¹⁵⁰Sm(α,4nγ) E=50 MeV 1977Ha21

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	S. K. Basu, A. A. Sonzogni	NDS 114, 435 (2013)	1-Apr-2013				

See 1976Ba18 for details of these authors' work.

¹⁵⁰Gd Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$
0.0	0^{+}	1.79×10 ⁶ y 8	2392.41 23	7+	3366.8 4	$(11)^{-}$
638.05 10	2^{+}		2554.44 20	8+	4131.5 5	$(13)^{-}$
1134.35 14	3-		2767.7 5	(8^{+})	4187.3 5	$(12)^{-}$
1288.50 18	4+		2816.4 4	9-	4419.7 6	(13)
1700.85 16	5-		2834.8? 4	8-	4835.5 7	$(15)^{-}$
1936.70 22	6+		2905.9 4	8+	5451.6? 9	$(17)^{-}$
2116.03 19	6+		3220.7 4	10-		
2211.42 21	7-		3288.4 4	10^{+}		

 † Based on angular-distribution and conversion-electron data.

$\gamma(^{150}\text{Gd})$

When conversion-electron data were not available transition multipolarities were assumed to be stretched E2's if the angular-distribution coefficients' ratio A_2/A_0 was > 0.3.

E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α^{d}	Comments
≈78 ^e		3366.8	$(11)^{-}$	3288.4	10^{+}			
95.5 2	20 10	2211.42	7-	2116.03	6+			
^x 97.4 3	20 10							
^x 129.5 3	74							
^x 132.9 3	30 10							
146.2 <i>3</i>	65 35	3366.8	$(11)^{-}$	3220.7	10-			
^x 149.9 3	84							
154.1 2	10 5	1288.50	4+	1134.35	3-	[E1]	0.0910	$\alpha(K)=0.0769 \ 11; \ \alpha(L)=0.01110 \ 16; \ \alpha(M)=0.00240 \ 4; \ \alpha(N)=0.000546 \ 8; \ \alpha(O)=8.13\times10^{-5} \ 12 \ \alpha(P)=4 \ 56\times10^{-6} \ 7; \ \alpha(N+)=0.000631 \ 10$
^x 159.4.3	≈2							
162.0 2	15 5	2554.44	8+	2392.41	7+	M1	0.513	α (K)=0.434 7; α (L)=0.0622 9; α (M)=0.01352 20; α (N)=0.00311 5; α (O)=0.000483 7 α (P)=3.23×10 ⁻⁵ 5; α (N+)=0.00363 6
^x 165 <i>I</i>	≈4							a(1)=5.25×10 5, a(1(1.)=0.005050
^x 174.9.3	17.5							
179.4 3	≈2	2116.03	6+	1936.70	6+	E2	0.320	$\alpha(K)=0.215 \ 4; \ \alpha(L)=0.0815 \ 13; \ \alpha(M)=0.0189 \ 3; \ \alpha(N)=0.00424 \ 7; \ \alpha(O)=0.000577 \ 9 \ \alpha(P)=1.203 \times 10^{-5} \ 18; \ \alpha(N+)=0.00483 \ 8$
180.9 <i>3</i>	73	2392.41	7^{+}	2211.42	7-			
^x 186.4 3	≈2							
^x 204.2 3	35 10							
232.4 3	25 10	4419.7	(13)	4187.3	$(12)^{-}$			
235.9 <mark>#e</mark> _3	≈5	1936.70	6+	1700.85	5-			
^x 246.7 3	10.5		-		-			
274.9 3	35 10	2211.42	7-	1936.70	6+	E1	0.0199	α (K)=0.01687 24; α (L)=0.00235 4; α (M)=0.000507 8; α (N)=0.0001158 17; α (O)=1.76×10 ⁻⁵ 3 α (P)=1.066×10 ⁻⁶ 16; α (N+)=0.0001344 20

Continued on next page (footnotes at end of table)

¹⁵⁰₆₄Gd₈₆-2

¹⁵⁰Sm(α,4nγ) E=50 MeV 1977Ha21 (continued)

$\gamma(^{150}\text{Gd})$ (continued)

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{d}	Comments
^x 301.8 <i>3</i> 343.07 <i>10</i>	10 5 65. 20	2554.44	8+	2211.42	7-	E1	0.01142	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00972 \ 14; \ \alpha(\mathbf{L}) = 0.001337 \ 19; \\ &\alpha(\mathbf{M}) = 0.000288 \ 4; \ \alpha(\mathbf{N}) = 6.59 \times 10^{-5} \ 10 \\ &\alpha(\mathbf{O}) = 1.005 \times 10^{-5} \ 14; \ \alpha(\mathbf{P}) = 6.25 \times 10^{-7} \ 9; \\ &\alpha(\mathbf{N}+) = 7.66 \times 10^{-5} \ 11 \end{aligned}$
x364.2 3 404.3 3	150 70	3220.7	10-	2816.4	9-	M1+E2 [@]	0.034 10	α (K)=0.028 <i>9</i> ; α (L)=0.0046 <i>7</i> ; α (M)=0.00100 <i>12</i> ; α (N)=0.00023 <i>3</i> ; α (O)=3.5×10 ⁻⁵ <i>6</i>
412.4 2	2.1×10 ² 10	1700.85	5-	1288.50	4+	E1	0.00734	$\alpha(P)=2.0\times10^{-6} 8; \ \alpha(N+)=0.00027 4$ $\alpha(K)=0.00626 9; \ \alpha(L)=0.000852 12;$ $\alpha(M)=0.000184 3; \ \alpha(N)=4.21\times10^{-5} 6;$ $\alpha(O)=6.43\times10^{-6} 9$
415.3 2	35 15	2116.03	6+	1700.85	5-	E1	0.00722	$\alpha(P)=4.07\times10^{-7} 6; \ \alpha(N+)=4.89\times10^{-5} 7$ $\alpha(K)=0.00615 9; \ \alpha(L)=0.000838 12;$ $\alpha(M)=0.000181 3; \ \alpha(N)=4.14\times10^{-5} 6;$ $\alpha(Q)=6.33\times10^{-6} 9$
438.37 10	110 50	2554.44	8+	2116.03	6+	E2	0.0199	$\alpha(\text{P})=4.01\times10^{-7} \ 6; \ \alpha(\text{N}+)=4.81\times10^{-5} \ 7 \\ \alpha(\text{K})=0.01598 \ 23; \ \alpha(\text{L})=0.00305 \ 5; \\ \alpha(\text{M})=0.000680 \ 10; \ \alpha(\text{N})=0.0001546 \\ 22 \\ \alpha(\text{M})=0.0001546 \\ \alpha(\text{M})=0$
455.7 2	70 40	2392.41	7+	1936.70	6+	(M1+E2)	0.025 7	$\alpha(O)=2.26\times10^{-5} 4; \ \alpha(P)=1.057\times10^{-6} 15; \alpha(N+)=0.0001783 25 \alpha(K)=0.021 7; \ \alpha(L)=0.0032 6; \alpha(M)=0.00071 11; \ \alpha(N)=0.00016 3; \alpha(O)=2.5\times10^{-5} 5 \alpha(P)=1.5\times10^{-6} 6; \ \alpha(N+)=0.00019 4$
^x 465.8 <i>3</i> 496.30 <i>10</i>	15 5 440 20	1134.35	3-	638.05	2+	E1 ^c	0.00479	$\alpha(K) \exp = 0.0033 \ 15$ $\alpha(K) = 0.00409 \ 6; \ \alpha(L) = 0.000552 \ 8;$ $\alpha(M) = 0.0001189 \ 17; \ \alpha(N) = 2.72 \times 10^{-5}$ $4 \cdot \alpha(\Omega) = 4 \ 18 \times 10^{-6} \ 6$
510 <i>I</i>	600 ^{<i>a</i>} CA	2211.42	7-	1700.85	5-	E2	0.01324	$\alpha(P)=2.69\times10^{-7} 4; \ \alpha(N+)=3.17\times10^{-5} 5 \\ \alpha(K)=0.01079 \ 16; \ \alpha(L)=0.00192 \ 3; \\ \alpha(M)=0.000425 \ 7; \ \alpha(N)=9.69\times10^{-5} \ 15; \\ \alpha(O)=1.434\times10^{-5} \ 22 \\ \alpha(P)=7.25\times10^{-7} \ 11; \ \alpha(N+)=0.0001120 \\ 17 $
x547.6 3	10 5					L 0.		
550.3 <i>3</i> 566.52 <i>10</i>	155 50 425 20	3366.8 1700.85	(11) ⁻ 5 ⁻	2816.4 1134.35	9- 3-	‡α E2 ^c	0.01011	α (K)exp=0.0083 8 α (K)=0.00830 12; α (L)=0.001414 20; α (M)=0.000312 5; α (N)=7.12×10 ⁻⁵ 10 α (O)=1.062×10 ⁻⁵ 15; α (P)=5.63×10 ⁻⁷ 8;
605.0 <i>3</i>	425 50	2816.4	9-	2211.42	7-	E2 ^{<i>c</i>}	0.00859	$\alpha(N+)=8.24\times10^{-5} I2$ $\alpha(K)=0.0069 I0$ $\alpha(K)=0.00708 I0; \ \alpha(L)=0.001176 I7;$ $\alpha(M)=0.000259 4; \ \alpha(N)=5.92\times10^{-5} 9;$ $\alpha(O)=8.86\times10^{-6} I3$ $\alpha(D)=4.82\times10^{-7} T_{2} \alpha(D)=0.001176 I0$
616.1 ^e 5 623.4 ^e 3 ^x 633.0 5	30 <i>15</i> 30 <i>10</i> 25 <i>15</i>	5451.6? 2834.8?	(17) ⁻ 8 ⁻	4835.5 2211.42	(15) ⁻ 7 ⁻	@		α (r)=4.82×10 ⁺ /; α (N+)=6.85×10 ⁺ 10

Continued on next page (footnotes at end of table)

¹⁵⁰Sm(α,4nγ) E=50 MeV 1977Ha21 (continued)

$\gamma(^{150}\text{Gd})$ (continued)

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{d}	Comments
638.05 10	1000	638.05	2+	0.0	0+	E2	0.00754	$\begin{aligned} &\alpha(\text{K}) \text{exp} = 0.00625 \\ &\alpha(\text{K}) = 0.00624 \ 9; \ \alpha(\text{L}) = 0.001017 \ 15; \\ &\alpha(\text{M}) = 0.000224 \ 4; \ \alpha(\text{N}) = 5.11 \times 10^{-5} \ 8; \\ &\alpha(\text{O}) = 7.68 \times 10^{-6} \ 11 \end{aligned}$
648.4 <i>3</i>	185 <i>50</i>	1936.70	6+	1288.50	4+	E2 ^C	0.00726	α (P)=4.26×10 ⁻⁷ 6; α (N+)=5.92×10 ⁻⁵ 9 Mult.: E2 assignment adopted from 1971Ke06. α (K)exp=0.0062 <i>10</i> α (K)=0.00601 9; α (L)=0.000974 <i>14</i> ; α (M)=0.000214 3; α (N)=4.89×10 ⁻⁵ 7; α (O)=7.36×10 ⁻⁶ <i>11</i>
650.4 <i>3</i>	540 <i>50</i>	1288.50	4+	638.05	2+	E2	0.00720	$\alpha(P)=4.11\times10^{-7} 6; \alpha(N+)=5.67\times10^{-5} 8$ $\alpha(K)=0.00597 9; \alpha(L)=0.000966 14;$ $\alpha(M)=0.000212 3; \alpha(N)=4.85\times10^{-5} 7;$ $\alpha(O)=7.30\times10^{-6} 11$ $\alpha(P)=4.08\times10^{-7} 6; \alpha(N+)=5.62\times10^{-5} 8$
^x 661.5 <i>3</i> ^x 677.5 <i>3</i> ^x 689.5 <i>5</i>	15 <i>10</i> 25 <i>10</i> 15 <i>10</i>							<i>a</i> (1)-4.06×10 0, <i>a</i> (14+)-5.02×10 6
704.0 5 734.0 <i>3</i>	80 <i>40</i> 120 <i>20</i>	4835.5 3288.4	$(15)^{-}$ 10^{+}	4131.5 2554.44	(13) ⁻ 8 ⁺	‡& E2 ^c	0.00542	α (K)exp=0.0040 7 α (K)=0.00452 7; α (L)=0.000705 10; α (M)=0.0001544 22; α (N)=3.53×10 ⁻⁵ 5; α (O)=5.34×10 ⁻⁶ 8
764.7 2	160 20	4131.5	(13)-	3366.8	(11)-	E2 ^C	0.00494	$\alpha(P)=3.11\times10^{-7} 5; \ \alpha(N+)=4.10\times10^{-5} 6 \\ \alpha(K)\exp=0.0037 7 \\ \alpha(K)=0.00412 6; \ \alpha(L)=0.000636 9; \\ \alpha(M)=0.0001391 20; \ \alpha(N)=3.18\times10^{-5} 5; \\ \alpha(O)=4.82\times10^{-6} 7 \\ \alpha(P)=2.84\times10^{-7} 4; \ \alpha(N+)=3.69\times10^{-5} 6 \\ \alpha(N+)=3.60\times10^{-5} 6 \\ \alpha(N+)=3.60\times10^{-5} 6 \\ \alpha(N+)=3.60\times10^{-5} \\ \alpha(N+)=3.60\times10^{-5$
x775.1 3	45 10							
789.9 4	≈10 50 <i>10</i>	2905.9	8+	2116.03	6+	E2	0.00459	$\alpha(K)=0.00384\ 6;\ \alpha(L)=0.000587\ 9;$ $\alpha(M)=0.0001282\ 18;\ \alpha(N)=2.94\times10^{-5}\ 5;$ $\alpha(O)=4.45\times10^{-6}\ 7$ $\alpha(P)=2.64\times10^{-7}\ 4;\ \alpha(N+)=3.41\times10^{-5}\ 5$
^x 795.7 <i>3</i>	50 <i>10</i> ~5							
x816.8 <i>3</i> 827.48 <i>10</i>	85 <i>15</i> 140 <i>20</i>	2116.03	6+	1288.50	4+	E2 E2 ^c	0.00414	α (K)exp=0.0043 8 α (K)=0.00347 5; α (L)=0.000524 8; α (M)=0.0001143 16; α (N)=2.62×10 ⁻⁵ 4; α (O)=3.98×10 ⁻⁶ 6
831.0 5	40 10	2767.7	(8+)	1936.70	6+	[E2] [‡] <i>b</i>	0.00410	$\alpha(P)=2.39\times10^{-7} 4; \ \alpha(N+)=3.04\times10^{-5} 5$ $\alpha(K)=0.00344 5; \ \alpha(L)=0.000518 8; \alpha(M)=0.0001131 16; \ \alpha(N)=2.59\times10^{-5} 4; \alpha(O)=3.94\times10^{-6} 6$ $\alpha(P)=2.37\times10^{-7} 4; \ \alpha(N+)=3.01\times10^{-5} 5$
^x 859.8 3	20 10							$a(1) - 2.57 \times 10^{-4}, a(1) + 5.01 \times 10^{-5}$
^x 936.4 <i>3</i> 966.6 <i>3</i>	$20 \ 10$ $35 \ 10$	4187.3	$(12)^{-}$	3220.7	10-	E2 ^c	0.00296	α (K)exp=0.0032 10
	20 10		()					$\alpha(K)=0.00249 \ 4; \ \alpha(L)=0.000363 \ 5; \\ \alpha(M)=7.90\times10^{-5} \ 11; \ \alpha(N)=1.81\times10^{-5} \ 3; \\ \alpha(O)=2.77\times10^{-6} \ 4 \\ \alpha(P)=1.725\times10^{-7} \ 25; \ \alpha(N+)=2.11\times10^{-5} \ 3 $
^x 979.0 3	≈10			Conti	nued on	next page	(footnotes a	at end of table)

¹⁵⁰Sm(α,4nγ) E=50 MeV 1977Ha21 (continued)

$\gamma(^{150}\text{Gd})$ (continued)

- [†] 1977Ha21 report a single set of values for both their (α ,4n γ) and their 5.8 min ε -decay experiments. If averaging data, care should be taken to use this data only once.
- [‡] Characterized as stretched E2 even though the conversion-electron data do not provide a clear choice between an E1 and E2 assignment.
- [#] This transition was placed in decay scheme on basis of energy alone.
- [@] Data exclude E1.
- [&] Data exclude M1.
- ^a Not measurable from data. Value estimated from level scheme.
- ^{*b*} Data exclude M1. Stretched E2 is assumed. ^{*c*} Assignment of mult is based on α (K)exp of 1977Ha21.
- ^{*d*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^e Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

