154 Dy α decay

History

Type Author Citation Literature Cutoff Date
Full Evaluation S. K. Basu, A. A. Sonzogni NDS 114, 435 (2013) 1-Apr-2013

Parent: 154 Dy: E=0.0; J^{π} =0+; $T_{1/2}$ =3.0×10⁶ y 15; $Q(\alpha)$ =2945 5; $\%\alpha$ decay=100.0 $T_{1/2}(^{154}$ Dy)=3.0×10⁶ y 15, recommended by 1985HoZN and adopted by 1993He11, is used in calculations here. $\%\alpha$ =100. 154 Dy is β stable.

¹⁵⁰Gd Levels

 $\frac{\text{E(level)}}{0.0} \quad \frac{\text{J}^{\pi}}{0^{+}}$

 α radiations

 $E\alpha$ E(level) $I\alpha^{\dagger \#}$ HF[‡]

Comments

Eα: recommended by 1991Ry01. Iα: only one α group was observed. An upper limit of $1.1\times10^{-6}\%$ is calculated for an unobserved 2249-keV α to the 2^+ state at 638.05 keV in 150 Gd by requiring Hf(2249α) >

 $^{^{\}dagger}$ α intensity per 100 α decays.

 $^{^{\}ddagger}$ r₀(150 Gd)=1.54 4 is calculated from Hf(2870 α)=1.0.

[#] Absolute intensity per 100 decays.