	J≈(30 ⁺)	F
815.00+x ^g 10	J+2	F
1021.1+x ^h 8	J+2	F
1664.10+x ^g 15	J+4	F
1931.3+x ^h 8	J+4	F
2156.6+x 18	J+4	F
$2552.00 + x^8$ 18	J+6	F
2897.4+x ⁿ 7	J+6	F
3012.6+x 15	J+6	F
$3480.90 + x^{\circ} 20$	J+8	F
$3893.0+x^{n}$ 6	J+8	F
$3900.0 \pm x 12$ $4451.79 \pm x 8 23$	J+8 I+10	г F
$4961.7 + x^{h} 6$	J + 10	F
$5465.28 + x^8.25$	J+10 I+12	г F
$5860.7 \pm x^{h}$ 5	J+12 J+12	F
$6521.8 + x^8 3$	J+12 J+14	F
$6907.6 \pm x^{h}.5$	I+14	F
$7621.8 + x^8 3$	J+16	F
8005.2+x ^h 5	J+16	F
8766.4+x ⁸ 3	J+18	F
9154.0+x ^h 5	J+18	F
9956.9+x ^g 4	J+20	F
10354.0+x ^h 5	J+20	F
11194.8+x ^g 4	J+22	F
11604.9+x ^h 6	J+22	F
12481.4+x ⁸ 4	J+24	F
$12906.1 + x^{h} 6$	J+24	F
13818.0+x ^g 4	J+26	F
14257.7+x ⁿ 6	J+26	F
15205.8+x ⁸ 4	J+28	F
$15658.7 + x^{n}$ 7	J+28	F
$10043.9 \pm x^{8} 4$	J+30	г
$1/109.1+X^{*}$ /	J+30 L+32	F F
$18139.1 \pm x^{0}$ 3	J+32	r F
$18008.2 \pm x^{10} = 0$ 19686 1 $\pm x^{10} = 6$	J+32 I+34	г F
$20155 8 \pm x^{h} 0$	J 3/	F
$20133.8 \pm x$ 9 21287 8 $\pm x$ 8 7	J+34 I+36	F
$21267.6+R^{-1}$	I+36	F
$2307.3 + x^{h} 1/$	J 38	F
23397.3TX 14	J = 30 $K_{\infty}(27^{-})$	r F
y^{2} 688 14 y^{1} 3	ι~(∠/) Κ⊥?	г Б
$1207.6 \pm \frac{1}{15}$	$K \pm 2$	Г
$1207.0+y^2$ IS	κ+2 Κ+4	r
$1423.8+y^{3}$ 3	K+4 K+4	1
2015.5+y [•] 15	К+4	F

E(level) [†]	$J^{\pi^{\ddagger}}$	XREF	Comments
$2208.9 + v^{j}$ 7	K+6	F	
2787.0+y ⁱ 15	K+6	F	
3043.3+y ^j 8	K+8	F	
3601.3+y ⁱ 15	K+8	F	
3928.6+y ^j 9	K+10	F	
4458.6+y ⁱ 14	K+10	F	
4865.1+y ^j 10	K+12	F	
5359.3+y ⁱ 13	K+12	F	
5853.7+y ^j 10	K+14	F	
6304.6+y ⁱ 13	K+14	F	
6894.6+y ^j 10	K+16	F	
7295.2+y ⁱ 13	K+16	F	
7989.9+y ^j 10	K+18	F	
8331.9+y ⁱ 13	K+18	F	
9139.2+y ^j 10	K+20	F	
9415.2+y ⁱ 13	K+20	F	
10343.1+y ^j 11	K+22	F	
10546.6+y ⁱ 12	K+22	F	
11602.4+y ^j 11	K+24	F	
11725.9+y ⁱ 12	K+24	F	
12916.1+y ^j 11	K+26	F	
12955.8+y ⁱ 12	K+26	F	
14229.1+y ⁱ 12	K+28	F	
14293.5+y ^j 11	J+28	F	
15557.7+y ⁱ 12	K+30	F	
15721.8+y ^j 11	K+30	F	
16936.3+y ⁱ 12	K+32	F	
17208.2+y ^j 12	K+32	F	
18366.7+y ¹ 13	K+34	F	
18751.4+y ^j 12	K+34	F	
19848.9+y ⁱ 13	K+36	F	
20351.6+y ^j 14	K+36	F	
21384.3+y ¹ 14	K+38	F	
22010.0+y ^J 15	K+38	F	
22972.1+y ¹ 15	J+40	F	
z ^k	L≈(28 ⁻)	F	Gamma rays of 617.1 and 664.3 keV (1993Be37) are not assigned by 1999ErZZ to low lying levels in ¹⁴⁹ Gd.
712.5+z ^k 3	L+2	F	
1473.7+z ^k 5	L+4	F	
2284.2+z ^k 6	L+6	F	
3144.2+z ^k 6	L+8	F	
4054.7+z ^k 8	L+10	F	
5017.2+z ^k 9	L+12	F	
6032.1+z ^k 9	L+14	F	
7100.3+z ^k 9	L+16	F	
8222.7+z ^k 10	L+18	F	
9399.8+z ^k 10	L+20	F	
10632.1+z ^k 11	L+22	F	

¹⁵⁰Gd Levels (continued)

 $\frac{\text{E(level)}^{\dagger}}{11919.8+\text{z}^{k} 11}$ $J^{\pi \dagger}$ XREF L+24

F

Comments

¹⁵⁰Gd Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi^{\ddagger}}$	XREF	E(level) [†]	$J^{\pi \dagger}$	XREF
13263.6+z ^k 12	L+26	F	4993.1+w ⁿ 10	J1+12	F
14664.1+z ^k 12	L+28	F	6001.3+w ⁿ 10	J1+14	F
16121.2+z ^k 12	L+30	F	7062.1+w ⁿ 10	J1+16	F
$17635.1+z^{k}$ 13	L+32	F	8176.0+w ⁿ 10	J1+18	F
$19204 2 + z^k 13$	L+34	F	$9344.4 + w^{n}$ 11	I1+20	F
1)201.212 13	$M \sim (27^{+})$	F	$10567.0 \pm w^{n} 11$	J1+20 J1⊥22	F
$\frac{1}{7715 \pm nl}$	M_{\perp}	F	$10507.0+w^{n}$ 11 11845 0+w^{n} 11	J1+22 I1+24	F
$1500 6 \dots l 5$	M + 4	F	$12179.7 \pm w^{n}$ 11	J1 + 24	r F
1300.0+u 3	NI+4	r	$131/6.7 \pm w$ 11 $14568.0 \pm w^{ll}$ 12	J1+20 J1+20	r
2451.5+u ² 0	M+0	r	$14308.9 + W^{n} I2$	J1+28	r
3359.9+u ² 6	M+8	F	$16015.7 + w^n I2$	J1+30	F
$4313.1+u^{t}$ 6	M+10	F	$17519.6 + w^n I3$	J1+32	F
5311.3+u ^t 7	M+12	F	19080.3+w ⁿ 14	J1+34	F
6353.7+u ¹ 7	M+14	F	20698.2 + w'' 16	J1+36	F
7441.4+u ^l 9	M+16	F	s ⁰	J2≈(31 ⁺)	F
8574.4+u ^l 9	M+18	F	800.4+s ^o 4	J2+2	F
9753.9+u ^l 9	M+20	F	1650.3+s ^o 5	J2+4	F
10980.9+u ^l 10	M+22	F	2552.7+s ^o 6	J2+6	F
12256.0+u ^l 10	M+24	F	3507.9+s ^o 7	J2+8	F
13581.2+u ^l 11	M+26	F	4518.1+s ^o 7	J2+10	F
14956.3 ± 11	M+28	F	$5584.2 + 8^{\circ}$ 7	J2+12	F
$16382.4 \pm u^{l}$ 11	M+30	F	$6706.4 \pm 8^{\circ}$ 7	12+12	F
17862.5 ± 12	M+32	F	$7886.2 \pm s^{0}.8$	12+16	F
$10370 2 \pm 10^{-12}$	M+32	F	$9124.2\pm 5^{\circ}$ 8	12+10 12+18	F
$19379.2 \pm u^{-12}$	M + 26	F	9124.2 ± 8 0	J_{2+10}	F
$20913.2 + u^{-1}15$	M+30	r	$10420.8 + 8^{\circ} 9$	J2+20	r
$22505.2+u^{\circ}$ 15	M+38 $N\sim(20^{+})$	r F	$11/10.5+s^{\circ}$ 9 13101 5 $\pm s^{\circ}$ 10	J2+22 J2+24	r F
$73320+v^{m}20$	$N \approx (29)$ N+2	F	13191.5+8 10 14665 5+8 ⁰ 11	12+24 12+26	F
$1511.4 + v^m 3$	N+4	F	$16199.5 + s^{o}$ 12	J2+28	F
2341.2+v ^m 4	N+6	F	17793.6+s ^o 14	J2+30	F
3221.1+v ^m 4	N+8	F	19446.1+s ^o 17	J2+32	F
4151.2+v ^m 5	N+10	F	t ^p	J3≈(33 ⁺)	F
5132.6+v ^m 5	N+12	F	$827.6 + t^{P} 5$	J3+2	F
$6166.5 + v^m 6$	N+14	1	$1/02.9 + t^{P}$ /	J3+4	1
$7253.5 + V^{m} 0$ 8304 0+ $v^{m} 6$	N+10 N+18	r F	$2027.2 + l^{P}$ 0	J3+0 I3+8	r F
$9590.4 + v^m 7$	N+20	F	$4626.6+t^{P}$ 9	J_{3+10}	F
$10841.4 + v^m 7$	N+22	F	$5703.4 + t^{P}$ 10	J3+10 J3+12	F
12147.9+v ^m 8	N+24	F	6832.3+t ^p 11	J3+14	F
13510.5+v ^m 8	N+26	F	8014.8+t ^p 12	J3+16	F
14929.5+v ^m 9	N+28	F	9250.8+t ^p 13	J3+18	F
16404.8+v ^m 10	N+30	F	$10540.9 + t^{P} 13$	J3+20	F
$1/93/.1+v^m$ 11 10527.0+ v^m 14	N+32	F	$11885.9 + t^{P} 14$	J3+22	F
$19327.0 \pm v^{m}$ 14 21171 $8\pm v^{m}$ 16	N+34 N+36	r F	$13280.0 + t^{P} IS$ $14741.0 + t^{P} IS$	J3+24 I3+26	r F
$211/1.0 \pm V = 10$ W^{n}	$J_{1} \approx (28^{+})$	F	$16253.7 + t^{P} 17$	J_{3+20} J_{3+28}	F
$711.1 + w^n 5$	J1+2	F	17821.0+t ^p 20	J3+30	F
1469.4+w ⁿ 9	J1+4	F	aq	J4≈(32 ⁺)	F
2275.8+w ⁿ 9	J1+6	F	804.0+a ^q 4	J4+2	F
3131.3+w ⁿ 9	J1+8	F	$1655.6 + a^{q} 6$	J4+4	F
4036.7+w ⁿ 10	J1+10	F	2555.8+a ^q 7	J4+6	F

Continued on next page (footnotes at end of table)

¹⁵⁰Gd Levels (continued)

E(level) [†]	$J^{\pi \dagger}$	XREF	E(level) [†]	J^{π}	XREF
3507.0+a ^q 8	J4+8	F	4353.5+c ^{\$} 14	J6+10	F
4508.5+a ^q 9	J4+10	F	5322.9+c ^s 15	J6+12	F
5562.2+a ^q 9	J4+12	F	6338.5+c ^{\$} 16	J6+14	F
6660.4+a ^{q} 10	J4+14	F	7403.9+c ^{\$} 17	J6+16	F
7822.2+a ^{q} 10	J4+16	F	8516.3+c ^{\$} 18	J6+18	F
9034.6+a ^q 11	J4+18	F	9682.2+c ^{\$} 19	J6+20	F
10300.5+a ^q 12	J4+20	F	10901.0+c ^s 20	J6+22	F
11621.0+a ^q 13	J4+22	F	12172.4+c ^s 21	J6+24	F
12996.6+a ^q 14	J4+24	F	13499.3+c ^s 22	J6+26	F
14427.3+a ^q 16	J4+26	F	14881.7+c ^s 23	J6+28	F
15912.7+a ^q 19	J4+28	F	16320.1+c ^s 24	J6+30	F
17451.6+a ^q 21	J4+30	F	17816.2+c ^s 25	J6+32	F
b ^r	J5≈(34 ⁺)	F	19373+c ^s 3	J6+34	F
830.0+b ^r 5	J5+2	F	d ^t	J7≈(28 ⁺)	F
1706.5+b ^r 7	J5+4	F	$808.9 + d^t 5$	J7+2	F
2629.1+b ^r 9	J5+6	F	1667.4+d ^t 9	J7+4	F
3599.1+b ^r 9	J5+8	F	2577.0+d ^t 12	J7+6	F
4615.7+b ^r 10	J5+10	F	3433.3+d ^t 15	J7+8	F
5680.0+b ^r 11	J5+12	F	4334.0+d ^t 15	J7+10	F
6792.0+b ^r 12	J5+14	F	5279.6+d ^t 16	J7+12	F
7952.0+b ^r 14	J5+16	F	6271.1+d ^t 17	J7+14	F
9159.7+b ^r 15	J5+18	F	7311.5+d ^t 19	J7+16	F
10414.1+b ^r 16	J5+20	F	8404.3+d ^t 21	J7+18	F
11716.8+b ^r 17	J5+22	F	9544.6+d ^t 22	J7+20	F
13068.5+b ^r 17	J5+24	F	10736.6+d ^t 22	J7+22	F
14468.6+b ^r 18	J5+26	F	11981.5+d ^t 23	J7+24	F
15917.5+b ^r 19	J5+28	F	13280.5+d ^t 24	J7+26	F
17412.5+b ^r 21	J5+30	F	14635.3+d ^t 25	J7+28	F
c ^s	J6≈(29 ⁺)	F	16047+d ^t 3	J7+30	F
815.1+c ^{\$} 7	J6+2	F	17515+d ^t 3	J7+32	F
1664.1+c ^s 8	J6+4	F	19046+d ^t 3	J7+34	F
2553.1+c ^s 12	J6+6	F	20638+d ^t 3	J7+36	F
3430.8+c ^{\$} 13	J6+8	F			

[†] Above the 18⁺ level the decay scheme and J^{π} assignments are based on $\gamma\gamma$, $\gamma(\theta)$, and I γ measurements in (³⁰Si,4n γ).

[‡] From ¹⁵⁰Sm(α ,4n γ).

From 124 Sn(30 Si,4n γ).

[@] Member of $\Delta J=2$ positive-parity band built on the g.s.

[&] Member of $\Delta J=2$ negative-parity sequence which is interpreted by 1977Ha21 in terms of the vibrator model. Up to spin 9⁻ the levels may represent a band built on an octupole vibration while those above 11⁻ may be a band built on a quasiparticle state. 1983BaZG discusses in the N=87 region the transition from collective rotations at low spin to noncollective rotations at high spin.

^{*a*} Member of $\Delta J=2$ sequence of negative parity states of noncollective nature. 1983BaZG discusses these states in terms of shape change and the transition from collective to noncollective rotations at high spin.

^b From ¹⁵⁰Tb ε decay (5.8 min).

^{*c*} Band(A): Member of $\Delta J=2$ negative-parity band from $J^{\pi}=17^{-}$ to 3^{-} .

^{*d*} Band(B): Member of $\Delta J=2$, positive-parity band.

^{*e*} Band(C): Member of $\Delta J=2$, positive-parity band.

^{*f*} Band(D): Member of $\Delta J=2$ negative-parity band from $J^{\pi}=27^{-}$ to $J^{\pi}=21^{-}$.

- ^{*g*} Band(E): Yrast SD-1 band (1991Fa07,1999ErZZ). Q(intrinsic)=17.0 +5-4 (1998Be06) from DSAM data for 17 transitions in the cascade. Other: 17 3 (1991Fa07) Percent population=1.0 (1989Fa02). Intruder configuration= $\pi 6^2 v 7^2$; $\pi = +, \alpha = 0$ (1991Fa07).
- ^{*h*} Band(F): SD-2 band (1994Fa13,1999ErZZ). Q(intrinsic)=16.8 *12* (1998Be06) from DSAM data for 15 transitions in the cascade. Intensity, relative to SD-1 band, is 47% 3 (1999ErZZ). Configuration (relative to yrast SD band): $\pi 1/2[301]^{-2}\pi 3/2[651]^2$; $\pi = +, \alpha = 0$, also possibly coupled to β vibration (1999ErZZ,1994Fa13). This band is identical to ¹⁵²Dy SD-1 band. The band undergoes backbending at low frequencies and decays into the yrast band, rather than directly to the normal deformation states, at few hundred keV excitation.
- ^{*i*} Band(G): SD-3 band (1990By01,1993Be37,1999ErZZ). Q(intrinsic)=17.4 +5-4 (1998Be06) from DSAM data for 17 transitions in the cascade. Intensity, relative to SD-1 band, is 45% 3 (1999ErZZ). Configuration (relative to yrast SD band): $\pi 1/2[301]^{-1}\pi 6_3^1$; $\pi = -, \alpha = 1$ (1999ErZZ,1993Be37). Identical to ¹⁵¹Tb SD band with $\pi 6^3 \times ([301]1/2)^{-1} \nu 7^2$ intruder configuration (1993Be37).
- ^{*j*} Band(H): SD-4 band (1993Be37,1999ErZZ). Q(intrinsic)=15.0 +6-4 (1998Be06) from DSAM data for 15 transitions in the cascade. Intensity, relative to SD-1 band, is 44% 3 (1999ErZZ). Configuration (relative to yrast SD band): $v7_2^{-1}v5/2[402]^1$; $\pi = -, \alpha = 1$ (1999ErZZ,1993Be37). SD-4 and SD-5 bands are interpreted (1999ErZZ) as signature partners.
- ^{*k*} Band(I): SD-5 band (1993Be37,1999ErZZ). Q(intrinsic)=16.2 4 (1998Be06) from DSAM data for 17 transitions in the cascade. Intensity, relative to SD-1 band, is 42% 3 (1999ErZZ). Configuration (relative to yrast SD band): $v7_2^{-1}v5/2[402]^1$; $\pi = -, \alpha = 0$ (1999ErZZ,1993Be37). SD-4 and SD-5 bands are interpreted (1999ErZZ) as signature partners.
- ^{*l*} Band(J): SD-6 Band (1999ErZZ). Q(intrinsic)=15.4 +8-5 (1998Be06) from DSAM data for 14 transitions in the cascade. Intensity, relative to SD-1 band, is 30% 3 (1999ErZZ). Configuration (relative to yrast SD band): $v7_2^{-1}v7_3^1$; π =+, α =1 (1999ErZZ).
- ^{*m*} Band(K): SD-7 Band (1999ErZZ). Intensity, relative to SD-1 band, is 19% 2 (1999ErZZ). Configuration (relative to yrast SD band): $v7_2^{-1}v9/2[514]^1$; π =+, α =1 (1999ErZZ). SD-7 and SD-8 bands are interpreted (1999ErZZ) as signature partners.
- ^{*n*} Band(L): SD-8 Band (1999ErZZ). Intensity, relative to SD-1 band, is 19% 2 (1999ErZZ). Configuration (relative to yrast SD band): $v7_2^{-1}v9/2[514]^1$; $\pi=+,\alpha=0$ (1999ErZZ). SD-7 and SD-8 bands are interpreted (1999ErZZ) as signature partners.
- ^o Band(M): SD-9 Band (1999ErZZ). Intensity, relative to SD-1 band, is 18% 2 (1999ErZZ). Configuration (relative to yrast SD band): $(\nu 7_2^{-1} 6_4^{-1}) \nu 5/2 [402]^2$ or $(\nu 7_2^{-1} 6_4^{-1}) \nu 9/2 [514]^2$; $\pi = +, \alpha = 1$ (1999ErZZ).
- ^{*p*} Band(N): SD-10 Band (1999ErZZ). Intensity, relative to SD-1 band, is 10% 2 (1999ErZZ). Configuration (relative to yrast SD band): $\pi 1/2[301]^{-1}$, $v7_2^{-1}\pi 6_3^1$, $v5/2[402]^1$; π =+, α =1 (1999ErZZ). SD-10 and SD-11 bands are interpreted (1999ErZZ) as signature partners.
- ^{*q*} Band(O): SD-11 Band (1999ErZZ). Intensity, relative to SD-1 band, is 8% 2 (1999ErZZ). Configuration (relative to yrast SD band): $\pi 1/2[301]^{-1}$, $\nu 7_2^{-1}\pi 6_3^1$, $\nu 5/2[402]^1$; $\pi = +, \alpha = 0$ (1999ErZZ). SD-10 and SD-11 bands are interpreted (1999ErZZ) as signature partners. Intensity (0.09 3) for an additional gamma ray near 1590 keV (possibly at the top of this band) is shown in the intensity plot of 1998ErZY.
- ^{*r*} Band(P): SD-12 Band (1999ErZZ). Intensity, relative to SD-1 band, is 6% 1 (1999ErZZ). Configuration (relative to yrast SD band): $\pi 1/2[301]^{-2}\pi 3/2[651]^2$; $\pi = +, \alpha = 0$ (1999ErZZ). Intensities of 0.27 3 and 0.05 3 for additional gamma rays near 1550 keV and 1600 keV, respectively, (possibly at the top of this band) are shown in the intensity plot of 1998ErZY.
- ^{*s*} Band(Q): SD-13 Band (1999ErZZ). Intensity, relative to SD-1 band, is 6% *1* (1999ErZZ). Configuration (relative to yrast SD band): $v6_4^{-1}v5/2[402]^1$; $\pi=+,\alpha=1$ (1999ErZZ). SD-13 and SD-14 bands are interpreted (1999ErZZ) as signature partners. Intensity (0.07 *3*) for an additional gamma ray near 1600 keV (possibly at the top of this band) is shown in the intensity plot of 1998ErZY.
- ^{*t*} Band(d): SD-14 Band (1999ErZZ). Intensity, relative to SD-1 band, is 6% *1* (1999ErZZ). Configuration (relative to yrast SD band): $v6_4^{-1}v5/2[402]^1$; $\pi=+,\alpha=0$ (1999ErZZ). SD-13 and SD-14 bands are interpreted (1999ErZZ) as signature partners.

						Adopted Lev	els, Gammas	(continued	
							$\gamma(^{150}\text{Gd})$		
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{a}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	α^{g}	$I_{(\gamma+ce)}$	Comments
638.045	2+	638.050 16	100	0.0	0+	E2 [‡]	0.00754		$\alpha(K)=0.00624 \ 9; \ \alpha(L)=0.001017 \ 15; \ \alpha(M)=0.000224$ 4; $\alpha(N)=5.11\times10^{-5} \ 8; \ \alpha(O)=7.68\times10^{-6} \ 11$ $\alpha(P)=4.26\times10^{-7} \ 6; \ \alpha(N+)=5.92\times10^{-5} \ 9$
1134.297	3-	496.242 15	100	638.045	2+	E1	0.00479		$\alpha(\Gamma) = 1.25 \times 10^{-5} (\alpha(\Gamma) = 1.52 \times 10^{-5} (\alpha(N) = 0.0001189)$ $\alpha(K) = 0.00409 6; \alpha(L) = 0.000552 8; \alpha(M) = 0.0001189$ $17; \alpha(N) = 2.72 \times 10^{-5} 4; \alpha(O) = 4.18 \times 10^{-6} 6$ $\alpha(R) = 2.60 \times 10^{-7} 4; \alpha(L) = 2.17 \times 10^{-5} 5$
1207.135	0^+	569.083 15	100 5	638.045	2+	E2+M1	0.014 5		$\begin{array}{c} \alpha(\mathbf{F}) = 2.69 \times 10^{-5} & 4, \ \alpha(\mathbf{N}^{+}, .) = 5.17 \times 10^{-5} & 5 \\ \alpha(\mathbf{K}) = 0.012 & 4; \ \alpha(\mathbf{L}) = 0.0018 & 4; \ \alpha(\mathbf{M}) = 0.00039 & 8; \\ \alpha(\mathbf{N}) = 8.9 \times 10^{-5} & 19; \ \alpha(\mathbf{O}) = 1.4 \times 10^{-5} & 3 \\ \alpha(\mathbf{P}) = 8.5 & 7 & 3; \ \alpha(\mathbf{N}) = 0.000103 & 22 \end{array}$
		1207.2 2		0.0	0+	E0		1.04 15	a(F)=0.E=7.5, $a(IA+)=0.000105.22I_{(\gamma+ce)}: this is from observed ce(K) corrected byevaluators to include ce(L), using theoretical ratiosgiven by 1969Ha61.E_{\gamma}: transition energy calculated from observedconversion electron energies$
1288.42	4+	154.07 ^h 6 650.36	1.8 ^h 4 100	1134.297 638.045	$3^{-}_{2^{+}}$	(E1) E2	0.00720		α(K)=0.00597 9; α(L)=0.000967 14; α(M)=0.000212 3; α(N)=4.86×10 ⁻⁵ 7; α(O)=7.30×10 ⁻⁶ 11
1430.467	(2)+	792.385 20	100	638.045	2+	E2	0.00456		$\alpha(P)=4.08\times10^{-7} \ 6; \ \alpha(N+)=5.63\times10^{-5} \ 8 \\ \alpha(K)=0.00381 \ 6; \ \alpha(L)=0.000582 \ 9; \ \alpha(M)=0.0001272 \\ 18; \ \alpha(N)=2.91\times10^{-5} \ 4; \ \alpha(O)=4.42\times10^{-6} \ 7 \\ (D)=2.20\times10^{-7} \ 4 \ (D)=2.20\times10^{-5} \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \$
		1430.46 4	56 4	0.0	0+	(E2)	1.39×10 ⁻³		$\alpha(P)=2.63\times10^{-4} ; \alpha(N+)=3.38\times10^{-5} ; \alpha(K)=0.001143 I6; \alpha(L)=0.0001566 22; \alpha(M)=3.38\times10^{-5} 5; \alpha(N)=7.77\times10^{-6} I1 ; \alpha(O)=1.201\times10^{-6} I7; \alpha(P)=7.93\times10^{-8} I2; \alpha(N+)=6.12\times10^{-5} 9$
1518.362	2^{+}	384.06 4	13.2	1134.297	3-				
		880.27 3	100 5	638.045	2+	M1+(E2+E0) [‡]	0.0049 13		α (K)=0.0042 <i>12</i> ; α (L)=0.00059 <i>14</i> ; α (M)=0.00013 <i>3</i> ; α (N)=2.9×10 ⁻⁵ <i>7</i> ; α (O)=4.5×10 ⁻⁶ <i>11</i> α (P)=3.0×10 ⁻⁷ 9: α (N+)=3.4×10 ⁻⁵ 8
		1518.34	93	0.0	0+	E2	1.28×10 ⁻³		$\alpha(K) = 0.001021 \ I5; \ \alpha(L) = 0.0001389 \ 20; \alpha(M) = 3.00 \times 10^{-5} \ 5; \ \alpha(N) = 6.89 \times 10^{-6} \ I0 \alpha(O) = 1.066 \times 10^{-6} \ I5; \ \alpha(P) = 7.09 \times 10^{-8} \ I0; \alpha(N+) = 8.85 \times 10^{-5} \ I3$
1592.428	1	385.35	2.2	1207.135	0^+				
		954.46 4	61 <i>3</i>	638.045	2+	E1	1.24×10 ⁻³		$\alpha(K)=0.001063 \ 15; \ \alpha(L)=0.0001391 \ 20; \\ \alpha(M)=2.99\times10^{-5} \ 5; \ \alpha(N)=6.86\times10^{-6} \ 10 \\ \alpha(O)=1.062\times10^{-6} \ 15; \ \alpha(P)=7.14\times10^{-8} \ 10; \\ \alpha(N+)=7.99\times10^{-6} \ 12$
		1592.51 4	100.0 18	0.0	0^{+}	M1	1.66×10^{-3}		α (K)=0.001312 <i>19</i> ; α (L)=0.0001754 <i>25</i> ; α (M)=3.78×10 ⁻⁵ <i>6</i> ; α (N)=8.70×10 ⁻⁶ <i>13</i>

				A	dopte	d Levels, G	ammas (continued)	
						$\gamma(^{150}\text{Gd})$ (continue	d)	
E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}^{a}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ	α^{g}	Comments
1699.912	5-	411.490 15	77 4	1288.42	4+	M1		0.0417	$\alpha(O)=1.358\times10^{-6} \ 19; \ \alpha(P)=9.41\times10^{-8} \ 14; \\ \alpha(N+)=0.0001319 \ 19 \\ \alpha(K)=0.0354 \ 5; \ \alpha(L)=0.00495 \ 7; \ \alpha(M)=0.001071 \ 15; \\ \alpha(N)=0.000247 \ 4; \ \alpha(O)=3.84\times10^{-5} \ 6 \\ \alpha(N)=0.002247 \ 4; \ \alpha(N)=0.002298 \ 4 \\ \alpha(N)=0.002247 \ 4 \\ \alpha(N)=0.002248 \ 4 \\ \alpha(N)=0.00248 \ 4 \\ \alpha(N)=0.00$
		565.64 2	100	1134.297	3-	E1		0.00359	$\alpha(P)=2.60\times10^{-6} 4; \ \alpha(N+)=0.000288 4$ $\alpha(K)=0.00306 5; \ \alpha(L)=0.000411 6; \ \alpha(M)=8.84\times10^{-5}$ $13; \ \alpha(N)=2.03\times10^{-5} 3; \ \alpha(O)=3.12\times10^{-6} 5$ $\alpha(P)=2.03\times10^{-7} 3; \ \alpha(N+)=2.36\times10^{-5} 4$
		$1061.52^{\textcircled{0}}$ 10	15.3	638.045	2^{+}				
1814.13	3-	525.70 20	35	1288.42	4 ⁺	[E1]		0.00421	α (K)=0.00360 5; α (L)=0.000484 7; α (M)=0.0001042 15; α (N)=2.39×10 ⁻⁵ 4; α (O)=3.67×10 ⁻⁶ 6 α (P)=2.37×10 ⁻⁷ 4; α (N+)=2.78×10 ⁻⁵ 4
		1176.08 6	100 6	638.045	2+	E1		8.60×10 ⁻⁴	$\alpha(\mathbf{K})=0.000724 \ II; \ \alpha(\mathbf{L})=9.40\times10^{-5} \ I4; \\ \alpha(\mathbf{M})=2.02\times10^{-5} \ 3; \ \alpha(\mathbf{N})=4.63\times10^{-6} \ 7; \\ \alpha(\mathbf{O})=7.19\times10^{-7} \ I0 \\ \alpha(\mathbf{P})=4.88\times10^{-8} \ 7; \ \alpha(\mathbf{N}+)=2.13\times10^{-5} \ 3 \ \mathbf{M}$
1936.31	6+	235.9 3	≈3	1699.912	5-	(E1)			u(1)=1.00×10 7, u(1(1.)=2.13×10 5
		648.4 <i>3</i>	100 26	1288.42	4+	E2		0.00726	α (K)=0.00601 9; α (L)=0.000974 14; α (M)=0.000214 3; α (N)=4.89×10 ⁻⁵ 7; α (O)=7.36×10 ⁻⁶ 11 α (P)=4.11×10 ⁻⁷ 6; α (N+)=5.67×10 ⁻⁵ 8
1947.36	2-,3-,4-	813.06 2	100	1134.297	3-	(E2) [‡]		0.00430	α (K)=0.00360 5; α (L)=0.000546 8; α (M)=0.0001194 17; α (N)=2.73×10 ⁻⁵ 4; α (O)=4.15×10 ⁻⁶ 6 α (P)=2.48×10 ⁻⁷ 4; α (N+)=3.17×10 ⁻⁵ 5
1955.371	2+	436.980 25	66 <i>3</i>	1518.362	2+	M1+E2	1.2 4	0.026 4	α (K)=0.022 3; α (L)=0.00355 24; α (M)=0.00078 5; α (N)=0.000179 12; α (O)=2.69×10 ⁻⁵ 21 α (P)=1.54×10 ⁻⁶ 24; α (N+)=0.000207 14
		524.90 20	38	1430.467	(2)+	(M1)		0.0224	$\alpha(K)=0.0190 \ 3; \ \alpha(L)=0.00263 \ 4; \ \alpha(M)=0.000570 \ 8; \ \alpha(N)=0.0001312 \ 19; \ \alpha(O)=2.04\times10^{-5} \ 3 \ \alpha(P)=1.389\times10^{-6} \ 20; \ \alpha(N+)=0.0001530 \ 22$
		748.23	34	1207.135	0^{+}				
		821.067 20	100 6	1134.297	3-	E1		1.66×10 ⁻³	$\alpha(K)=0.001420 \ 20; \ \alpha(L)=0.000187 \ 3; \ \alpha(M)=4.02\times10^{-5} 6; \ \alpha(N)=9.22\times10^{-6} \ 13 \alpha(O)=1.426\times10^{-6} \ 20; \ \alpha(P)=9.51\times10^{-8} \ 14; \alpha(N+)=1.074\times10^{-5} \ 15$
		1317.50 6	29.7 16	638.045	2^{+}				a(111.)=1.07 M10 13
1969.99		1955.3h 2 377.82 15 450 539.26 15	7.2 ^h 16 83 25 5 50 25	0.0 1592.428 1518.362 1430.467	0^+ 1^- 2^+ $(2)^+$				
					(-)				
		1332.3 4	$1.0 \times 10^2 4$	638.045	2+				

 $^{150}_{64}\mathrm{Gd}_{86}$ -11

$\gamma(^{150}\text{Gd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{a}	E_f .	J_f^{π} Mult.	α ^g	Comments
1087.02	2+ 2+ 4+	600.47		1299 42 4	+		5; $\alpha(N)=7.46\times10^{-5}$ 11 $\alpha(O)=1.111\times10^{-5}$ 16; $\alpha(P)=5.85\times10^{-7}$ 9; $\alpha(N+)=8.63\times10^{-5}$ 12
1987.95	2*,5*,4*	1349.83	100	638.045 2	+ E2	1.53×10^{-3}	$\alpha(K)=0.001278 \ 18; \ \alpha(L)=0.0001763 \ 25; \ \alpha(M)=3.81\times10^{-5} \ 6; \ \alpha(N)=8.75\times10^{-6} \ 13 \ \alpha(N)=1.351\times10^{-6} \ 19; \ \alpha(R)=8.87\times10^{-8} \ 13; \ \alpha(N+1)=4.06\times10^{-5} \ 6$
2080.61	$(2.3.4)^+$	560	17.5	1518.362 2	+		$u(0)=1.551\times10^{-5}$ 19, $u(P)=8.87\times10^{-5}$ 15, $u(1N+)=4.00\times10^{-5}$ 0
	(_,_,)	650.33	75	1430.467 (2	2) ⁺ (E2)	0.00720	$\alpha(K)=0.00597 \ 9; \ \alpha(L)=0.000967 \ 14; \ \alpha(M)=0.000213 \ 3; \ \alpha(N)=4.86\times10^{-5} \ 7; \ \alpha(O)=7.30\times10^{-6} \ 11 \ \alpha(P)=4.08\times10^{-7} \ 6; \ \alpha(N+)=5.63\times10^{-5} \ 8$
		792.38	75	1288.42 4	+ (E2)	0.00456	$\alpha(\mathbf{K}) = 0.00381 \ 6; \ \alpha(\mathbf{L}) = 0.000582 \ 9; \ \alpha(\mathbf{M}) = 0.0001272 \ 18; \\ \alpha(\mathbf{N}) = 2.91 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 4.42 \times 10^{-6} \ 7 \\ \alpha(\mathbf{P}) = 2.63 \times 10^{-7} \ 4; \ \alpha(\mathbf{N} + \cdot) = 3.38 \times 10^{-5} \ 5$
		945.7 2	30.8	1134.297 3	-		u(1)=2.05×10 4, u(1(1.)=5.50×10 5
		1442.7 <i>1</i>	<100	638.045 2	+		
2083.96	2-,3-	491.57 5	2.3 23	1592.428 1			
		565.71	13.1	1518.362 2	- (M 1)	0.00517	$-(\mathbf{K}) = 0.00441.7$, $-(\mathbf{L}) = 0.000500.0$, $-(\mathbf{M}) = 0.0001202.10$.
		949.90 3	100 5	1134.297 3	(M1)	0.00517	$\alpha(\mathbf{K})=0.004417; \alpha(\mathbf{L})=0.0003999; \alpha(\mathbf{M})=0.000129379; \alpha(\mathbf{N})=2.98\times10^{-5}5; \alpha(\mathbf{O})=4.64\times10^{-6}7$ $\alpha(\mathbf{P})=3.19\times10^{-7}5; \alpha(\mathbf{N}+)=3.47\times10^{-5}5$
		1446.1 1	51.5	638.045 2	+		$u(1) = 5.19 \times 10^{-5}, u(1(1.)) = 5.47 \times 10^{-5}$
2091.623	2+	573.30	9.4	1518.362 2	+ M1	0.0179	α (K)=0.01521 22; α (L)=0.00210 3; α (M)=0.000455 7; α (N)=0.0001047 15
							α (O)=1.630×10 ⁻⁵ 23; α (P)=1.110×10 ⁻⁶ 16; α (N+)=0.0001221 17
		661.18 4	1.48	1430.467 (2	$^{2)^{+}}_{+}$		
		803	0.93	1288.42 4	.' + (E2)	0.00259	$\alpha(K) = 0.00201$ 5. $\alpha(L) = 0.000447$ 7. $\alpha(M) = 0.725410^{-5}$ 14.
		884.43 3	5.74	1207.155 0	E2]	0.00538	$\alpha(\mathbf{N}) = 0.005013; \ \alpha(\mathbf{L}) = 0.0004477; \ \alpha(\mathbf{M}) = 9.75\times10^{-5}14; \ \alpha(\mathbf{N}) = 2.23\times10^{-5}4; \ \alpha(\mathbf{O}) = 3.40\times10^{-6}5 \ \alpha(\mathbf{D}) = 2.08\times10^{-7}3; \ \alpha(\mathbf{N}) = 2.59\times10^{-5}4$
		957.33 4	19.6 12	1134.297 3	- E1	1.23×10 ⁻³	$\alpha(\mathbf{K}) = 2.05 \times 10^{-5} \text{ s}, \ \alpha(\mathbf{K}+) = 2.53 \times 10^{-5} \text{ f}, \ \alpha(\mathbf{K}) = 0.001057 15; \ \alpha(\mathbf{L}) = 0.0001383 20; \ \alpha(\mathbf{M}) = 2.97 \times 10^{-5} 5; \ \alpha(\mathbf{N}) = 6.82 \times 10^{-6} 10 10^{-6} 10^{-6$
		1453.55 4	100 6	638.045 2	⁺ (M1)	0.00196	$\alpha(O)=1.056\times10^{\circ} 15; \ \alpha(P)=1.10\times10^{\circ} 10; \ \alpha(N+)=1.94\times10^{\circ} 12 \\ \alpha(K)=0.001618 \ 23; \ \alpha(L)=0.000217 \ 3; \ \alpha(M)=4.67\times10^{-5} \ 7; \\ \alpha(N)=1.076\times10^{-5} \ 15$
							$\alpha(O)=1.680\times10^{-6}\ 24;\ \alpha(P)=1.162\times10^{-7}\ 17;\ \alpha(N+)=7.91\times10^{-5}\ 11$
		2091.56 10	48.0 24	0.0 0	+		
2115.75	6+	179.4 ^{#i} 3	≈1.3 [#]	1936.31 6	+ E2	0.320	$\alpha(K)=0.215 4; \ \alpha(L)=0.0815 \ 13; \ \alpha(M)=0.0189 \ 3; \ \alpha(N)=0.00424 \ 7; \ \alpha(O)=0.000577 \ 9 \ \alpha(D)=1.203 \times 10^{-5} \ 18; \ \alpha(N+1)=0.00483 \ 8$
		415.3 ^{#@} 2	25 [#] 11	1699.912 5	- E1	0.00722	$\alpha(\mathbf{r}) = 1.203 \times 10^{-7} \text{ f}; \ \alpha(\mathbf{N}+) = 0.00483 \text{ f} $ $\alpha(\mathbf{K}) = 0.00615 \text{ g}; \ \alpha(\mathbf{L}) = 0.000838 \text{ I} 2; \ \alpha(\mathbf{M}) = 0.000181 \text{ J}; $ $\alpha(\mathbf{N}) = 4.14 \times 10^{-5} \text{ f}; \ \alpha(\mathbf{O}) = 6.33 \times 10^{-6} \text{ g} $ $\alpha(\mathbf{P}) = 4.01 \times 10^{-7} \text{ f}; \ \alpha(\mathbf{N}+) = 4.81 \times 10^{-5} \text{ 7} $

12

					Adopte	d Levels,	Gammas (con	tinued)
						$\gamma(^{150}\text{Gd})$	(continued)	
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}^{a}	E_f	\mathbf{J}_f^{π}	Mult. [†]	a ^g	Comments
2115.75	6+	827.48 ^{#@} 10	100 [#] 14	1288.42	4+	E2	0.00414	$\alpha(K)=0.00347 \ 5; \ \alpha(L)=0.000524 \ 8; \ \alpha(M)=0.0001143 \ 16; \\ \alpha(N)=2.62\times10^{-5} \ 4; \ \alpha(O)=3.98\times10^{-6} \ 6 \\ \alpha(P)=2.39\times10^{-7} \ 4; \ \alpha(N+)=3.04\times10^{-5} \ 5 $
2157.5		1023	4	1134.297	3-			
2170 012	2+	1519.6	100	638.045	$2^+_{2^+}$			
2179.912	2.	224.4 I 587	3.9 12	1955.371	2' 1			
		567 661 55 <i>4</i>	2.8 4 5	1592.428	$\frac{1}{2^+}$			
		749.43 2	3.9	1430.467	$(2)^{+}$			
		1045.60 3	100 5	1134.297	3-	E1	1.05×10^{-3}	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.000897 \ I3; \ \alpha(\mathbf{L}) = 0.0001169 \ I7; \ \alpha(\mathbf{M}) = 2.51 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{N}) = 5.76 \times 10^{-6} \ 8 \\ &\alpha(\mathbf{O}) = 8.93 \times 10^{-7} \ I3; \ \alpha(\mathbf{P}) = 6.03 \times 10^{-8} \ 9; \ \alpha(\mathbf{N}+) = 6.71 \times 10^{-6} \end{aligned} $
		1541.04.6	30.66.22	638 0/15	2^+			10
		1341.940	$39.00\ 22$	0.040	2 0 ⁺			
2209 54	2-3-	21/9.9* 2	33.1° 17 47 5	0.0	$(2)^+$			
2207.34	2,5	1075.25 3	100 5	1134.297	3-	M1	0.00384	α (K)=0.00328 5; α (L)=0.000444 7; α (M)=9.57×10 ⁻⁵ 14; α (N)=2.20×10 ⁻⁵ 3; α (O)=3.44×10 ⁻⁶ 5 α (P)=2.37×10 ⁻⁷ 4; α (N+)=2.57×10 ⁻⁵ 4
		1571.26 [@] 12	21 4	638.045	2+			
2211.11	7-	95.5 2	2.0 4	2115.75	6+	(E1)		
		274.9 3	83	1936.31	6+	E1 ^b	0.0199	$\alpha(K)=0.01687\ 24;\ \alpha(L)=0.00235\ 4;\ \alpha(M)=0.000507\ 8;\ \alpha(N)=0.0001158\ 17;\ \alpha(O)=1.76\times10^{-5}\ 3\ \alpha(P)=1.066\times10^{-6}\ 16;\ \alpha(N+)=0.0001344\ 20$ Mult : from (α 2ny)
		511	100 16	1699.912	5-	E2	0.01318	$\alpha(\mathbf{K})=0.01074 \ I5; \ \alpha(\mathbf{L})=0.00191 \ 3; \ \alpha(\mathbf{M})=0.000423 \ 6; \\ \alpha(\mathbf{N})=9.63\times10^{-5} \ I4; \ \alpha(\mathbf{O})=1.426\times10^{-5} \ 20 \\ \alpha(\mathbf{N})=9.63\times10^{-7} \ I0; \ \alpha(\mathbf{N})=0.0001112 \ I6 \\ \alpha(\mathbf{N})=0.000112 \ I6 \\ \alpha(\mathbf{N})=0.000112 \ I6 \\ \alpha(\mathbf{N})=0.0001112 \ I6 \\ \alpha(\mathbf{N})=0.0001112 \ I6 \\ \alpha(\mathbf{N})=0.0001112 \ I6 \\ \alpha(\mathbf{N})=0.0001112 \ I6 \\ \alpha(\mathbf{N})=0.000112 \ I6 \ I6 \\ \alpha(\mathbf{N})=0.0001112 \ I6 \\ \alpha(\mathbf{N})=0.000112 \ I6 \ I$
2262.21		743.86.6	20.8	1518.362	2^{+}			$u(\mathbf{r}) = 7.21 \times 10$ 10, $u(\mathbf{N} +) = 0.0001115$ 10
2202.21		831.73 7	14.6	1430.467	$(2)^{+}$			
		1127.7 <i>I</i>	65 4	1134.297	3-			
		1624.20 6	100 7	638.045	2^{+}			
2306.2	(5 ^{-,6⁺})	≈95 ^b		2211.11	7-			
		606.8 5	100 d 10	1699.912	5-			
		1017.2 5	14 2	1288.42	4+			
2326.283		338.36 5	36 6	1987.93	2 ⁺ ,3 ⁺ ,4 ⁺			
		020.4/10	24 0	1699.912	3 2+			
		807.71 15	20 4	1518.362	$(2)^+$			
		095.00 5 1037 9 3	40 4 14 6	1450.40/	$\binom{2}{4^+}$			
		1688.23 <i>1</i>	100 ^e 10	638.045	2+			

From ENSDF

 $^{150}_{64}\mathrm{Gd}_{86}$ -13

Т

						$\gamma(^{150}\text{Gd})$ (c	continued)			
E _i (level)	J_i^π	E_{γ}	I_{γ}^{a}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α ^g	Comments		
2364.91	1,2+	772.52 8 846.5 2 1157.76 8 1231 1726.85 <i>15</i> 2364.93 <i>10</i>	17.2 <i>19</i> 3.1 <i>19</i> 16.0 <i>13</i> 1.840 23.9 25 100 5	1592.428 1518.362 1207.135 1134.297 638.045 0.0	$ \frac{1}{2^{+}} \\ 0^{+} \\ 3^{-} \\ 2^{+} \\ 0^{+} $					
2392.06	$(7)^+$	180.9 [#] 3 276 [@]	#	2211.11 2115.75	7- 6 ⁺	(M1+E2)				
		455.7 ^{#@} 2	#	1936.31	6+	M1	0.0320	α (K)=0.0272 4; α (L)=0.00379 6; α (M)=0.000821 12; α (N)=0.000189 3; α (O)=2.94×10 ⁻⁵ 5 α (P)=1.99×10 ⁻⁶ 3; α (N+)=0.000220 3		
2408.53	2+	328 <i>1</i> 977.78 8 1120.1 5 1274.51 <i>10</i> 1770 45 6	6 4 20.5 24 16 8 45 4 100 5	2080.61 1430.467 1288.42 1134.297 638.045	$(2,3,4)^+$ $(2)^+$ 4^+ 3^- 2^+					
2416.7? 2426 20	$\frac{3}{1^{-}2^{+}}$	1778.6 5	100 5	638.045 1518 362	2+ 2+					
2120.20	1,2	995.38 <i>10</i> 1291.66 <i>3</i> 1788.91 <i>5</i> 2425 08 <i>10</i>	10.4 <i>19</i> 85 <i>5</i> 100 <i>5</i>	1430.467 1134.297 638.045	$(2)^+$ 3^- 2^+ 0^+					
2434.34		916.1 <i>3</i> 1003.8 <i>2</i> 1796.29 <i>10</i>	05 5 19 7 9.375 100 <i>10</i>	0.0 1518.362 1430.467 638.045						
2521.56	(2+,3,4+)	574.1 5 1003.2 ^h 2 1091.0 <i>I</i> 1233.2 2 1387.2 1883.6 <i>I</i>	15.79 26.32 ^h 47.37 53 8 21 14 100 8	1947.36 1518.362 1430.467 1288.42 1134.297 638.045	2 ⁻ ,3 ⁻ ,4 ⁻ 2 ⁺ (2) ⁺ 4 ⁺ 3 ⁻ 2 ⁺					
2554.14	8+	162.0 ^{#@} 2	14 [#] 4	2392.06	(7)+	M1	0.513	α (K)=0.434 7; α (L)=0.0622 9; α (M)=0.01352 20; α (N)=0.00311 5; α (O)=0.000483 7 α (P)=3.23×10 ⁻⁵ 5; α (N+)=0.00363 6		
		343.07 ^{#@} 10	59 [#] 19	2211.11	7-	E1	0.01142	α (K)=0.00972 <i>14</i> ; α (L)=0.001337 <i>19</i> ; α (M)=0.000288 <i>4</i> ; α (N)=6.59×10 ⁻⁵ <i>10</i> α (O)=1.005×10 ⁻⁵ <i>14</i> ; α (P)=6.25×10 ⁻⁷ <i>9</i> ; α (N+)=7.66×10 ⁻⁵ <i>11</i>		
		438.37 [#] 10	100 [#] 45	2115.75	6+	E2	0.0199	α (K)=0.01598 23; α (L)=0.00305 5; α (M)=0.000680 10; α (N)=0.0001546 22 α (O)=2.26×10 ⁻⁵ 4; α (P)=1.057×10 ⁻⁶ 15: α (N+)=0.0001783 25		
2558.51	1,2+	1351.2	16.67	1207.135	0^{+}			a(c) i = 0.0001705 25		

 $^{150}_{64}\mathrm{Gd}_{86}$ -14

Т

 $^{150}_{64}\mathrm{Gd}_{86}$ -14

From ENSDF

				-	Adopted Lo	evels, Gan	nmas (continu	ed)
					<u> γ(</u>	¹⁵⁰ Gd) (co	ontinued)	
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}^{a}	E_f	J_f^{π}	Mult. [†]	α^{g}	Comments
2558.51 2564.96	$1,2^+ \\ (1^-,2^-,3^-)$	2558.49 20 972.7 2 1134	100 <i>10</i> 27 <i>14</i> 90.91	0.0 1592.428 1430.467	0^+ 1 (2) ⁺			
		1430.5 04	9.×10 ¹ <i>e</i> 9	1134.297	3-	(E2)	1.39×10 ⁻³	$\alpha(K)=0.001143 \ 16; \ \alpha(L)=0.0001566 \ 22; \ \alpha(M)=3.38\times10^{-5} \ 5; \\ \alpha(N)=7.77\times10^{-6} \ 11 \\ \alpha(O)=1.201\times10^{-6} \ 17; \ \alpha(P)=7.93\times10^{-8} \ 12; \\ \alpha(N+)=6.12\times10^{-5} \ 9$
		1926.6 2	100 14	638.045	2^{+}			
		2565.4 3	50 14	0.0	0+			
2593.9		1387.3	$5.\times10^{1}$ 7	1207.135	0^+ 2-			
2627.99?		1035.8 3	30 13	1592.428	1			
		1493.67 8	100 13	1134.297	3-			
		1989.6 8	48 22	638.045	2+			
2654.39		666.49 [@] 8 699.03	6.7 <i>21</i> 12.75	1987.93 1955.371	2 ⁺ ,3 ⁺ ,4 ⁺ 2 ⁺			
		1223.8 ^h 5	5.4 ^h 21	1430.467	$(2)^{+}$			
0.000	1.0+	2016.30 10	100 5	638.045	2+			
2678.45	1,2+	864.41	7.273	1814.13	3^{-} (2)+			
		1544.1 5	31 15	1134.297	$\frac{(2)}{3^{-}}$			
		2040.4 2	100 8	638.045	2+			
		2678.6 ^h 3	40 ^h 6	0.0	0^{+}			
2686.84	1-,2,3-	322.0 1	16 4	2364.91	1,2+			
		602.78 6	39 4	2083.96	$2^{-},3^{-}$ $2^{-},2^{-},4^{-}$			
		987.3.3	7 4	1947.00	2,3,4 5 ⁻			
		1094.41 5	52.46	1592.428	1			
		1168.64 6	100 7	1518.362	2+			
		1256.4	13 5	1430.467	$(2)^{+}$			
0754 50	0+ 2 4+	1552.3 ["] 5	21 ^{<i>n</i>} 10	1134.297	3-			
2754.58	2',3,4'	492.35 5	15.6 5.8	2262.21 1288-42	\mathcal{A}^+			
		1620.30 10	33 5	1134.297	3-			
		2116.8 2	100 5	638.045	2+			
		2754.6 8	25 8	0.0	0^{+}	c		
2767.3?	(8 ⁺)	831.0 [#] 5	100#	1936.31	6+	[E2] ^{<i>J</i>}	0.00410	$\alpha(K)=0.003445; \ \alpha(L)=0.0005188; \ \alpha(M)=0.000113116; \\ \alpha(N)=2.59\times10^{-5}4; \ \alpha(O)=3.94\times10^{-6}6 \\ \alpha(P)=2.37\times10^{-7}4; \ \alpha(N+)=3.01\times10^{-5}5$
2786.49	$1^{-},2^{+}$	831.18 7	4.3	1955.371	2^{+}			
		839.2 2	4.3 13	1947.36	2-,3-,4-			
		1193.9 <i>1</i>	8.0 19	1592.428	1			

From ENSDF

 $^{150}_{64}\mathrm{Gd}_{86}$ -15

 $^{150}_{64}\mathrm{Gd}_{86}$ -15

Т

					Ad	opted Lev	els, Gamm	as (continued)
						$\gamma(^{15}$	⁰ Gd) (conti	nued)
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{a}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α^{g}	Comments
2786.49	1-,2+	1267 1356.01 <i>10</i> 1652.26 2148.44 <i>10</i>	4.3 15.3 <i>19</i> 13.5 <i>19</i> 100 <i>5</i>	1518.362 2 1430.467 (2 1134.297 3 638.045 2	2)+ 3- 2+			
2816.1	9-	605.0 <i>3</i>	100	2211.11 7	-	E2 ^{&}	0.00859	α (K)=0.00708 <i>10</i> ; α (L)=0.001176 <i>17</i> ; α (M)=0.000259 <i>4</i> ; α (N)=5.92×10 ⁻⁵ <i>9</i> ; α (O)=8.86×10 ⁻⁶ <i>13</i> α (P)=4.82×10 ⁻⁷ <i>7</i> ; α (N+)=6.85×10 ⁻⁵ <i>10</i>
2827.81		743.84 <i>6</i> 874	100	2083.96 2 1955.371 2	2-,3- 2+			
2834.8? 2845.41	8 ⁻ 1,2 ⁺	623.4 ^{<i>i</i>} 3 753.8 3 1326.7 2 1414.95 6 1638.06 ^{<i>@</i>} 10 2207.58 10	30 ^e 10 1.6 11 7.1 17 27.5 17 14.3 22 100 5	2211.11 7 2091.623 2 1518.362 2 1430.467 (2 1207.135 0 638.045 2	y- y+ 2)+ y+ y+			
2868.27		2845.65 ^h 25 1579.92 10 1733.7 2	19 ^h 3 100 20 88 16	0.0 0 1288.42 4 1134.297 3)+ _+ ;-			
2906.0?	8+	789.9 ^{#i} 4	100 [#]	2115.75 6	6 +	E2	0.00459	$\alpha(K)=0.00384\ 6;\ \alpha(L)=0.000587\ 9;\ \alpha(M)=0.0001282\ 18;\ \alpha(N)=2.94\times10^{-5}$ 5; $\alpha(O)=4.45\times10^{-6}\ 7$ $\alpha(P)=2.64\times10^{-7}\ 4;\ \alpha(N+)=3.41\times10^{-5}\ 5$
2956.20 2984.95 3024.7	1,2+	746 864.55 871.9 2 968.3 5 1001.0 2 1008.1 3 1365.3 3 1525.70 5 1822.2 5 2318.14 10 997.8 24 1392.4 [@] 4 1466.6 3 1554.4 4 1778.8 2346.9 2 2984.90 15 1596	$12.7 \\ 12.7 \\ 10 4 \\ 32 8 \\ 27 7 \\ 19 7 \\ 16 5 \\ 98 5 \\ 16 7 \\ 100 5 \\ 19 6 \\ 17 6 \\ 10 7 \\ 38 9 \\ 27.78 \\ 38 5 \\ 100 6 \\ 100 \\ 10$	2209.54 2 2091.623 2 2083.96 2 1987.93 2 1955.371 2 1947.36 2 1592.428 1 1430.467 (2 1134.297 3 638.045 2 1987.93 2 1592.428 1 1518.362 2 1430.467 (2 1207.135 0 638.045 2 0.0 0 1430.467 (2	$2^{+}, 3^{-}, 3^{-}, 3^{-}, 3^{-}, 3^{-}, 4^{-}$ $2^{+}, 3^{+}, 4^{+}, 3^{+}, 4^{+}, 3^{-}, 4^{-}$ $2^{+}, 3^{-}, 4^{-}, 3^{-}, 4^{-}, 3^{-}, 4^{-}, 4^{+}, 3^{+}, 4^{+}, 3^{+}, 4^{+}, 4^{+}, 3^{+}, 4^{+}, 4^{+}, 3^{+}, 4^{$			
3035.64	1 ⁻ ,2 ⁺	3024.5 <i>3</i> 826.34 <i>15</i> 952	100 <i>17</i> 7.1 <i>11</i> 30	0.0 0 2209.54 2 2083.96 2)+ 2-,3- 2-,3-			

From ENSDF

 $^{150}_{64}\mathrm{Gd}_{86}$ -16

Т

					Ad	opted Leve	ls, Gammas	(continued)
						$\gamma(^{150})$	Gd) (continu	led)
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{a}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α^{g}	Comments
3035.64	$1^{-},2^{+}$	1443.3 1	>40.40	1592.428 1				
		1517.4	10.10	1518.362 2	+			
		1605.44 11	22 <i>3</i>	1430.467 (2	2)+			
		1747.3	30	1288.42 4	+			
		1901.74 <i>10</i>	97 5	1134.297 3	-			
		2397.04 10	100 5	638.045 2	2+			
		3034.86 15	53 <i>3</i>	0.0 0)+			
3042.61		1908.6 4	50 19	1134.297 3	-			
		3042.4 <i>3</i>	100 9	0.0 0) +			
3083.76?		1130.4 7	20 14	1955.371 2	·+			
		1652.6	20 10	1430.467 (2	2)+			
		1876.6 4	20 10	1207.135 0)+			
		1949.3 2	100 10	1134.297 3	,- .+			
0110 55		2446.1 10	50 17	638.045 2	, ' .+			
3118.75		1600.10 15	78 13	1518.362 2	2)+			
		1688.27 10	70 22	1430.467 (2	2)' +			
		1830.7 3	39 18	1288.42 4	-			
2124 12		1964.9 2	100 16	1154.297 5				
5154.15		1541.94 0	27 10 58 12	1518 362 2	+			
		1702 5 3	30 12 31 12	1/30/167 (, 2)+			
		2494 7 8	100 20	638 045 2	2) +			
		3133.6.2	58.8	0.0 0	, +			
3176.8		622.7.5	100	2554.14 8	+			
3177.732		1094.19.5	10.1	2083.96 2	3-			
		1585.19 14	94	1592.428 1	,			
		1659.9	14 4	1518.362 2	+			
		1747.8	12.66	1430.467 (2	$(2)^{+}$			
		2043.7 10	14 9	1134.297 3	-			
		2539.645 10	100 5	638.045 2	+			
3220.3	10^{-}	404.3 ^{#@} 3	100 [#]	2816.1 9	-	M1+E2	0.034 10	$\alpha(K)=0.028$ 9; $\alpha(L)=0.0046$ 7; $\alpha(M)=0.00100$ 12; $\alpha(N)=0.00023$ 3;
								$\alpha(\Omega)=3.5\times10^{-5}$ 6
								$\alpha(P) = 20 \times 10^{-6} 8 \cdot \alpha(N+1) = 0.00027.4$
3251.5		1660.0	100 79	1592.428 1				
020110		2614 3 10	$8 \times 10^{1} 4$	638.045 2	+			
		3250.8.6	38 13	0.0 0	,)+			
3269.32?		1089.4 1	100	2179.912 2	+			
3288.2	10^{+}	472		2816.1 9	-			
		734 0 ^{#@} 3	100#	2554 14 8	+	E2	0.00542	$\alpha(K) = 0.00452.7; \alpha(L) = 0.000705.10; \alpha(M) = 0.0001544.22;$
		10110 0	100	200111 0			0.00012	$\alpha(N) = 3.53 \times 10^{-5} 5$; $\alpha(O) = 5.34 \times 10^{-6} 8$
								$\alpha(\mathbf{r}) = 3.11 \times 10^{-7} 5; \ \alpha(\mathbf{N} +) = 4.10 \times 10^{-5} 6$
3298 34		1351 7	42	1947 36 2	- 3- 4-			$u(1) = 0.11 \wedge 10 = 0, u(1) = 0.10 \wedge 10 = 0$
5270.54		1331.7	74	1771.30 2	·,,,,,,			

From ENSDF

 $^{150}_{64}\mathrm{Gd}_{86}$ -17

$\gamma(^{150}\text{Gd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{a}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
3298.34		2661.20 25	100 13	638.045	2+
3329.33		1737.2 6	17 10	1592.428	1
		1811.9 <i>3</i>	24 8	1518.362	2+
		2194.6 2	100 8	1134.297	3-
		2691.0 [@] 5	44 8	638.045	2+
3344.68	(2^{+})	935.4 2	74	2408.53	2^{+}
		1253.0 ^h 1	22 ^h 4	2091.623	2^{+}
		1260.5 2	10 5	2083.96	2-,3-
		1389.6 4	29 7	1955.371	2+
		1530.5 <i>3</i>	12 5	1814.13	3-
		1645.5 2	22 5	1699.912	5-
		1752.1 2	32 5	1592.428	1
		1826.2 5	24 9	1518.362	2+
		1914.3 2	100 11	1430.467	$(2)^{+}$
		2056.3 2	20 5	1288.42	4+
		2210	34	1134.297	3-
		2706.86 15	88 5	638.045	2+
		3344.3 5	13.6 17	0.0	0^+
3366.4	11-	≈78 ^{@1}		3288.2	10^{+}
		146.2 ^{#@} 3	42 [#] 23	3220.3	10-
		550.3 ^{#@} 3	100 [#] 30	2816.1	9-
3375.72		1049.3 4	16 10	2326.283	
		2241.42 [@] 15	53 7	1134.297	3-
		2737.8 5	100 19	638.045	2+
		3375.5 7	14 5	0.0	0^{+}
3378.11		1563.96 10	50 7	1814.13	3-
		1947	16.7	1430.467	$(2)^{+}$
		2740.3 4	100 17	638.045	2+
3389.2		2751.0 10	$6.\times10^{1}$ 5	638.045	2+
	a +	3389.2 5	100 13	0.0	0^+
3461.7	2+	1943	4	1518.362	2+
		2173.4 5	$1.0 \times 10^2 \ 3$	1288.42	4+
3510.72	$(1^-, 2^+)$	1918	17.95	1592.428	1
		2376.6 ^{@} 2	85 8	1134.297	3-
		2872.2 3	100 13	638.045	2+
3522.4		3522.4 6	100	0.0	0+
3631.4		2201.4 8	$1.0 \times 10^2 4$	1430.467	$(2)^+$
		2498	29	1134.297	3-
		2993.2 3	71 15	638.045	2*
3657.35?	2+	1668.8 [@] 3	56 17	1987.93	$2^+, 3^+, 4^+$
		2450.2 10	44 23	1207.135	0^{+}

18

	Adopted Levels, Gammas (continued)												
						$\gamma(^{150}\text{Gd})$	(continued)						
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{a}	E_f	J_f^π	Mult. [†]	$\alpha^{\mathbf{g}}$	Comments					
3657.35?	2+	3657.74 25	100 6	0.0	0^{+}								
3712.40		1631.7 2	$1.0 \times 10^2 4$	2080.61	$(2,3,4)^+$								
2726 62		2579.5 8	$9.\times10^{1}$ 4	1134.297	3-								
3/26.63		1518.24	85.11	2209.54	2,3								
		2296.9" 8	6^{n} 5	1430.467	$(2)^{+}$								
3772 03		2592.25 15	5×10^{1} 3	1134.297	3 3-								
5772.05		3134.1 2	100	638.045	2^{+}								
3828.4?	$(1,2^{+})$	2621.8 ^h 5	$1.0 \times 10^{2h} 4$	1207.135	0^{+}								
		3828.0 4	33 7	0.0	0^{+}								
3840.04		1852 2	16.39	1987.93	$2^+, 3^+, 4^+$								
		2409.36 20	100 5	1430.467	$(2)^{+}$								
3963.64		2372	20 4 28	1592.428	1								
		2532.5 3	$1.0 \times 10^2 \ 3$	1430.467	$(2)^{+}$								
		2828.5 6	33 17	1134.297	3-								
		3327.7 5	67 6	638.045	2^{+}								
4021.2?	$(1,2^{+})$	3383.6 ^w 5	$1.0 \times 10^2 5$	638.045	2^+								
4105.4	10+	4020.8 4	0.71 7	0.0	0	50	0.00405						
4105.4	121	81/0	100	3288.2	10 '	E2	0.00425	$\alpha(\mathbf{K})=0.003573; \alpha(\mathbf{L})=0.0005408; \alpha(\mathbf{M})=0.000117977; \alpha(\mathbf{M})=2.70\times10^{-5}4; \alpha(\mathbf{O})=4.10\times10^{-6}6$					
								$\alpha(N) = 2.70 \times 10^{-7} 4$; $\alpha(N) = 4.10 \times 10^{-5} 5$					
4111.07?	$1^{-},2^{+}$	2822.7 6	27 14	1288.42	4+			u(1)=2.10×10 7, u(1+1.)=5.11×10 5					
		2975.9 ^h 6	40 ^h 14	1134.297	3-								
		4111.2 3	100 14	0.0	0^{+}								
4131.1	13-	764.7 ^{#@} 2	100 [#]	3366.4	11-	E2 ^{&}	0.00494	$\alpha(K)=0.00412$ 6; $\alpha(L)=0.000636$ 9; $\alpha(M)=0.0001391$ 20;					
								$\alpha(N)=3.18\times10^{-5} 5; \alpha(O)=4.82\times10^{-6} 7$					
4142 09	$(1-2^{+})$	2008 0 2	100 17	1124 207	2-			$\alpha(P)=2.84\times10^{-7}$ 4; $\alpha(N+)=3.69\times10^{-5}$ 6					
4145.8?	(1,2)	4145.4.5	67.9	0.0	0^{+}								
4151.0		3512.1 7	$1.0 \times 10^2 4$	638.045	2+								
		4151.3 5	40 9	0.0	0^{+}								
4164.0	2+	2876.6 6	100 23	1288.42	4 ⁺								
		3525.78 4163 3 5	23 9	638.045	2' 0+								
4178.6		+103.3 J 2971 7 10	13.023 1.0×10^2 7	1207 135	0^{+}								
11/0.0		4178.5 5	80 17	0.0	$\ddot{0}^+$								
4186.9	(12) ⁻	966.6 [#] 3	100 [#]	3220.3	10-	E2 ^{&}	0.00296	α (K)=0.00249 4; α (L)=0.000363 5; α (M)=7.90×10 ⁻⁵ 11;					
								$\alpha(N)=1.81\times10^{-5}$ 3; $\alpha(O)=2.77\times10^{-6}$ 4					
								$\alpha(P)=1.725\times10^{-7}$ 25; $\alpha(N+)=2.11\times10^{-5}$ 3					

$^{150}_{64}$ Gd $_{86}$ -19

 $^{150}_{64}{
m Gd}_{86}$ -19

From ENSDF

$\gamma(^{150}\text{Gd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{a}	E_f	\mathbf{J}_f^{π}
4206.9	$(1,2^+)$	3570.6 [@] 6	52.8	638.045	2+
	())	4206.4 3	100 6	0.0	0^{+}
4235.2?	$(1^{-},2^{+})$	4235.1 [@] 6	100	0.0	0^{+}
4246.2?	$(1,2^+)$	3609.4 8	43 11	638.045	2^{+}
		4246.0 <i>3</i>	100 6	0.0	0^{+}
4258.0	$(1^{-},2^{+})$	3124.0 [@] 3	100 14	1134.297	3-
		4256.5 6	14 4	0.0	0^{+}
4264.6	2+	4264.5 <i>3</i>	100	0.0	0^{+}
4283.1?	$(1,2^{+})$	4283.0 10	100	0.0	0^{+}
4289.4?	$(1,2^{+})$	4289.3 <i>3</i>	100	0.0	0^{+}
4296.7		4296.6 10	100	0.0	0^{+}
4303.2		3096.1 3	100 11	1207.135	0+
		4302.4 8	73	0.0	0+
4314.0	1,2+	3675.3 5	100 23	638.045	2+
		4314.2 3	70.6	0.0	0'
4322.0	2+	3684.3 [@] 4	65 11	638.045	2+
		4321.6 4	100 6	0.0	0^{+}
4343.9	$(1,2^{+})$	2913.7 4	100 20	1430.467	$(2)^{+}$
		4343.3 [@] 6	10 3	0.0	0^{+}
4378.6?	$(1^+, 2^+)$	4378.5 [@] 6	100	0.0	0^{+}
4405.3	$(1,2^+)$	3768.4 10	$7. \times 10^1 4$	638.045	2+
		4405.1 <i>3</i>	100 6	0.0	0^{+}
4419.7	(13)	232.4 <i>3</i>	25 10	4186.9	$(12)^{-}$
4435.2		3797.4 7	$1.0 \times 10^2 4$	638.045	2+
		4434.4 10	19 10	0.0	0^{+}
4445.9	$1,2^{+}$	3239.2 5	61 7	1207.135	0^{+}
		4445.7 3	100 5	0.0	0+
4462.3		4462.2 8	100	0.0	0+
4492.8		3854.5 8	$1.0 \times 10^2 5$	638.045	2+
4 4 9 9 9		4493.3 15	12.9	0.0	0^+
4499.8		4499.7 8	100	0.0	0
4522.8?		3884.7 ^{°°} 6	100	638.045	2^{+}
4529.4?	$(1,2^+)$	2935.6 [@] 4	100 20	1592.428	1
		4531.5 [@] 5	9.0 20	0.0	0^{+}
4545.6		3907.5 6	100	638.045	2+
4557.2		4557.1 10	100	0.0	0^{+}
4563.3		4563.2 10	100	0.0	0+
4739.6	14+	634	100	4105.4	12+
4744.9		3152.4 3	100 15	1592.428	1
		3314.5 [@] 6	29 8	1430.467	$(2)^{+}$

20

					Adopte	d Levels, Gammas (continued)
						$\gamma(^{150}\text{Gd})$ (continued)
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}^{a}	E_{f}	\mathbf{J}_f^{π}	Mult. [†]
4834.9	15-	704 ^{#@}	100 [#]	4131.1	13-	
5428.8	16+	594 [@]		4834.9	15-	
		689 [@]		4739.6	14^{+}	
5450.9	17-	616 [@]	100	4834.9	15-	
5632.8	17+	204	100	5428.8	16+	
5764.8	18+	132^{0}	100	5632.8	17+	
5701.0	10	314^{0}		5450.9	17^{-}	D
		336@		5428.8	16+	D
6311.8	(10^{-})	547 [@]	100	5764.8	18+	
6450.8	(19^{+})	J+1 606@	100	5764.8	10	
6405.8	(20^{-})	104°	100	5704.8	10	
0495.8	(21)	184°	100	6311.8	(19)	
7275.8	(23)	/80	100	6495.8	(21)	
7929.8	(25 ⁻)	654 °	100	7275.8	(23 ⁻)	
8325	(27 ⁻)	395 @	100	7929.8	(25 ⁻)	
9410?	(28^{+})	1085	100	8325	(27^{-})	
9497	(29 ⁻)	1172	100	8325	(27 ⁻)	
9582	(29 ⁺)	172 [@]	100	9410?	(28^{+})	
9851	(30 ⁺)	269 [@]		9582	(29 ⁺)	
		354 [@]		9497	(29 ⁻)	
10532	(31 ⁺)	950 [@]	100	9582	(29 ⁺)	
11231	(33 ⁺)	699 [@]	100	10532	(31^{+})	
12185	(34-)	954 [@]	100	11231	(33+)	
12678	$(36^{-}, 34^{+})$	493 [@]	100	12185	(34 ⁻)	
815.00+x	J+2	815.0 1	0.66 ^c 2	х	J≈(30 ⁺)	
1664.10+x	J+4	849.1 <i>1</i>	0.88 ^c 1	815.00+x	J+2	
1931.3+x	J+4	910.2 2	0.39 ^c 2	1021.1+x	J+2	
2552.00+x	J+6	887.9 1	1.00° 1	1664.10+x	J+4	
2897.4+x	J+6	966.1 <i>3</i>	0.53° 3	1931.3+x	J+4	
3012.6+x	J+6	856	1.000 1	2156.6+x	J+4	
3480.90+X	J+8 1 - 9	928.9 1	$1.00^{\circ} I$	2552.00+x	J+0 1+6	
$3060.6 \pm x$	J+8 I+8	995.05	0.55 5	2097.4+x 3012.6+x	J+0 I+6	
4451 79+v	J+0 I+10	970 9 1	1.00 [°] 1	3480 90+v	J+0 I+8	
4861.7+x	J+10	901	1.00 1	3960.6+x	J+8	
		968.6 3	0.60 [°] 3	3893.0+x	J+8	
		1380	≈0.05 [°]	3480.90+x	J+8	
5465.28+x	J+12	1013.5 <i>1</i>	0.99 ^c 1	4451.79+x	J+10	

 $^{150}_{64}\mathrm{Gd}_{86}$ -21

 $\gamma(^{150}\text{Gd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{a}	E_f	\mathbf{J}_f^{π}
5860.7+x	J+12	999.0 2	0.86 ^c 3	4861.7+x	J+10
		1408	≈0.05	4451.79+x	J+10
6521.8+x	J+14	1056.5 <i>1</i>	1.00 ^C 1	5465.28+x	J+12
6907.6+x	J+14	1046.8 2	0.89 ^C 3	5860.7+x	J+12
		1442	≈0.05 ^C	5465.28+x	J+12
7621.8+x	J+16	1100.1 <i>1</i>	0.97 ^C 1	6521.8+x	J+14
8005.2+x	J+16	1097.6 2	0.96 ^c 2	6907.6+x	J+14
		1484	≈0.05 ^C	6521.8+x	J+14
8766.4+x	J+18	1144.6 <i>1</i>	0.99 ^C 1	7621.8+x	J+16
9154.0+x	J+18	1148.7 2	0.98 [°] 2	8005.2+x	J+16
		1532	≈0.05 ^C	7621.8+x	J+16
9956.9+x	J+20	1190.5 <i>1</i>	0.95 ^c 1	8766.4+x	J+18
10354.0+x	J+20	1199.9 2	1.00 ^C 1	9154.0+x	J+18
		1588	≈0.05 ^C	8766.4+x	J+18
11194.8+x	J+22	1237.9 <i>1</i>	0.96 [°] 2	9956.9+x	J+20
11604.9+x	J+22	1250.9 2	1.02 ^C 3	10354.0+x	J+20
		1649	≈0.05 ^C	9956.9+x	J+20
12481.4+x	J+24	1286.6 <i>1</i>	0.89 ^C 2	11194.8+x	J+22
12906.1+x	J+24	1301.2 2	0.96 ^C 3	11604.9+x	J+22
13818.0+x	J+26	1336.6 <i>1</i>	0.81 [°] 2	12481.4+x	J+24
14257.7+x	J+26	1351.6 2	0.85 ^c 3	12906.1+x	J+24
15205.8+x	J+28	1387.8 <i>1</i>	0.65 [°] 2	13818.0+x	J+26
15658.7+x	J+28	1401.0 2	0.71 [°] 2	14257.7+x	J+26
16645.9+x	J+30	1440.1 <i>I</i>	0.48 ^C 2	15205.8+x	J+28
17109.1+x	J+30	1450.4 2	0.54 ^C 2	15658.7+x	J+28
18139.1+x	J+32	1493.1 2	0.28 ^C 2	16645.9+x	J+30
18608.2+x	J+32	1499.1 <i>3</i>	0.39 ^c 2	17109.1+x	J+30
19686.1+x	J+34	1547.0 <i>3</i>	0.13 ^C 2	18139.1+x	J+32
20155.8+x	J+34	1547.6 <i>4</i>	0.14 ^C 1	18608.2+x	J+32
21287.8+x	J+36	1601.7 4	$0.05^{\circ} 2$	19686.1+x	J+34
21751.8+x	J+36	1595.9 7	0.044 ^C 10	20155.8+x	J+34
23397.3+x	J+38	1645.5 9		21751.8+x	J+36
688.1+y	K+2	688.1 <i>3</i>	0.35 ^c 5	У	K≈(27 [−])
1423.8+y	K+4	735.8 4	0.48 [°] 4	688.1+y	K+2
2015.5+y	K+4	727.9 2	0.41 [°] 2	1287.6+y	K+2
2208.9+y	K+6	785.2 5	0.71 [°] 5	1423.8+y	K+4
2787.0+y	K+6	771.5 2	0.81 [°] 2	2015.5+y	K+4
3043.3+y	K+8	834.4 <i>3</i>	0.92 [°] 4	2208.9+y	K+6
3601.3+y	K+8	814.3 2	0.94 [°] 2	2787.0+y	K+6
3928.6+y	K+10	885.3 <i>3</i>	0.92 ^c 2	3043.3+y	K+8

22

$\gamma(^{150}\text{Gd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{a}	E_f	J_f^{π}	Comments
4458.6+v	K + 10	857.3.5	0.97 ^c 2	3601.3+v	K+8	
4865.1+v	K+12	936.6 4	0.93° 2	3928.6+v	K+10	
5359.3+v	K+12	900.7 2	1.00° 2	4458.6+v	K+10	
5853.7+v	K+14	988.6 2	0.93 ^c 2	4865.1+v	K+12	
6304.6+y	K+14	945.3 2	0.99 ^c 2	5359.3+y	K+12	
6894.6+y	K+16	1040.9 2	0.95 ^c 2	5853.7+y	K+14	
7295.2+y	K+16	990.6 2	0.99 ^c 2	6304.6+y	K+14	
7989.9+y	K+18	1095.3 2	0.97 ^c 2	6894.6+y	K+16	
8331.9+y	K+18	1036.7 2	0.99 ^c 2	7295.2+y	K+16	
9139.2+y	K+20	1149.3 2	1.00 ^c 2	7989.9+y	K+18	
9415.2+y	K+20	1083.3 2	1.00 ^c 2	8331.9+y	K+18	
10343.1+y	K+22	1203.9 2	1.00 ^c 2	9139.2+y	K+20	
10546.6+y	K+22	1131.4 <i>3</i>	1.01 ^c 2	9415.2+y	K+20	
11602.4+y	K+24	1259.3 2	0.93 ^c 2	10343.1+y	K+22	
11725.9+y	K+24	1179.3 2	1.00 ^C 2	10546.6+y	K+22	
12916.1+y	K+26	1313.7 2	0.81 ^c 2	11602.4+y	K+24	
12955.8+y	K+26	1229.8 2	0.94 [°] 2	11725.9+y	K+24	
		1354	≈0.03 ^C	11602.4+y	K+24	
14229.1+y	K+28	1273.4 2	0.81 ^c 2	12955.8+y	K+26	
		1314		12916.1+y	K+26	I_{γ} : $I_{\gamma}(1314)/I_{\gamma}(1273)=0.22$ 4 (1998ErZY).
14293.5+y	J+28	1338		12955.8+y	K+26	I_{γ} : $I_{\gamma}(1338)/I_{\gamma}(1377)=0.095 \ 6 \ (1998 Er ZY).$
		1377.3 2	0.69 ^c 2	12916.1+y	K+26	
15557.7+y	K+30	1328.6 2	0.73 ^c 2	14229.1+y	K+28	
15721.8+y	K+30	1428.3 2	0.55 ^c 2	14293.5+y	J+28	
		1494		14229.1+y	K+28	
16936.3+y	K+32	1378.6 2	0.58° 2	15557.7+y	K+30	
17208.2+y	K+32	1486.4 <i>3</i>	$0.40^{\circ} 2$	15721.8+y	K+30	
18366.7+y	K+34	1430.3 2	$0.46^{\circ} 2$	16936.3+y	K+32	
18751.4+y	K+34	1543.2 4	0.19° 1	17208.2+y	K+32	
19848.9+y	K+36	1482.2 <i>3</i>	$0.26^{\circ} 2$	18366.7+y	K+34	
20351.6+y	K+36	1600.1 6	0.08° 1	18751.4+y	K+34	
21384.3+y	K+38	1535.4 4	0.097 ^c 10	19848.9+y	K+36	
22010.0+y	K+38	1658.4 6	0.044 ^c 10	20351.6+y	K+36	
22972.1+y	J+40	1587.8 7	0.035 10	21384.3+y	K+38	
712.5+z	L+2	712.5 3	$0.76^{\circ} 2$	Z	L≈(28 ⁻)	
1473.7+z	L+4	761.2 3	0.89° 3	712.5+z	L+2	
2284.2+z	L+6	810.5 3	0.94° 3	1473.7+z	L+4	
3144.2+z	L+8	860.0 3	$0.97^{\circ} 2$	2284.2+z	L+6	
4054.7+z	L+10	910.6 4	1.03° 2	3144.2+z	L+8	
5017.2+z	L+12	962.5 4	1.02° 2	4054.7+z	L+10	

23

$\gamma(^{150}\text{Gd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{a}	E_{f}	\mathbf{J}_f^{π}	Comments
6032.1+z	L+14	1014.9 3	1.03 ^c 2	5017.2+z	L+12	
7100.3+z	L+16	1068.2 2	1.03 ^c 2	6032.1 + z	L+14	
8222.7+z	L+18	1122.4 3	1.01 ^c 2	7100.3+z	L+16	
9399.8+z	L+20	1177.1 <i>3</i>	1.03 ^c 2	8222.7+z	L+18	
10632.1+z	L+22	1232.2 <i>3</i>	1.02 ^c 2	9399.8+z	L+20	
11919.8+z	L+24	1287.7 <i>3</i>	0.97 ^C 3	10632.1+z	L+22	
13263.6+z	L+26	1343.8 <i>3</i>	0.90 ^C 2	11919.8+z	L+24	
14664.1+z	L+28	1400.5 <i>3</i>	0.76 ^C 2	13263.6+z	L+26	
16121.2+z	L+30	1457.1 <i>3</i>	0.59 ^c 2	14664.1+z	L+28	
17635.1+z	L+32	1513.9 <i>3</i>	0.38 ^c 1	16121.2+z	L+30	
19204.2+z	L+34	1569.1 <i>3</i>	0.23 ^c 1	17635.1+z	L+32	
771.5+u	M+2	771.6 4		u	M≈(27 ⁺)	
1588.6+u	M+4	817.1 <i>3</i>	0.78 ^C 3	771.5+u	M+2	
2451.5+u	M+6	862.9 2	0.88 ^C 3	1588.6+u	M+4	
3359.9+u	M+8	908.4 2	0.89 [°] 3	2451.5+u	M+6	
4313.1+u	M+10	953.2 2	0.99 [°] 3	3359.9+u	M+8	
5311.3+u	M+12	998.3 <i>2</i>	0.93 [°] 3	4313.1+u	M+10	
6353.7+u	M+14	1042.4 <i>3</i>	0.93 ^c 3	5311.3+u	M+12	
7441.4+u	M+16	1087.7 4	1.06 ^C 3	6353.7+u	M+14	
8574.4+u	M+18	1133.1 2	1.04 ^C 3	7441.4+u	M+16	
9753.9+u	M+20	1179.4 2	1.04 ^C 3	8574.4+u	M+18	
10980.9+u	M+22	1227.1 4	1.03 ^c 3	9753.9+u	M+20	
12256.0+u	M+24	1275.1 2	1.00° 4	10980.9+u	M+22	
13581.2+u	M+26	1325.2 <i>3</i>	0.91° 4	12256.0+u	M+24	
14956.3+u	M+28	1375.1 3	0.71 [°] 4	13581.2+u	M+26	
16382.4+u	M+30	1426.1 3	0.53 ^c 3	14956.3+u	M+28	
17862.5+u	M+32	1480.1 3	0.32° 3	16382.4+u	M+30	
19379.2+u	M+34	1516.7 4		17862.5+u	M+32	
20915.2+u	M+36	1536.0 4		19379.2+u	M+34	E_{γ} : From 1998ErZY.
22505.2+u	M+38	1589.9 8		20915.2+u	M+36	
/33.20+v	N+2	133.2 2		V 722 20 +	N≈(29 ⁺)	
1511.4+V	N+4	118.2 2	0.02	/33.20+V	N+2	
2341.2+V	N+0	829.9 2	$0.93^{\circ} 2$	1511.4+V	N+4	
3221.1+V	N+8 N+10	879.8 2	$0.99^{\circ} 2$	2341.2+V	IN+0	
4131.2+V	N+10 N+12	930.2 2	1.01^{-2}	3221.1+V	IN+8 N+10	
3132.0+V	1N+12 N+14	981.4 Z	1.05^{-1}	4131.2+V	IN+10 N+12	
0100.J+V	1N+14 N+16	1033.9 2	1.04^{-1}	5152.0+V	1N+12	
/233.3+V	IN+10 N+10	1087.02	$1.05^{\circ} I$	$0100.3 \pm V$	IN+14 N+14	
0500 4 L	$1N+1\delta$ N+20	1141.4 2	1.02^{-1}	1233.3+V	IN+10 N+19	
9390.4+V	1N+20	1193.0 3	0.98- 1	0394.9+V	11+10	

From ENSDF

$\gamma(^{150}\text{Gd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{a}	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{a}	E_f	J_f^{π}
10841.4+v	N+22	1250.9 2	0.95 [°] 1	9590.4+v	N+20	16199.5+s	J2+28	1534.0 5	0.37 ^c 3	14665.5+s	J2+26
12147.9+v	N+24	1306.5 2	0.95 [°] 1	10841.4+v	N+22	17793.6+s	J_{2+30}	1594.1 7	0.17° 3	16199.5+s	J2+28
13510.5+v	N+26	1362.7 3	0.91 [°] 1	12147.9+v	N+24	19446.1+s	J2+32	1652.5 9	0.05 ^C 3	17793.6+s	J2+30
14929.5+v	N+28	1419.0 3	0.77 ^C 2	13510.5+v	N+26	827.6+t	J3+2	827.8 5	0.59 ^c 2	t	J3≈(33 ⁺)
16404.8+v	N+30	1475.3 <i>4</i>	0.51 ^c 2	14929.5+v	N+28	1702.9+t	J3+4	875.4 <i>4</i>	0.70 [°] 2	827.6+t	J3+2
17937.1+v	N+32	1532.3 6	0.34 ^c 2	16404.8+v	N+30	2627.2+t	J3+6	924.4 <i>3</i>	0.91 [°] 2	1702.9+t	J3+4
19527.0+v	N+34	1589.97	0.14 ^C 3	17937.1+v	N+32	3601.5+t	J3+8	974.4 <i>4</i>	0.96 ^c 2	2627.2+t	J3+6
21171.8+v	N+36	1644.7 9		19527.0+v	N+34	4626.6+t	J3+10	1025.1 <i>3</i>	1.00 ^C 2	3601.5+t	J3+8
711.1+w	J1+2	711.2 5	С	W	J1≈(28 ⁺)	5703.4+t	J3+12	1076.9 4	0.99 ^c 2	4626.6+t	J3+10
1469.4+w	J1+4	758.5 7	С	711.1+w	J1+2	6832.3+t	J3+14	1128.9 4	1.02 ^C 2	5703.4+t	J3+12
2275.8+w	J1+6	806.4 2	0.78 ^C 1	1469.4+w	J1+4	8014.8+t	J3+16	1182.5 5	1.04 ^C 2	6832.3+t	J3+14
3131.3+w	J1+8	855.6 2	0.86 ^C 1	2275.8+w	J1+6	9250.8+t	J3+18	1236.1 4	0.98 [°] 2	8014.8+t	J3+16
4036.7+w	J1+10	905.4 2	0.92 ^c 1	3131.3+w	J1+8	10540.9+t	J3+20	1290.1 4	0.97 ^C 2	9250.8+t	J3+18
4993.1+w	J1+12	956.4 2	1.00 ^C 1	4036.7+w	J1+10	11885.9+t	J3+22	1345.0 4	0.97 ^c 2	10540.9+t	J3+20
6001.3+w	J1+14	1008.2 2	1.04 ^C 1	4993.1+w	J1+12	13286.0+t	J3+24	1400.1 5	0.84 ^C 2	11885.9+t	J3+22
7062.1+w	J1+16	1060.8 2	1.01 ^C 1	6001.3+w	J1+14	14741.9+t	J3+26	1455.9 6	0.67 ^C 2	13286.0+t	J3+24
8176.0+w	J1+18	1113.9 2	1.01 ^C 1	7062.1+w	J1+16	16253.7+t	J3+28	1511.8 7	0.50 [°] 3	14741.9+t	J3+26
9344.4+w	J1+20	1168.4 2	1.03 ^C 1	8176.0+w	J1+18	17821.0+t	J3+30	1567.3 9	0.18 ^C 4	16253.7+t	J3+28
10567.0+w	J1+22	1222.6 2	1.00 ^C 1	9344.4+w	J1+20	804.0+a	J4+2	804.1 4		а	J4≈(32 ⁺)
11845.0+w	J1+24	1278.0 2	0.94 [°] 1	10567.0+w	J1+22	1655.6+a	J4+4	851.7 4	0.87 ^C 1	804.0+a	J4+2
13178.7+w	J1+26	1333.7 2	0.75 [°] 1	11845.0+w	J1+24	2555.8+a	J4+6	900.2 <i>3</i>	0.91 [°] 1	1655.6+a	J4+4
14568.9+w	J1+28	1390.2 <i>3</i>	0.58 [°] 1	13178.7+w	J1+26	3507.0+a	J4+8	951.3 <i>4</i>	0.95 [°] 1	2555.8+a	J4+6
16015.7+w	J1+30	1446.8 <i>3</i>	0.41 [°] 2	14568.9+w	J1+28	4508.5+a	J4+10	1001.5 3	0.98 [°] 1	3507.0+a	J4+8
17519.6+w	J1+32	1503.9 4	0.24 [°] 2	16015.7+w	J1+30	5562.2+a	J4+12	1053.8 4	0.99 [°] 1	4508.5+a	J4+10
19080.3+w	J1+34	1560.7 <i>6</i>	0.15 [°] 2	17519.6+w	J1+32	6660.4+a	J4+14	1098.1 <i>3</i>	0.99 [°] 1	5562.2+a	J4+12
20698.2+w	J1+36	1617.9 8	0.08 [°] 3	19080.3+w	J1+34	7822.2+a	J4+16	1161.8 <i>3</i>	1.00 ^C 1	6660.4+a	J4+14
800.4+s	J2+2	800.6 4	0.38 ^c 2	S	J2≈(31 ⁺)	9034.6+a	J4+18	1212.4 <i>3</i>	1.00 ^C 1	7822.2+a	J4+16
1650.3+s	J2+4	850.0 <i>3</i>	0.83 ^c 2	800.4+s	J2+2	10300.5+a	J4+20	1265.9 5	1.00 ^C 1	9034.6+a	J4+18
2552.7+s	J2+6	902.4 2	0.90 [°] 2	1650.3+s	J2+4	11621.0+a	J4+22	1320.6 5	1.01 [°] 1	10300.5+a	J4+20
3507.9+s	J2+8	955.3 <i>3</i>	0.97 [°] 2	2552.7+s	J2+6	12996.6+a	J4+24	1375.6 5	0.92 [°] 2	11621.0+a	J4+22
4518.1+s	J2+10	1010.2 2	1.03 ^c 1	3507.9+s	J2+8	14427.3+a	J4+26	1430.7 8	0.84 [°] 2	12996.6+a	J4+24
5584.2+s	J2+12	1066.2 2	1.00 ^C 1	4518.1+s	J2+10	15912.7+a	J4+28	1485.4 9	0.48 [°] 2	14427.3+a	J4+26
6706.4+s	J2+14	1122.2 2	0.99 [°] 1	5584.2+s	J2+12	17451.6+a	J4+30	1538.9 9	0.33 ^c 3	15912.7+a	J4+28
7886.2+s	J2+16	1179.8 2	0.99 [°] 1	6706.4+s	J2+14	830.0+b	J5+2	830.1 5	0.86 [°] 1	b	J5≈(34 ⁺)
9124.2+s	J2+18	1238.0 <i>3</i>	0.99° 1	7886.2+s	J2+16	1706.5+b	J5+4	876.6 4	0.91° 1	830.0+b	J5+2
10420.8+s	J2+20	1296.6 3	0.99° 2	9124.2+s	J2+18	2629.1+b	J5+6	922.6 5	0.95 [°] 1	1706.5+b	J5+4
11776.5+s	J2+22	1355.7 3	0.84 [°] 1	10420.8+s	J2+20	3599.1+b	J5+8	970.0 <i>3</i>	0.97 [°] 1	2629.1+b	J5+6
13191.5+s	J2+24	1415.0 3	0.68 ^c 2	11776.5+s	J2+22	4615.7+b	J5+10	1016.6 4	0.97 [°] 1	3599.1+b	J5+8
14665.5+s	J2+26	1474.0 4	0.53 ^c 2	13191.5+s	J2+24	5680.0+b	J5+12	1064.3 4	0.99 ^c 1	4615.7+b	J5+10

 $^{150}_{64}\mathrm{Gd}_{86}$ -25

25

 $\gamma(^{150}\text{Gd})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{a}	E_f	\mathbf{J}_f^{π}	Comments
6792.0+b	I5 + 14	1112.0.5	1.00 [°] 1	5680 0+b	15 ± 12	
7952.0+b	15+16	1160.0.7	0.97° 1	6792.0+b	15+14	
9159.7+b	J5+18	1207.7 6	1.01 [°] 1	7952.0+b	15+16	
10414.1+b	J5+20	1254.4.5	1.01 [°] 1	9159.7+b	J5+18	
11716.8+b	J5+22	1302.7 5	1.01 [°] 1	10414.1+b	J5+20	
13068.5+b	J5+24	1351.7 5	1.01 [°] 1	11716.8+b	J5+22	
14468.6+b	J5+26	1400.1 5	0.99 [°] 2	13068.5+b	J5+24	
15917.5+b	J5+28	1448.9 <i>5</i>	0.82 ^c 2	14468.6+b	J5+26	
17412.5+b	J5+30	1495.0 9	0.50 ^C 2	15917.5+b	J5+28	
815.1+c	J6+2	815.1 7		с	J6≈(29 ⁺)	
1664.1+c	J6+4	849.1 <i>4</i>		815.1+c	J6+2	
2553.1+c	J6+6	889.1 8		1664.1+c	J6+4	
3430.8+c	J6+8	877.76	0.79 ^c 2	2553.1+c	J6+6	
4353.5+c	J6+10	922.7 5	0.97 ^c 2	3430.8+c	J6+8	
5322.9+c	J6+12	969.4 <i>5</i>	0.99 ^C 1	4353.5+c	J6+10	
6338.5+c	J6+14	1015.6 5	0.99 ^c 1	5322.9+c	J6+12	
7403.9+c	J6+16	1065.4 6	0.99 ^c 1	6338.5+c	J6+14	
8516.3+c	J6+18	1112.5 6	1.00 ^C 1	7403.9+c	J6+16	
9682.2+c	J6+20	1165.9 7	1.02 ^C 1	8516.3+c	J6+18	
10901.0+c	J6+22	1218.8 6	0.99 [°] 2	9682.2+c	J6+20	
12172.4+c	J6+24	1271.4 6	0.94 [°] 2	10901.0+c	J6+22	
13499.3+c	J6+26	1326.9 5	0.80 [°] 2	12172.4+c	J6+24	
14881.7+c	J6+28	1382.4 7	0.73 ^c 2	13499.3+c	J6+26	
16320.1+c	J6+30	1438.4 6	0.59 [°] 2	14881.7+c	J6+28	
17816.2+c	J6+32	1496.1 8	0.42 [°] 2	16320.1+c	J6+30	
19373+c	J6+34	1556.6 9	0.18 [°] 3	17816.2+c	J6+32	
808.9+d	J7+2	808.9 <i>5</i>	0.76 ^c 2	d	J7≈(28 ⁺)	
1667.4+d	J7+4	858.6 7		808.9+d	J7+2	
2577.0+d	J7+6	909.8 8		1667.4+d	J7+4	
3433.3+d	J7+8	856.5 8	0.75° 2	2577.0+d	J7+6	I_{γ} : Probably combined for 856.6+858.6.
4334.0+d	J7+10	900.7 5	0.89 2	3433.3+d	J7+8	I_{γ} : Probably combined for 900.7+909.8.
5279.6+d	J7+12	945.7 5	0.95 2	4334.0+d	J7+10	
6271.1+d	J7+14	991.6 5	1.02° 2	5279.6+d	J7+12	
7311.5+d	J7+16	1040.3 8	1.00° 1	6271.1+d	J7+14	
8404.3+d	J7+18	1093.0 9	1.00 ^c 1	7311.5+d	J7+16	
9544.6+d	J7+20	1140.3 5	0.99 ^c 1	8404.3+d	J7+18	
10736.6+d	J7+22	1192.0 5	0.98 1	9544.6+d	J7+20	
11981.5+d	J7+24	1244.9 6	0.97° 1	10736.6+d	J7+22	
13280.5+d	J7+26	1299.1 6	0.80° 1	11981.5+d	J7+24	
14635.3+d	J7+28	1354.8 8	0.63° 1	13280.5+d	J7+26	

26

 $^{150}_{64}\mathrm{Gd}_{86}$ -26

$\gamma(^{150}\text{Gd})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{a}	E_f	\mathbf{J}_f^{π}
16047+d	J7+30	1411.4 6	0.51 [°] 2	14635.3+d	J7+28
17515+d	J7+32	1468.6 8	0.43 ^c 3	16047+d	J7+30
19046+d	J7+34	1530.8 8	0.35 [°] 4	17515+d	J7+32
20638+d	J7+36	1592.1 9	0.24 ^C 4	19046+d	J7+34

[†] Transition multipolarities were determined from K-conversion coefficients in ¹⁵⁰Tb ε decay (3.48 h) (1977Ha31) or ¹⁵⁰Tb ε decay (5.8 min) (1977Ha21), unless otherwise noted.

[‡] From (p, $2n\gamma$).

[#] From 150 Sm(α ,4n γ).

[@] From 124 Sn(30 Si,4n γ).

& From $(\alpha, 4n\gamma)$.

^{*a*} Relative photon branching at each level. Data from ¹⁵⁰Tb ε decay (3.48 h), except as noted.

^{*b*} From (α ,2n γ).

^c Relative intensity within each SD band, normalized to ≈ 1 for the most intense transitions in the band. The values are read off the intensity plots provided by 1998ErZY.

^d Placement may not be unique.

^e Corrected for unresolved impurity peak by authors.

^f Assumed stretched E2 although E1 not completely excluded by $\alpha(K)$ exp.

^g Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^h Multiply placed with undivided intensity.

^{*i*} Placement of transition in the level scheme is uncertain.

	Legend
Level Scheme Intensities: Type not specified	$\begin{array}{c c} & & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \hline & & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \hline & & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$

0.0 1.79×10⁶ y 8

 $^{150}_{64}{\rm Gd}_{86}$

Level Scheme (continued)	
	 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$
Intensities: Type not specified	 $I_{\gamma} < 10\% \times I_{\gamma}^{max}$
	 $I_{\gamma} > 10\% \times I_{\gamma}^{max}$

Legend

0.0 1.79×10⁶ y 8

 $^{150}_{64}\mathrm{Gd}_{86}$

Level Scheme (continued)	-			
	>	$I_{\gamma} < 2\% \times I_{\gamma}^{max}$		
Intensities: Type not specified		$I_{\gamma} < 10\% \times I_{\gamma}^{max}$		
		$I_{\gamma} > 10\% \times I_{\gamma}^{max}$		

Legend

12 - 20		10420.810
12+19		0124.216
<u>J2+16</u>		7996 2
<u>J2+16</u>	·····	7886.2+s
<u>J2+14</u>	★ ^{(0'} ^{0'}	<u>6706.4+s</u>
<u>J2+12</u>	<u> </u>	<u>5584.2+s</u>
<u>J2+10</u> J2+0	★°°_°_°	4518.1+s
J2+8 J2+6	¥%SS	<u>3507.9+s</u>
J2+0 J2+4		1650.3+s
J2+2		800.4+s
$\frac{J2\approx(31^+)}{11+26}$		S S S S S S S S S S S S S S S S S S S
$\frac{J1+36}{I1+34}$		20698.2+W 19080 3+W
		190001311
<u>J1+32</u>	★ ``~~	17519.6+w
<u>J1+30</u>		16015.7+w
J1+28		14568.9+w
J1+26	¥ <u>`_</u> ⊗§	13178.7+w
<u>J1+24</u>		11845.0+w
J1+22		10567.0+w
J1+20	<u>, , , , , , , , , , , , , , , , ,</u>	9344.4+w
J1+18	\	8176.0+w
J1+16		7062.1+w
J1+14		6001.3+w
J1+12	¥Ý, Š,	4993.1+w
<u>J1+10</u>	¥ [*] [*] [*] [*] [*] [*] [*]	4036.7+w
$\frac{J1+8}{I1+6}$	¥&_∞_∞	<u>3131.3+W</u> 2275 8+W
J1+4		1469.4+w
J1+2		711.1+w
$\frac{J1\approx(28^+)}{N+26}$		<u></u>
N+30 N+34		19527.0+v
N+32		17937.1+v
N+30		16404.8+v
N+28	 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	14929.5+v
N+26	∽_~~	13510.5+v
N+24		12147.9+v
N+22		10841.4+v
N+20		9590.4+v
<u>N+18</u>	↓ ²⁷ <u>0</u>	8394.9+v
N+16		7253.5+v
<u>N+14</u>		6166.5+v
0+		0.0

0.0 1.79×10⁶ y 8

 $^{150}_{64}{
m Gd}_{86}$

 0^+

Adopted Levels, Gammas

Level Scheme (continued)	-			
	>	$I_{\gamma} < 2\% \times I_{\gamma}^{max}$		
Intensities: Type not specified		$I_{\gamma} < 10\% \times I_{\gamma}^{max}$		
		$I_{\gamma} > 10\% \times I_{\gamma}^{max}$		

Legend

	8	
<u>N+14</u>		6166.5+v
N+12	<u> </u>	5132.6+v
<u>N+10</u>	<u> </u>	4151.2+v
<u>N+8</u> N+6	<u> </u>	<u>3221.1+v</u> 2341.2+v
N+4	→ ↓ ² / ₂ →	
N+2		733.20+v
$\frac{N\approx(29^+)}{N\approx20}$		<u>v</u>
M+38 M+36		22505.2+u 20915 2+u
M+34		19379 2±1
M+32		17862.5+u
M+30	v ²	16382.4+u
M+28		14956.3+u
<u>M+26</u>	\$	13581.2+u
<u>M+24</u>	¥ ^v _sg	12256.0+u
<u>M+22</u>		10980.9+u
M+20	↓ `_ `S`\$`	9753.9+u
M+18	\	8574.4+u
M+16	<u> </u>	7441.4+u
M+14	↓ [→] [→] [→] [→] [→] [→] [→]	6353.7+u
M+12	<u> </u>	5311.3+u
M+10	v°_v°_∞	4313.1+u
<u>M+8</u>		<u>3359.9+u</u>
M+6 M+4	<u> </u>	<u>2451.5+u</u> 1588.6+u
M+2		771.5+u
M≈(27 ⁺)		<u>u</u>
L+34		19204.2+z
<u>L+32</u>		<u>17635.1+z</u>
<u>L+30</u>		16121.2+z
L+28		14664.1+z
<u>L+26</u>		13263.6+z
<u>L+24</u>		11919.8+z
<u>L+22</u>		10632.1+z
L+20		9399.8+z
L+18		8222.7+z
L+16		7100.3+z
$\frac{L+14}{L+12}$		<u>6032.1+z</u>
L+12 L+10	<u> </u>	4054.7+z
L+8	↓	<u>3144.2+z</u>
L+6		2284.2+z
$\frac{L+4}{L+2}$		<u>1473.7+z</u>
$\frac{L+2}{L\approx(28^-)}$		/12.5+z
	¥	L

0.0 1.79×10⁶ y 8

 $^{150}_{64}{
m Gd}_{86}$

	Legend
Level Scheme (continued) Intensities: Type not specified	$\begin{array}{c c} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \hline & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \hline & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$

 $^{150}_{64}\mathrm{Gd}_{86}$

Legend

0.0 1.79×10⁶ y 8

 $^{150}_{64}\rm{Gd}_{86}$

 $^{150}_{64}\rm{Gd}_{86}$

 $^{150}_{64}{\rm Gd}_{86}$

. 80

 $^{150}_{64}\rm{Gd}_{86}$

Intensities: Type not specified & Multiply placed: undivided intensity given

Legend

 $^{150}_{64}\rm{Gd}_{86}$

 $^{150}_{64}\text{Gd}_{86}\text{--}43$

From ENSDF

Band(F): SD-2 band
(1994Fa13,1999ErZZ)

Ba	nd(F)• Vract	SD-1	band (1001Faf	$7\frac{J+38}{J+38}$	23397.3+x
Da	19 Ind(12). 111	99Er/	ZZ)	<i>''</i> ,	
	17	//LI	LL)	1.20	1646
	I+36		21287 8±v	J+30	21/51.8+x
	J 100		21207.07X		1506
		1602		I+34	20155 8±v
	J+34		19686.1+x	J 104	20155.01X
					1548
		1547		J+32	18608.2+x
	J+32	+	18139.1+x		
					1499
	1.20	1493		<u>J+30</u>	🚽 17109.1+x
	J+30		16645.9+x		
		1440		I ⊥ 28	1450
	I+28	1440	15205.8+x	J+20	15050./+X
		1			1401
		1388		J+26	14257.7+x
	J+26	+	13818.0+x		
		1227		I+24	1352
	J+24	1337	12481.4+x	JT24	12900.1+X
	<u>.</u>	1	12101111		1301
	1.22	1287	11104.0	J+22	11604.9+x
	J+22	<u> </u>	11194.8+x		1251
		1238		J+20	1251 10354.0+x
	J+20	+	9956.9+x 🖌		
		1100	/	J+18	$^{1200}_{\pm}$ 9154 0+x
	J+18	1 190	8766.4+x 🖌	0 · · · ·	710-H01X
		1145		I+16	1149 8005 2+v
	J+16	1145	7621.8+x 🖌	9	0003.214
		1100		I+14	¹⁰⁹⁸ 6907 6+x
	J+14	1100	6521.8+x 🖌	J	0/0/10/1X
		1056		J+12	¹⁰⁴⁷ 5860.7+x
	J+12	1050	5465.28+x		000
		1014	/	J+10	999 4861.7+x
	J+10	V	4451.79+x	/	060
	T. 0	971	2480.00	<u>J+8</u>	⁹⁶⁹ 3893.0+x
	J+o		3480.90+X	1.7	996 2007 4
	J+6	929	2552.00+x	<u>J+0</u>	2897.4+x
		000	200210011	I+4	966 1931 3+v
	J+4	000	1664.10+x	314	1551.57X
mber of $\Delta J=2$	I+2	849	815 00+v	J+2	⁹¹⁰ 1021.1+x
arity band	<u> </u>	015	01010014		
$=27^{-}$ to	J≈(30 ⁺)	815	x		

Band(D): Member of ΔJ negative-parity band from $J^{\pi}=27^{-}$ to $J^{\pi}=21^{-}$

> 8325 7929.8 7275.8

6495.8

Band(A): negati	: Mer ve-pa	nber of ∆J: arity band	=2		I	Band(C): positiv	Mem ve-pa	ber of ∆J=2, rity band	$\frac{\frac{(27^-)}{(25^-)}}{\frac{(23^-)}{(23^-)}}$	395 654
from	$J^{\pi}=1$	17- to 3-				(20+)		6450.8	(21-)	780
$\frac{17^{-}}{15^{-}}$ $\frac{13^{-}}{11^{-}}$ $\frac{11^{-}}{9^{-}}$	616 704 765	5450.9 4834.9 4131.1 3366.4 2816.1	Band(B) positi	: Men ive-pa	nber of ∆J=2, rity band		686 336 689 634 817	5764.8 5428.8 4739.6 4105.4 3288.2		
$\frac{7^{-}}{5^{-}}$	530 605 511 566	2211.11 1699.912 1134.297		648 650 638	1936.31 1288.42 638.045 0.0	8 ⁺ 6 ⁺	734 438	<u>2554.14</u> 2115.75		

 $^{150}_{64}\rm{Gd}_{86}$

Band(J): SD-6 Band (1999ErZZ)

M+38		22505.2+u
M+36	1590	20915.2+u
M+34	1536	19379.2+u
M+32	1517	17862.5+u
M+30	1480	16382.4+u
M+28	1426	14956.3+u
M+26		—13581.2+u
M+24	1375	12256.0+u
M+22	1325	1Ø980.9+u
M+20	1275	9753.9+u
M+18	1227	8574.4+u
M+16	1179	7441.4+u
M+14	1133	6353.7+u
M+12	1088	311.3+u
M+10	1042	4313.1+u
M+8	998	3359.9+u
M+6	953	2451.5+u
M+4	908	1588.6+u
M+2	863	
M~()7+	817	
111~(27	<u>' 772</u>	<u> </u>

Band(I): SD-5 band (1993Be37, 1999ErZZ)

L+34		19204.2+z
L+32	1569	17635.1+z
L+30	1514	16121.2+z
L+28		14664.1+z
L+26	1457	13263.6+z
L+24	1400	11 <u>919.8+z</u>
L+22	1344	10632.1+z
L+20	1288	9399.8+z
L+18	1222	8 222.7+z
L+16	1252	-7100.3+z
L+14	1177	6032.1+z
L 12	1122	F017.212
	1068	
L+10	1015	-4054.7+z
<u>L+8</u>	962	-3144.2+z
L+6	911	<u>–2284.2+z</u>
L+4	860	1473.7+z
L+2	810	
L≈(28 ⁻)	712	<u>z</u>

(1990By01,1993Be37, 1999ErZZ)		Band(H): SD-4 band (1993Be37, 1999ErZZ)	
+40	22972.1+y		
7 1 28	158821384 3+v	K+38	22010.0+y

Band(G): SD-3 band

J+40	22972.1+y			
K+38	158821384.3+v	K+38		22010.0+y
K+36	153519848.9+y	K+36	1658	20351.6+y
K+34	1482 ^{18366.7+y}	K+34	1600	18751.4+y
K+32	16936.3+y	K+32	1543	17208.2+y
K+30	143013557.7+y	K+30	1486	15721.8+y
K+28	13/914229.1+y	J+28		
K+26	132914955.0+y	K+26	1428	12916.1+y
<u>K+24</u>	1273	K+24	1377	11602.4+y
K+22	1230 10546.6+y	K+22	1314	-10343.1+y
K+20	9415.2+y	K+20	1014	9139.2+y
K+18	8331.9+y	K+18	1259	//989.9+y
K+16	1131 7295.2+y	K+16	1204	6894.6+y
K+14	1083 6304.6+y	K+14	1149	\$853.7+y
K+12	1037 5359.3+y	K+12	1095	4865.1+y
K+10	991 4458.6+y	K+10	1041	3928.6+y
K+8	901 3601.3+y	K+8	989	
K+6	857 2787.0+y	K+6	937	
K+4	814 2015.5+y	K+4	885	-1423.8+v
K+2	1287.6+y	K+2	785	
	/20	K≈(27=)	1	
			_ 688	J

¹⁵⁰₆₄Gd₈₆

Band(M): SD-9 Band (1999ErZZ)

J2+32		19446.1+s
J2+30	1652	17793.6+s
J2+28	1594	16199.5+s
J2+26	1534	14665.5+s
J2+24	1474	13191.5+s
J2+22	1415	11776.5+s
J2+20	1356	10420.8+s
J2+18	1297	9124.2+s
J2+16	1238	
$\frac{J^2+14}{J^2+12}$	1180	0/00.4+s
J2+12	1122	4518.1+s
J2+8	1066	3507.9+s
J2+6	1010	2552.7+s
J2+4	955	1650.3+s
J2+2	850	
J2≈(31 ⁺)	801	s

Band(L): SD-8 Band (1999ErZZ)

J1+36		20698.2+w
J1+34	1618	19080.3+w
J1+32	1561	17519.6+w
J1+30	1504	16015.7+w
J1+28	1447	14568.9+w
J1+26	1390	13178.7+w
J1+24		-11845.0+w
J1+22	1334	10567.0+w
J1+20	1278	9⁄344.4+w
J1+18	1223	8176.0+w
J1+16	1168	7062.1+w
J1+14	1114	6001.3+w
J1+12	1061	4993.1+w
J1+10	1008	4036.7+w
J1+8	956	3/131.3+w
J1+6	905	2/275.8+w
J1+4	856	1/469.4+w
I1+2	806	
11~(39±)	758	
J1~(20)	711	w

Band(K): SD-7 Band (1999ErZZ)

N+36		21171.8+v
N+34	1645	19527.0+v
N+32	1590	17937.1+v
N+30	1532	16404.8+v
N+28	1475	14929.5+v
N+26	1419	13510.5+v
N+24	1363	12147.9+v
N+22		10841.4+v
N+20	1306	9590 4+v
N+18	1251	8394.9+v
N+16	1196	7253.5+v
N+14	1141	¢166.5+v
N+12	1087	\$132.6+v
N+10	1034	4151.2+v
N+8	981	3221.1+v
N+6	930	2341.2+v
N+4	880	1511.4+v
N+2	830	733 20+v
No.(20+)	778	-133.20+1
IN≈(29°)	733	v

 $^{150}_{64}{\rm Gd}_{86}$

Band(P): SD-12 Band (1999ErZZ)

J5+30		17412.5+b
J5+28	1495	15917.5+b
J5+26	1449	14468.6+b
J5+24	1400	13068.5+b
J5+22	1352	11716.8+b
J5+20	1303	10414.1+b
J5+18	1254	9159.7+b
J5+16	1208	7952.0+b
J5+14	1160	6792.0+b
J5+12	1112	5680.0+b
J5+10	1064	4615.7+b
J5+8	1017	3599.1+b
J5+6	970	2629.1+b
J5+4	923	1706.5+b
J5+2	877	830.0+b
J5≈(34 ⁺)	830	b

Band(O): SD-11 Band (1999ErZZ)

J4+30		17451.6+a
J4+28	1539	15912.7+a
J4+26	1485	14427.3+a
J4+24	1431	12996.6+a
J4+22	1376	11621.0+a
J4+20	1321	10300.5+a
J4+18	1266	9034.6+a
J4+16	1212	7822.2+a
J4+14	1162	6660.4+a
J4+12	1098	5562.2+a
J4+10	1054	4508.5+a
J4+8	1002	3507.0+a
J4+6	951	2555.8+a
J4+4	900	1655.6+a
J4+2	852	804.0+a
J4≈(32 ⁺)	804	a

Band(N): SD-10 Band (1999ErZZ)

J3+30		17821.0+t
J3+28	1567	16253.7+t
J3+26	1512	14741.9+t
J3+24	1456	13286.0+t
J3+22	1400	11885.9+t
J3+20	1345	10540.9+t
J3+18	1290	9250.8+t
J3+16	1236	8014.8+t
J3+14	1182	6832.3+t
J3+12	1129	5703.4+t
J3+10	1077	4626.6+t
J3+8	1025	3601.5+t
J3+6	974	2627.2+t
J3+4	924	1702.9+t
J3+2	875	827.6+t
J3≈(33 ⁺)	828	t

 $^{150}_{64}{\rm Gd}_{86}$

Band(d): SD-14 Band (1999ErZZ)

J7+36		20638+d
J7+34	1592	19046+d
J7+32	1531	17515+d
J7+30	1469	16047+d
J7+28	1411	14635.3+d
J7+26	1355	13280.5+d
J7+24	1299	11981.5+d
J7+22	1245	10736.6+d
J7+20	1192	9544.6+d
J7+18	1140	8404.3+d
J7+16	1093	7311.5+d
J7+14	1040	6271.1+d
J7+12	992	5279.6+d
J7+10	946	4334.0+d
J7+8	901	3433.3+d
J7+6	856	2577.0+d
J7+4	910	1667.4+d
J7+2	859	808.9+d
J7≈(28 ⁺)	809	d

Band(Q): SD-13 Band (1999ErZZ)

J6+34		19373+с
J6+32	1557	17816.2+c
J6+30	1496	16320.1+c
J6+28	1438	14881.7+c
J6+26	1382	13499.3+c
J6+24	1327	12172.4+c
J6+22	1271	10901.0+c
J6+20	1219	9682.2+c
J6+18	1166	8516.3+c
J6+16	1112	7403.9+c
J6+14	1065	6338.5+c
J6+12	1016	5322.9+c
J6+10	969	4353.5+c
J6+8	923	3430.8+c
J6+6	878	2553.1+c
J6+4	889	1664.1+c
J6+2	849	815.1+c
J6≈(29 ⁺)	815	с

 $^{150}_{64}{\rm Gd}_{86}$