$^{154}{\rm Er}~\alpha$ decay

History			
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	S. K. Basu, A. A. Sonzogni	NDS 114, 435 (2013)	1-Apr-2013

Parent: ¹⁵⁴Er: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=3.73 \text{ min } 9$; $Q(\alpha)=4280 3$; % α decay=0.47 13

 $T_{1/2}(^{154}\text{Er})=3.73 \text{ min } 9 \text{ is adopted in 1993He11}$ as a weighted average of the measured half-lives: 3.6 min 3 (1982Ba75), 3.6 min 2 (1982Bo04), 4.0 min 4 (1982To14) and 3.75 min 12 (1974PeZS). $T_{1/2}=3.7 \text{ min } 3$ is used in calculations here (see a comment on the r_0 value).

 $\%\alpha$ =0.47 13, determined by 1974To07 and adopted in 1993He11, is used in calculations.

¹⁵⁰Dy Levels

 α radiations

 $\frac{\mathrm{E(level)}}{0.0} \quad \frac{\mathrm{J}^{\pi}}{\mathrm{0}^{+}}$

 $E\alpha$ E(level) $I\alpha^{\dagger \#}$ HF^{\ddagger} Comments4168 30.01001001.0 $E\alpha$: recommended by 1991Ry01.
I α : only one α group was observed. An upper limit of 2.0×10^{-4} per 100 α decays is
calculated for an unobserved 3385-keV α to the 2⁺ state at 803.5 keV in ¹⁵⁰Dy by
requiring Hf(3385 α)>1.

[†] α intensity per 100 α decays.

[‡] $r_0(^{150}Dy)=1.551\ 24$ is calculated from Hf(4168 α)=1.0. From the analogy to $r_0(^{150}Er; N=82)$, $r_0(^{152}Er; N=84)$ and $r_0(^{146}Gd; N=82)$, $r_0(^{148}Gd; N=84)$ nuclei, $r_0(^{150}Dy; N=84)$ would be expected to be larger than $r_0(^{148}Dy; N=82)$. The calculated $r_0(^{150}Dy)=1.551\ 24$ and $r_0(^{148}Dy)=1.567\ 4$ may be considered consistent with the trend when their uncertainties are taken into account.

[#] For absolute intensity per 100 decays, multiply by 0.0047 13.