¹⁵⁰Ho ε decay (23.5 s) 1990Sa32

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	S. K. Basu, A. A. Sonzogni	NDS 114, 435 (2013)	1-Apr-2013					

Parent: ¹⁵⁰Ho: E=x; $J^{\pi}=(9)^+$; $T_{1/2}=23.5$ s 3; $Q(\varepsilon)=7364$ 14; $\%\varepsilon+\%\beta^+$ decay=100.0

1990Sa32: source from ¹¹⁶Cd(⁴⁰Ar,X), E=250 MeV. Measured γ , $\gamma\beta$. 1979To09: production by irradiating thin targets of ¹⁴⁴Sm with beams of ¹⁰ B at energies ranging from 60 to 75 MeV. Measured γ , $\gamma\gamma$, $\gamma(t)$. The $\beta^+ + \varepsilon$ decay of ¹⁵⁰Ho, primarily to an 8⁺ state at 2400 keV deexciting to the ground state through a cascade of four coincident γ rays, was first reported by 1973BoVZ and later seen by others. 1979To09 confirm the assignment of these γ rays to 150 Dy by means of γ -ray and K x-ray coincidences.

Other: 1982Mo19, 1980Li18, 1976Ba18.

¹⁵⁰Dy Levels

E(level)	J^{π}	T _{1/2}	E(level)	J^{π}	E(level)	J^{π}
0	0^+	7.17 min 5	2582.9 6	(6,7,8)	3243.4 6	(8,9,10)
803.30 20	2^{+}		2686.5 7	(8)	3813.9 8	(8,9,10)
1456.6 4	4+		2714.6 6	(8)	4013.7 8	(8,9,10)
1850.4 5	6+		2812.4 6	9-	4148.7 8	(8,9,10)
2401.2 6	8^+		3025.2 6	10^{+}	4294.0 7	(8,9,10)

 ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(3069 14)	4294.0	0.93 5	2.7 1	4.92 3	3.6 2	av E β =924.8 64; ε K=0.621 4; ε L=0.0935 6; ε M+=0.02749 16
(3214 14)	4148.7	0.3 1	0.6 1	5.59 5	0.9 1	av $E\beta$ =990.4 64; ε K=0.586 4; ε L=0.0880 6; ε M+=0.02587 16
(3349 14)	4013.7	0.41 3	0.79 7	5.53 4	1.2 1	av E β =1051.5 64; ε K=0.552 4; ε L=0.0829 6; ε M+=0.02437 16
(3549 14)	3813.9	1.1 <i>1</i>	1.6 <i>1</i>	5.27 4	2.7 2	av E β =1142.2 64; ε K=0.503 4; ε L=0.0755 6; ε M+=0.02218 16
(4120 14)	3243.4	0.72 6	0.58 5	5.84 4	1.3 <i>I</i>	av E β =1403.3 65; ε K=0.377 3; ε L=0.0563 5; ε M+=0.01654 13
(4338 14)	3025.2	2.0 1	1.3 1	5.53 <i>3</i>	3.3 2	av Eβ=1503.9 65; εK=0.336 3; εL=0.0501 4; εM+=0.01471 12
(4551 14)	2812.4	3.3 5	1.8 <i>3</i>	5.44 6	5.1 7	av Eβ=1602.3 65; εK=0.2996 23; εL=0.0447 4; εM+=0.01311 10
(4648 14)	2714.6	1.5 1	0.75 3	5.844 22	2.2 1	av E β =1647.7 65; ε K=0.2843 22; ε L=0.0424 4; ε M+=0.01244 10
(4677 14)	2686.5	1.1 2	0.53 10	5.99 9	1.6 3	av $E\beta$ =1660.7 65; ε K=0.2801 21; ε L=0.0417 4; ε M+=0.01225 10
(4962 14)	2401.2	52.6 3	21.2 2	4.448 9	73.8 3	av E β =1793.4 <i>66</i> ; ε K=0.2407 <i>18</i> ; ε L=0.0358 <i>3</i> ; ε M+=0.01051 <i>8</i>

[†] Absolute intensity per 100 decays.

¹⁵⁰Ho ε decay (23.5 s) 1990Sa32 (continued)

 $\gamma(^{150}\mathrm{Dy})$

I(γ +ce) normalization: From the requirement that Σ I(γ +ce)(g.s.) (=I γ (803 γ))=100.

E_{γ}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	$\alpha^{\#}$	Comments
393.8 4	93.6 52	1850.4	6+	1456.6	4+	E2	0.0290	$\alpha(K)=0.0227 \ 4; \ \alpha(L)=0.00488 \ 7; \\ \alpha(M)=0.001110 \ 16; \ \alpha(N)=0.000253 \ 4; \\ \alpha(O)=3.42\times10^{-5} \ 5 \\ \alpha(P)=1.236\times10^{-6} \ 18; \ \alpha(N+)=0.000288 \ 5 $
411.2 3	5.1 7	2812.4	9-	2401.2	8+			
550.8 2	89.6 23	2401.2	8+	1850.4	6+	E2	0.01183	$\alpha(K)=0.00961 \ 14; \ \alpha(L)=0.001731 \ 25; \alpha(M)=0.000388 \ 6; \ \alpha(N)=8.89\times10^{-5} \ 13 \alpha(O)=1.236\times10^{-5} \ 18; \ \alpha(P)=5.42\times10^{-7} \ 8; \alpha(N+)=0.0001018 \ 15$
624.0 2	3.3 2	3025.2	10^{+}	2401.2	8+			
653.3 3	95.9 <i>5</i> 9	1456.6	4+	803.30	2+	E2	0.00780 11	$\alpha(K)=0.00642 \ 9; \ \alpha(L)=0.001079 \ 16; \\ \alpha(M)=0.000240 \ 4; \ \alpha(N)=5.52\times10^{-5} \ 8; \\ \alpha(O)=7.77\times10^{-6} \ 11 \\ \alpha(P)=3.66\times10^{-7} \ 6; \ \alpha(N+)=6.33\times10^{-5} \ 9$
732.5 4	1.8 4	2582.9	(6,7,8)	1850.4	6+			
803.3 2	100	803.30	2+	0	0+	E2	0.00486 7	$\alpha(K)=0.00405 \ 6; \ \alpha(L)=0.000636 \ 9; \alpha(M)=0.0001408 \ 20; \ \alpha(N)=3.24\times10^{-5} 5; \ \alpha(O)=4.61\times10^{-6} \ 7 \alpha(P)=2.33\times10^{-7} \ 4; \ \alpha(N+)=3.72\times10^{-5} \ 6$
836.1 5	1.6 3	2686.5	(8)	1850.4	6+			
842.2 2	1.3 <i>I</i>	3243.4	(8,9,10)	2401.2	8+			
864.2 2	2.2 1	2714.6	(8)	1850.4	6+			
1412.7 5	2.7 2	3813.9	(8,9,10)	2401.2	8+			
1612.5 5	1.2 <i>I</i>	4013.7	(8,9,10)	2401.2	8+			
1711.1 5	1.6 <i>1</i>	4294.0	(8,9,10)	2582.9	(6,7,8)			
1747.5 5	0.9 1	4148.7	(8,9,10)	2401.2	8+			
1892.7 5	2.0 1	4294.0	(8,9,10)	2401.2	8+			

[†] From adopted gammas.

[‡] For absolute intensity per 100 decays, multiply by 0.9951 2.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

•

¹⁵⁰Ho ε decay (23.5 s) 1990Sa32

Decay Scheme

 $^{150}_{66}\text{Dy}_{84}$